JPH0762468A - Production of diamond sintered compact for tool - Google Patents

Production of diamond sintered compact for tool

Info

Publication number
JPH0762468A
JPH0762468A JP3051977A JP5197791A JPH0762468A JP H0762468 A JPH0762468 A JP H0762468A JP 3051977 A JP3051977 A JP 3051977A JP 5197791 A JP5197791 A JP 5197791A JP H0762468 A JPH0762468 A JP H0762468A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
volume
less
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3051977A
Other languages
Japanese (ja)
Other versions
JPH083131B2 (en
Inventor
Tetsuo Nakai
哲男 中井
Shuji Yatsu
修示 矢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3051977A priority Critical patent/JPH083131B2/en
Publication of JPH0762468A publication Critical patent/JPH0762468A/en
Publication of JPH083131B2 publication Critical patent/JPH083131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a diamond bite for a tool utilizable as a diamond bit, a drawing die, a ceramic cutting bite, etc. CONSTITUTION:This diamond sintered compact consists of 20-85vol.% coarse diamond grains having >=3mum grain size and the balance 10-79vol.% binder and 1 to <5vol.% pores. The compsn. of the binder consists of 60-90vol.% superfine diamond grains having <=1mum grain size, 35-5vol.% carbide of a group IVa, Va or VIa metal of the periodic table having <=1mum grain size and <=10vol.% iron family metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンドビット、
伸線用ダイス、セラミック切削加工用バイト等に利用で
きる工具用ダイヤモンドバイトの製造方法を提供するも
のである。
The present invention relates to a diamond bit,
It is intended to provide a method for manufacturing a diamond tool bit for a tool that can be used as a wire drawing die, a ceramic cutting tool bite, and the like.

【0002】[0002]

【従来の技術】現在、ダイヤモンドの含有量が70容量
%以上でダイヤモンド粒子が互いに接合した焼結体が販
売され、非鉄金属,プラスチック,セラミックの切削,
ドレッサー,ドリルビット,伸線ダイスとして使用され
ている。特に非鉄金属の切削や銅線などの比較的軟かい
線材を伸線するダイスとしてこれらのダイヤモンド焼結
体を使用した場合、その性能は非常に優れている。通常
これらのダイヤモンド焼結体はダイヤモンド粒子をダイ
ヤモンド合成時の触媒であるCo等の鉄族金属を結合材
として用いるため、600℃以上の温度に加熱した場
合、ダイヤモンドがグラファイト化して、劣化する欠点
を有している。
2. Description of the Related Art Currently, a sintered body having a diamond content of 70% by volume or more and diamond particles joined to each other is sold, and cutting of non-ferrous metal, plastic, ceramic,
Used as a dresser, drill bit, wire drawing die. In particular, when these diamond sintered bodies are used as a die for cutting non-ferrous metal or drawing a relatively soft wire rod such as a copper wire, the performance thereof is very excellent. Usually, these diamond sintered bodies use the iron group metal such as Co, which is a catalyst for synthesizing diamond, as the binder in the diamond sintered body. Therefore, when heated to a temperature of 600 ° C. or higher, the diamond is graphitized and deteriorates. have.

【0003】ダイヤモンド焼結体の耐熱性を向上させる
方法としては、特開昭53−1145891号に記載さ
れている如く加熱時にダイヤモンドのグラファイト化を
促進するCo等の鉄族金属を取り除けば良い。
As a method for improving the heat resistance of the diamond sintered body, the iron group metal such as Co that promotes the graphitization of diamond during heating may be removed as described in JP-A-53-145891.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ダイヤ
モンド焼結体からCo等の鉄族金属を溶出した場合、ダ
イヤモンド焼結体の強度は20〜30%低下する。特に
ダイヤモンド焼結体をビット用途として使用した場合、
強度と耐摩耗性と耐熱性が要求され特開昭53−114
589号に記載されているようなダイヤモンド焼結体を
用いたドリルビットではダイヤモンド焼結体の強度不足
のため、刃先が欠損し寿命が短い。本発明者等は強度が
高く、耐摩耗性が良好でさらに耐熱性の優れたダイヤモ
ンド焼結体を開発すべく鋭意研究を重ねた。
However, when the iron group metal such as Co is eluted from the diamond sintered body, the strength of the diamond sintered body is reduced by 20 to 30%. Especially when a diamond sintered body is used for bits,
Strength, wear resistance, and heat resistance are required, and therefore, JP-A-53-114
In a drill bit using a diamond sintered body as described in No. 589, the diamond sintered body has insufficient strength, so that the cutting edge is damaged and the life is short. The present inventors have conducted intensive studies to develop a diamond sintered body having high strength, good wear resistance and excellent heat resistance.

【0005】[0005]

【課題を解決するための手段】研究の結果、粒度3μm
以上の粗粒ダイヤモンド粒子が容量で20〜85%を占
め、残部が結合材10〜79容量%と空孔1%以上5%
未満より成り、結合材の組成が粒度1μm以下の超微粒
のダイヤモンド粒子を容量で60〜90%と1μm以下
の周期律表第4a,5a,6a族の炭化物35〜5容量
%及び10容量%以下の鉄族金属から成るダイヤモンド
焼結体は靭性、耐摩耗性及び耐熱性を兼ねそなえたもの
であることが判明した。本発明の焼結体が靭性、耐摩耗
性及び耐熱性が良好であるのは次の如く推測できる。
[Means for solving the problem] As a result of the research, the particle size is 3 μm.
The above coarse diamond particles occupy 20 to 85% by volume, and the balance is 10 to 79% by volume of binder and 1% or more and 5% of pores.
And the composition of the binder is 60 to 90% by volume of ultrafine diamond particles having a particle size of 1 μm or less and 35 to 5% by volume and 10% by volume of carbides of Groups 4a, 5a and 6a of the periodic table of 1 μm or less. It was found that the following diamond sintered bodies composed of iron group metals have both toughness, wear resistance and heat resistance. The fact that the sintered body of the present invention has good toughness, wear resistance and heat resistance can be estimated as follows.

【0006】ダイヤモンド焼結体の強度は図1に示した
如く粒度の増大に伴ない低下する。微粒ダイヤモンド焼
結体は抗折力が高く、靱性に優れているため刃先は欠損
しにくいものの、個々の粒子は小さなダイヤモンドスケ
ルトンにより保持されているので、個々の粒子の結合力
は弱い。したがって、切削中に個々の粒子が脱落しやす
いため、耐摩耗性が劣るものと考えられる。
The strength of the diamond sintered body decreases as the grain size increases, as shown in FIG. The fine-grained diamond sintered body has high transverse rupture strength and excellent toughness, so that the cutting edge is hard to be broken, but since individual particles are held by the small diamond skeleton, the binding force of individual particles is weak. Therefore, it is considered that the wear resistance is inferior because individual particles are likely to fall off during cutting.

【0007】一方、粗粒ダイヤモンド焼結体は、大きな
スケルトンにより保持されており、個々のダイヤモンド
粒子の結合力は強いため、耐摩耗性は優れているもの
の、スケルトン部が大きいので、一度クラックが発生す
ると伝播しやすく、刃先が欠損しやすく靱性が劣る。
On the other hand, the coarse-grained diamond sintered body is held by a large skeleton, and since the bonding strength of individual diamond particles is strong, the wear resistance is excellent, but since the skeleton portion is large, a crack is generated once. If it occurs, it is easily propagated, the cutting edge is easily damaged, and the toughness is poor.

【0008】[0008]

【作用】本発明焼結体は、微粒ダイヤモンドを含む結合
材を用いて粗粒ダイヤモンドを焼結しているため、微粒
ダイヤモンドの靭性の高さと粗粒ダイヤモンドの耐摩耗
性の良さを兼ね備えているものと考えられる。また本発
明焼結体は、結合材の一部として周期律表4a,5a,
6a族の炭化物と鉄族金属を用いているが、酸処理によ
り、溶出されるのは主として鉄族金属であり、この含有
量が少ないため生じる空孔も少なく、鉄族金属溶出後の
強度低下は少ない。耐熱性の向上した原因としては、第
一に鉄族金属の溶出によりダイヤモンドのグラファイト
化が抑制されたことが挙げられる。
In the sintered body of the present invention, since the coarse-grained diamond is sintered by using the binder containing the fine-grained diamond, it has high toughness of the fine-grained diamond and good wear resistance of the coarse-grained diamond. It is considered to be a thing. Further, the sintered body of the present invention uses the periodic table 4a, 5a,
6a group carbide and iron group metal are used, but mainly iron group metal is eluted by the acid treatment. Since the content is small, the number of vacancies generated is small, and the strength is decreased after the iron group metal is eluted. Is few. The reason for the improved heat resistance is that the graphitization of diamond is suppressed by the elution of the iron group metal.

【0009】また鉄族金属を含んだダイヤモンド焼結体
は、ダイヤモンドと鉄族金属の熱膨張差により、加熱時
亀裂が発生するが鉄族金属の溶出により、この亀裂の発
生が抑制される。炭化物、例えばWCの熱膨張係数は4
〜5×10-6と低いため熱応力による亀裂は発生しにく
い。
Further, the diamond sintered body containing the iron group metal has cracks during heating due to the difference in thermal expansion between the diamond and the iron group metal, but the cracking is suppressed by the elution of the iron group metal. The coefficient of thermal expansion of carbides such as WC is 4
Since it is as low as ~ 5 × 10 -6 , cracks due to thermal stress are unlikely to occur.

【0010】本発明焼結体における粗粒のダイヤモンド
粒度は3μm以上が好ましい。粗粒のダイヤモンド粒度
が3μm未満であると耐摩耗性が低下する。特に10μ
m〜100μmのダイヤモンド粒子を用いた場合が靱
性、耐摩耗性共、最も優れている。
The coarse diamond grain size in the sintered body of the present invention is preferably 3 μm or more. If the coarse-grained diamond grain size is less than 3 μm, the wear resistance decreases. Especially 10μ
The toughness and wear resistance are most excellent when diamond particles of m to 100 μm are used.

【0011】粗粒ダイヤモンドの含有量は20〜85%
が好ましい。この含有量が20%未満であると耐摩耗性
が低下し、85%を越えると靭性が落ちる。
The content of coarse-grained diamond is 20 to 85%
Is preferred. If this content is less than 20%, the wear resistance will decrease, and if it exceeds 85%, the toughness will decrease.

【0012】空孔は、焼結体の容量%で1%以上5%未
満が良い。空孔の含有量が5%以上であるとダイヤモン
ド焼結体の強度は著しく低下する。また1%未満である
と含有される鉄族金属の量が多く耐熱性は向上しない。
The voids are preferably 1% or more and less than 5% by volume of the sintered body. When the void content is 5% or more, the strength of the diamond sintered body is significantly reduced. Further, if it is less than 1%, the amount of the iron group metal contained is large and the heat resistance is not improved.

【0013】結合材として用いる超微粒のダイヤモンド
粒子は1μm以下、好ましくは0.5μm以下が良い。
粒度が1μmを越えると焼結体の靭性が低下する。超微
粒のダイヤモンド粒子の含有量は結合材中の容量で60
〜90%が良い。含有量が60%未満であると結合材の
耐摩耗性が低下する。また90%を越えると結合材の靭
性が低下する。
The ultrafine diamond particles used as the binder have a size of 1 μm or less, preferably 0.5 μm or less.
If the particle size exceeds 1 μm, the toughness of the sintered body decreases. The content of ultrafine diamond particles is 60 by volume in the binder.
~ 90% is good. If the content is less than 60%, the wear resistance of the binder decreases. Further, if it exceeds 90%, the toughness of the binder decreases.

【0014】周期律表第4a,5a,6a族の炭化物の
含有量は、結合材中の容量で5〜35%が好ましい。こ
の含有量が5%未満であると、1μm以下のダイヤモン
ド粒子が粒成長するとともに実質的に鉄族金属の含有量
が増加し、耐熱性の低下や、溶出後の空孔増加による強
度低下の要因となる。この含有量が35%を越えると、
超微粒のダイヤモンド粒子の含有量が減り、結合材の耐
摩耗性が低下する。
The content of carbides of groups 4a, 5a and 6a of the periodic table is preferably 5 to 35% by volume in the binder. If this content is less than 5%, the diamond particles of 1 μm or less grow in grain size and the content of the iron group metal increases substantially, resulting in a decrease in heat resistance and a decrease in strength due to an increase in vacancies after elution. It becomes a factor. If this content exceeds 35%,
The content of ultrafine diamond particles is reduced, and the wear resistance of the binder is reduced.

【0015】鉄族金属の含有量は、結合材中の容量で1
0%以下が良い。鉄族金属の含有量が10%を越えると
耐熱性の向上は望めない。
The iron group metal content is 1 by volume in the binder.
0% or less is good. If the iron group metal content exceeds 10%, improvement in heat resistance cannot be expected.

【0016】本発明の焼結体では特に炭化物がWCある
いはこれと同一結晶構造を有した(Mo,W)Cである
場合、靭性,耐摩耗性,耐熱性が優れている。
In the sintered body of the present invention, particularly when the carbide is WC or (Mo, W) C having the same crystal structure as that of WC, the toughness, wear resistance and heat resistance are excellent.

【0017】また、本発明の焼結体に焼結体の重量で
0.005〜0.15%の硼素または硼化物を含有させ
た場合、その性能は一段と向上する。通常ダイヤモンド
粒子は超高圧高温下で鉄族金属等の触媒によるダイヤモ
ンドの溶解、析出現象により焼結される。硼素または硼
素化合物を添加した場合、鉄族金属の硼化物を生じ融点
が低下するのと、溶解析出速度が増すためダイヤモンド
粒子同志の結合部(ダイヤモンドスケルトン部)が成長
し、ダイヤモンド粒子の保持力が向上したものと推測で
きる。硼素あるいは硼化物の含有量が0.005%未満
であるとダイヤモンドスケルトン部の形成が遅い。
Further, when the sintered body of the present invention contains 0.005 to 0.15% by weight of the sintered body of boron or boride, the performance is further improved. Usually, diamond particles are sintered under ultra high pressure and high temperature by dissolution and precipitation of diamond by a catalyst such as iron group metal. When boron or a boron compound is added, the melting point is lowered due to the formation of a boride of an iron group metal, and the rate of dissolution and precipitation is increased, so that the joint part (diamond skeleton part) of diamond particles grows and the coercive force of diamond particles is increased. Can be inferred to have improved. When the content of boron or boride is less than 0.005%, the formation of the diamond skeleton part is slow.

【0018】一方、硼素あるいは硼化物の含有量が0.
15%を越すと、ダイヤモンドスケルトン部に多量の硼
素が侵入し、ダイヤモンドスケルトン部の強度が低下す
る。
On the other hand, when the content of boron or boride is 0.
If it exceeds 15%, a large amount of boron penetrates into the diamond skeleton portion, and the strength of the diamond skeleton portion decreases.

【0019】本発明の焼結体に使用するダイヤモンド原
料粉末は3μm以上のダイヤモンド粒子と1μm以下、
好ましくは0.5μm以下のミクロンパウダーである。
合成ダイヤモンド天然ダイヤモンドのいずれでも良い。
The diamond raw material powder used in the sintered body of the present invention is diamond particles of 3 μm or more and 1 μm or less,
It is preferably a micron powder having a particle size of 0.5 μm or less.
Synthetic diamond Any natural diamond may be used.

【0020】このダイヤモンド粉末と周期律表4a,5
a,6a族の炭化物及びFe,Co,Niの鉄族金属粉
末あるいはこれに硼素または硼化物を加えた粉末をボー
ルミル等の手段を用いて均一に混合する。この鉄族金属
は予め混合せずに焼結時に溶浸せしめても良い。
This diamond powder and periodic table 4a, 5
Carbides of the a, 6a group and iron group metal powders of Fe, Co, Ni or powders obtained by adding boron or boride to these are uniformly mixed by means of a ball mill or the like. This iron group metal may be infiltrated during sintering without being mixed in advance.

【0021】また本発明者等の先願(特願昭52−51
381号)の如く、ボールミル時のポットとボールを混
入する周期律表第4a,5a,6a族の炭化物と鉄族金
属の焼結体で作成しておき、ダイヤモンド粉末をボール
ミル粉砕すると同時にポットとボールから周期律表第4
a,5a,6a族の炭化物と鉄族金属の焼結体の微細粉
末を混入せしめる方法もある。
The prior application of the present inventors (Japanese Patent Application No. 52-51)
No. 381), it is made of a sintered body of a carbide and an iron group metal of the periodic table group 4a, 5a, 6a which mixes the pot and the ball in the ball mill, and the diamond powder is ball-milled at the same time as the pot. 4th Periodic Table from the ball
There is also a method of mixing fine powders of a sintered body of an iron group metal and a carbide of the a, 5a, and 6a groups.

【0022】混合した粉末を超高圧装置に入れ、ダイヤ
モンドが安定な条件下で焼結する。このとき使用した鉄
族金属と炭化物等の化合物間に生じる共晶液相の出現温
度以上で焼結する必要がある。
The mixed powder is put into an ultra-high pressure apparatus, and the diamond is sintered under stable conditions. It is necessary to sinter at a temperature above the appearance temperature of the eutectic liquid phase generated between the iron group metal and the compound such as carbide used at this time.

【0023】焼結体中のダイヤモンドの結合材となる炭
化物等の化合物と鉄族金属の割合は一義的には定められ
ないが、少くとも焼結時に化合物が固体として存在する
だけの量は必要であり、例えばWCを化合物として用い
Coを結合金属とした場合はWCとCoの量的割合は前
者を重量で50%以上含む必要がある。
The ratio of a compound such as a carbide serving as a binder for diamond in the sintered body to the iron group metal is not uniquely determined, but at least an amount sufficient for the compound to exist as a solid at the time of sintering is necessary. For example, when WC is used as the compound and Co is the binding metal, the quantitative ratio of WC and Co must be 50% or more by weight of the former.

【0024】このようにして製造されたダイヤモンド焼
結体を、例えば王水の如く鉄族金属を腐食しうることの
できる酸中に入れ鉄族金属を溶出して空孔を作る。
The diamond sintered body thus produced is put into an acid capable of corroding the iron group metal, such as aqua regia, and the iron group metal is eluted to form pores.

【0025】本発明焼結体の用途としてはビットの他に
伸線用ダイス、セラミック切削加工用バイトなどがあ
る。
Applications of the sintered body of the present invention include, in addition to bits, dies for wire drawing and cutting tools for ceramic cutting.

【0026】[0026]

【実施例】【Example】

(実施例1)粒度0.5μの合成ダイヤモンド粉末とW
C及びCo粉末を、Wc−Co超硬合金製のポットとボ
ールを用いて粉砕混合した。得られた混合粉末の組成
は、平均粒度0.3μmの微粒ダイヤモンド80容量
%、WC12容量%、Co8容量%であった。この混合
粉末と粒度20〜30μmのダイヤモンド粉末を容積で
75:25に混合した。この完成粉末をMo製の容器に
詰め、超高圧装置を用いて先ず圧力を55Kb加え、引続
いて1450℃に加熱して30分間保持した。この焼結
体を容器より取り出し、加熱した王水中に150時間入
れ、Coを溶出させた。Co溶出後のダイヤモンド焼結
体の組成を分析したところCo,WCは結合材中にそれ
ぞれ1.2容量%と、11.8容量%含有されていた。
(Example 1) Synthetic diamond powder having a particle size of 0.5μ and W
The C and Co powders were ground and mixed using a Wc-Co cemented carbide pot and balls. The composition of the obtained mixed powder was 80% by volume of fine diamond with an average particle size of 0.3 μm, 12% by volume of WC, and 8% by volume of Co. The mixed powder and diamond powder having a particle size of 20 to 30 μm were mixed at a volume of 75:25. This finished powder was packed in a container made of Mo, and a pressure of 55 Kb was first applied using an ultrahigh pressure apparatus, followed by heating to 1450 ° C. and holding for 30 minutes. This sintered body was taken out of the container and put in heated aqua regia for 150 hours to elute Co. Analysis of the composition of the diamond sintered body after elution of Co revealed that Co and WC were contained in the binder at 1.2% by volume and 11.8% by volume, respectively.

【0027】また空孔は焼結体中の容積で1.7%であ
った。このダイヤモンド焼結体を真空中で1000℃に
30分加熱し、抗折力試験により強度を測定した。その
結果を表1に示す。なお比較のため表1に示すダイヤモ
ンド焼結体の強度も同時に測定した。
The volume of voids in the sintered body was 1.7%. This diamond sintered body was heated in vacuum at 1000 ° C. for 30 minutes, and the strength was measured by a transverse rupture strength test. The results are shown in Table 1. For comparison, the strength of the diamond sintered body shown in Table 1 was also measured at the same time.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)表2に示す結合材粉末を作成
した。微粒ダイヤモンドとしては0.3μmのものを用
いた。この結合材と粗粒のダイヤモンド粒子を表3に示
す割合で混合して完成粉末を作成した。
Example 2 The binder powder shown in Table 2 was prepared. The fine diamond particles used were 0.3 μm. The binder and coarse diamond particles were mixed at the ratio shown in Table 3 to prepare a finished powder.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】これらの完成粉末を実施例1と同様にして
焼結した後、ダイヤモンド焼結体を取り出して加熱した
王水中で100時間処理した。鉄族金属溶出後の焼結体
の空孔の含有量も表3に示す。次にこれらの焼結体を用
いて切削加工用のバイトを作成し、花崗岩を50m/min
の速度で乾式で30分間切削した。その結果も合わせて
表3に記す。
After sintering these finished powders in the same manner as in Example 1, the diamond sintered body was taken out and treated in heated aqua regia for 100 hours. Table 3 also shows the void content of the sintered body after the elution of the iron group metal. Next, create a cutting tool for cutting using these sintered bodies, and make granite at 50 m / min.
Dry cutting was performed for 30 minutes at the speed of. The results are also shown in Table 3.

【0033】(実施例3)平均粒度0.5μmのダイヤ
モンド粒子とWC,Co及び硼素粉末をWC―Co超硬
合金製のポットとボールを用いて粉砕混合した。得られ
た混合粉末の組成は平均粒度0.3μの微粒ダイヤモン
ド81容量%、WC10容量%、Co9容量%、硼素
1.0容量%であった。この混合粉末と粒度30〜40
μmのダイヤモンド粒子を容量で2:8に混合して完成
粉末を作成した。硼素の含有量を測定したところ重量で
0.128%であった。
Example 3 Diamond particles having an average particle size of 0.5 μm, WC, Co and boron powder were pulverized and mixed using a pot and a ball made of WC—Co cemented carbide. The composition of the obtained mixed powder was 81% by volume of fine diamond having an average particle size of 0.3 μ, 10% by volume of WC, 9% by volume of Co, and 1.0% by volume of boron. This mixed powder and particle size 30-40
A final powder was prepared by mixing 2: 8 μm diamond particles in a volume of 2: 8. The content of boron was measured and found to be 0.128% by weight.

【0034】次のこのダイヤモンド焼結体を直径1.5
mm、長さ3mmの円柱に加工した後、加熱した王水中で1
50時間処理した。処理後の空孔は1.5%であつた。
この焼結体を鋼製のシャンクにW,WC,Fe,Co,
Ni,Cuの混合粉末より成る高融点高硬度のマトリク
スを1000℃で焼結して固定し、サーフェスセットの
コアビットを作成した。比較のため市販の40〜60μ
のダイヤモンド粒子より成る焼結体で結合材であるCo
を溶出したもののコアビットも同様にして作成した。こ
れらのビットを用いて、一軸圧縮強度1800kg/mm2
の安山岩を回転速度500回転で掘削した。
Next, this diamond sintered body was made to have a diameter of 1.5.
1 mm in heated aqua regia after processing into a cylinder with a length of 3 mm and a length of 3 mm
Treated for 50 hours. The treated porosity was 1.5%.
This sintered body is applied to a steel shank with W, WC, Fe, Co,
A high melting point and high hardness matrix made of a mixed powder of Ni and Cu was sintered and fixed at 1000 ° C. to prepare a core bit of a surface set. Commercially available 40-60μ for comparison
Co which is a binder made of sintered diamond particles
A core bit of the eluate was also prepared in the same manner. Using these bits, uniaxial compressive strength of 1800 kg / mm 2
Andesite was excavated at a rotation speed of 500 rpm.

【0035】その結果、本発明焼結体を用いたビットは
掘進速度10cm/分で50m掘削してもまだ掘削可能で
あったのに対し、市販のダイヤモンド焼結体を用いたビ
ットは掘進速度8cm/分で30m掘削した時点で寿命と
なった。
As a result, the bit using the sintered body of the present invention could still be excavated even if it was excavated at a speed of 10 cm / min for 50 m, while the bit using the commercially available diamond sintered body had a speed of excavation. It reached the end of its life when excavating 30 m at 8 cm / min.

【0036】[0036]

【発明の効果】本発明により、高温で使用することがで
きる工具用ダイヤモンド焼結体を提供することができ
た。花崗岩の掘削等にも効果があるものである。
According to the present invention, a diamond sintered body for a tool which can be used at high temperature can be provided. It is also effective for excavating granite.

【図面の簡単な説明】[Brief description of drawings]

【図1】ダイヤモンド焼結体における強度(抗折力)と
ダイヤモンド粒度の関係を表わしたものである。
FIG. 1 shows the relationship between strength (breaking strength) and diamond grain size in a diamond sintered body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23P 15/28 Z 7528−3C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B23P 15/28 Z 7528-3C

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3μm以上のダイヤモンド粉末、1μm
以下の超微粒ダイヤモンド粉末、1μm以下の周期律表
第4a,5a,6a族の炭化物と鉄族金属の混合粉末を
作成し、超高圧高温装置を用いて、ダイヤモンドが安定
な高温高圧下でホットプレスして、焼結体を作成し、該
焼結体を酸処理することにより、鉄族金属の一部を溶出
することを特徴とする3μm以上の粗粒のダイヤモンド
粒子が容量で20〜85%を占め、残部が結合材10〜
79容量%と空孔1%以上5%未満より成り、結合材の
組成が粒度1μm以下の超微粒のダイヤモンド粒子を容
量で60〜90%と1μm以下の周期律表第4a,5
a,6a族の炭化物35〜5容量%及び鉄族金属10容
量%以下である工具用ダイヤモンド焼結体の製造方法。
1. Diamond powder of 3 μm or more, 1 μm
The following ultrafine diamond powder, 1 μm or less of the periodic table 4a, 5a, 6a group of carbide and iron group metal mixed powder was prepared, and the diamond was hot under high temperature and high pressure with stable ultrahigh pressure and high temperature equipment. By pressing, a sintered body is prepared, and the sintered body is subjected to an acid treatment to elute a part of the iron group metal, and the coarse diamond particles of 3 μm or more are 20 to 85 in volume. %, The balance is 10 to 10% binder.
79% by volume and 1% or more and less than 5% of voids, and the composition of the binder is 60 to 90% by volume and 1 μm or less of ultrafine diamond particles with a composition of 1 μm or less.
A method for producing a diamond sintered body for a tool, comprising 35 to 5% by volume of a and 6a group carbides and 10% by volume or less of an iron group metal.
【請求項2】 粗粒ダイヤモンド粒子の粒度が10μm
以上100μm以下である請求項1記載の工具用ダイヤ
モンド焼結体の製造方法。
2. The coarse diamond particles have a particle size of 10 μm.
The method for producing a diamond sintered body for a tool according to claim 1, wherein the diameter is 100 μm or more.
【請求項3】 周期律表第4a,5a,6a族の炭化物
がWCまたはこれと同一結晶構造を有する(Mo,W)
Cである請求項1または2記載の工具用ダイヤモンド焼
結体の製造方法。
3. Carbides of Groups 4a, 5a and 6a of the Periodic Table have WC or the same crystal structure (Mo, W).
The method for producing a diamond sintered body for a tool according to claim 1 or 2, which is C.
【請求項4】 3μm以上のダイヤモンド粉末、1μm
以下の超微粒ダイヤモンド粉末1μm以下の周期律表第
4a,5a,6a族の炭化物、鉄族金属と硼素および/
または硼化物の混合粉末を作成し、超高圧高温装置を用
いてダイヤモンドが安定な高温、高圧下でホットプレス
して焼結体を作成し、該焼結体を酸処理することにより
鉄族金属の一部を溶出することを特徴とする3μm以上
の粗粒のダイヤモンド粒子が容量で20〜85%を占
め、残部が結合材10−7.9容量%と空孔1%以上5
%未満より成り、該結合材が粒度1μm以下の超微粒の
ダイヤモンド粒子を容量で60〜90%と1μm以下の
周期律表第4a,5a,6a族の炭化物35〜5容量
%、鉄族金属10容量%以下及び硼素および/または硼
化物より成り、硼素および/または硼化物の含有量が焼
結体の重量で0.005〜0.15%である工具用ダイ
ヤモンド焼結体の製造方法。
4. Diamond powder of 3 μm or more, 1 μm
The following ultrafine-grained diamond powder having a particle size of 1 μm or less, carbides of groups 4a, 5a, and 6a of the periodic table, iron group metals and boron, and /
Alternatively, a mixed powder of borides is prepared, and a diamond is hot-pressed at a stable high temperature and high pressure using an ultrahigh-pressure high-temperature apparatus to prepare a sintered body, and the sintered body is treated with an acid to produce an iron group metal. Coarse-grained diamond particles of 3 μm or more account for 20 to 85% by volume, and the balance is 10-7.9% by volume of binder and 1% or more of voids.
%, The binder is 60 to 90% by volume of ultrafine diamond particles having a particle size of 1 μm or less, and 35 to 5% by volume of carbide of Group 4a, 5a, 6a of the periodic table of 1 μm or less, iron group metal. A method for producing a diamond sintered body for a tool, comprising 10% by volume or less and boron and / or boride, and the content of boron and / or boride is 0.005 to 0.15% by weight of the sintered body.
【請求項5】 粗粒ダイヤモンド粒子の粒度が10μm
以上100μm以下である請求項4記載の工具用ダイヤ
モンド焼結体の製造方法。
5. The coarse diamond particles have a particle size of 10 μm.
The method for producing a diamond sintered body for a tool according to claim 4, wherein the diameter is 100 μm or more.
【請求項6】 周期律表第4a,5a,6a族の炭化物
がWCまたはこれと同一結晶構造を有する(Mo,W)
Cである請求項4または5記載の工具用ダイヤモンド焼
結体の製造方法。
6. A carbide of Group 4a, 5a, 6a of the Periodic Table has WC or the same crystal structure as WC (Mo, W).
The method for producing a diamond sintered body for a tool according to claim 4 or 5, which is C.
JP3051977A 1991-03-18 1991-03-18 Method for manufacturing diamond sintered body for tool Expired - Lifetime JPH083131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051977A JPH083131B2 (en) 1991-03-18 1991-03-18 Method for manufacturing diamond sintered body for tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051977A JPH083131B2 (en) 1991-03-18 1991-03-18 Method for manufacturing diamond sintered body for tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57142791A Division JPS5935066A (en) 1982-08-18 1982-08-18 Diamond sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPH0762468A true JPH0762468A (en) 1995-03-07
JPH083131B2 JPH083131B2 (en) 1996-01-17

Family

ID=12901930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051977A Expired - Lifetime JPH083131B2 (en) 1991-03-18 1991-03-18 Method for manufacturing diamond sintered body for tool

Country Status (1)

Country Link
JP (1) JPH083131B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US11383217B1 (en) 2011-08-15 2022-07-12 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US11370664B1 (en) 2013-06-18 2022-06-28 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9783425B1 (en) 2013-06-18 2017-10-10 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11618718B1 (en) 2014-02-11 2023-04-04 Us Synthetic Corporation Leached superabrasive elements and leaching systems, methods and assemblies for processing superabrasive elements
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11253971B1 (en) 2014-10-10 2022-02-22 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US11535520B1 (en) 2015-05-31 2022-12-27 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Also Published As

Publication number Publication date
JPH083131B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
CA2171210C (en) Improved metal bond and metal bonded abrasive articles
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
JPH0333675B2 (en)
CN102203374A (en) High pressure sintering with carbon additives
JPH09194978A (en) Superhard composite member and its production
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
WO2014161818A2 (en) Superhard constructions &amp; methods of making same
JPH0762468A (en) Production of diamond sintered compact for tool
JPS6167740A (en) Diamond sintered body for tools and its manufacture
WO2015059207A2 (en) Superhard constructions &amp; methods of making same
JPH0530897B2 (en)
JPS6355161A (en) Manufacture of industrial diamond sintered body
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JP2990579B2 (en) Superabrasive grindstone and method of manufacturing the same
WO2003057936A1 (en) Metal carbide composite
JPS58199776A (en) Diamond sintered body for tool and manufacture
JPS6319585B2 (en)
JPH10310838A (en) Superhard composite member and its production
JPS62105911A (en) Hard diamond mass and production thereof
JPH11181540A (en) Hyperfine-grained cemented carbide
JP2003034836A (en) WC-Co HARD METAL SUPERIOR IN OXIDATION RESISTANCE
TW403681B (en) This disclosure relates to a method of fabricating composite blocks
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JPS58213676A (en) Diamond sintered body for tool and manufacture