JPH10310838A - Superhard composite member and its production - Google Patents

Superhard composite member and its production

Info

Publication number
JPH10310838A
JPH10310838A JP9137676A JP13767697A JPH10310838A JP H10310838 A JPH10310838 A JP H10310838A JP 9137676 A JP9137676 A JP 9137676A JP 13767697 A JP13767697 A JP 13767697A JP H10310838 A JPH10310838 A JP H10310838A
Authority
JP
Japan
Prior art keywords
composite member
super
diamond
hard composite
diamond particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9137676A
Other languages
Japanese (ja)
Inventor
Yoshio Miyamoto
欽生 宮本
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9137676A priority Critical patent/JPH10310838A/en
Publication of JPH10310838A publication Critical patent/JPH10310838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength composite member having a dense and uniform structure without using a superhigh pressure vessel by integratedly subjecting diamond particles coated with at least one kind of metal among eight elements such as Ir or the like, hard phases of at least one kind among four kinds of compounds such as WC or the like and bonding phase metal composed of iron family metal to SHS/HIP sintering. SOLUTION: Diamond particles are externally coated with at least one kind of metal among Ir, Os, Pt, Re, Rh, Cr, Mo and W as an external layer to prevent deterioration in diamond at the time of sintering. As for the member to be compounded with the diamond particles, at least one kind among WC, TiC, TiN and TiCN is used as hard phases, and iron family metal such as Co, Ni, Cr, Fe or the like is used as bonding phases. As for SHS/HIP sintering, since heating, pressurizing and cooling can rapidly be executed, e.g. by bringing metal silicon powder into a chain reaction with nitrogen in a pressurizing nitrogen atmosphere, sintering can be executed in a short time. Thus, the reduction of the production cost can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金などの焼
結体中にダイヤモンド粒子が複合されている超硬質複合
部材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super-hard composite member in which diamond particles are compounded in a sintered body such as a super-hard alloy and a method for producing the same.

【0002】[0002]

【従来の技術】ダイヤモンドを含むWC基超硬合金など
の焼結体が超高圧容器( 5.5GPa,1500℃)を用いて熱力
学的に安定な条件のもとで製造されることはよく知られ
ている(特公昭61-56067号公報、同61-58432号公報、US
P No.5158148など)。この技術によるものは製造コスト
が高く、形状面でも制約をうけるという問題がある。
2. Description of the Related Art It is well known that a sintered body such as a WC-based cemented carbide containing diamond is produced under thermodynamically stable conditions in an ultra-high pressure vessel (5.5 GPa, 1500 ° C.). (JP-B-61-56067, JP-B-61-58432, US
P No.5158148). The technique according to this technique has a problem that the manufacturing cost is high and the shape is restricted.

【0003】特開平7-34157 号公報(従来技術1)は、
この問題を解決しようとする提案の一つで、ダイヤモン
ドが熱力学的に安定でない圧力,温度条件で固相で焼結
することにより、超高圧容器を用いないでダイヤモンド
含有複合部材を作製する技術を開示している。
[0003] Japanese Patent Application Laid-Open No. 7-34157 (prior art 1) discloses that
One of the proposals to solve this problem is to produce a diamond-containing composite member without using an ultra-high pressure vessel by sintering the solid phase under pressure and temperature conditions in which diamond is not thermodynamically stable. Is disclosed.

【0004】また、USP 5,096,465 号(従来技術2)に
は結合相中にメタルコートされた超硬粒子(ダイヤモン
ドやCBN)を保持する複合部材を溶浸法により作製す
る技術が開示されている。
Further, US Pat. No. 5,096,465 (prior art 2) discloses a technique for producing a composite member holding metal-coated superhard particles (diamond or CBN) in a binder phase by an infiltration method.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の従来技
術1では焼結が固相で行われることなどにより、ダイヤ
モンドと金属結合材との結合が十分でなく、ダイヤモン
ドが脱落するおそれがある。
However, in the above-mentioned prior art 1, since the sintering is performed in a solid phase, the bonding between the diamond and the metal binder is not sufficient, and the diamond may fall off.

【0006】また、従来技術2の溶浸法では、ダイヤモ
ンドの分散量は添加するダイヤモンドの粒径に依存す
る。すなわち、ダイヤモンド粒子のパッキング密度に依
存するため、任意のダイヤモンド粒径で任意のダイヤモ
ンド分散量の複合部材を作製することが難しい。また、
溶浸法では緻密な複合部材を作製することが難しく、こ
のことは大型部材や異形部材で特に顕著になる。従っ
て、超高圧容器を用いないで製造され、十分に緻密で、
均一な組織を有する高強度のダイヤモンド含有複合部材
が要望されていた。
In the infiltration method of the prior art 2, the amount of dispersed diamond depends on the particle size of diamond to be added. That is, since it depends on the packing density of the diamond particles, it is difficult to produce a composite member having an arbitrary diamond particle diameter and an arbitrary diamond dispersion amount. Also,
It is difficult to produce a dense composite member by the infiltration method, and this is particularly remarkable in a large member or a deformed member. Therefore, it is manufactured without using an ultra-high pressure vessel, is sufficiently dense,
There has been a demand for a high-strength diamond-containing composite member having a uniform structure.

【0007】[0007]

【課題を解決するための手段】本発明複合部材はこの要
望に応えるもので、lr、Os、Pt、Re、Rh、C
r、Mo、Wから選ばれた少なくとも一種の金属で外層
被覆が形成されたダイヤモンド粒子と、WC,TiC,
TiNおよびTiCNから選択された少なくとも1種の
硬質相と、鉄族金属からなる結合相金属とを含み、これ
らが一体にSHS/HIP焼結されてなることを特徴と
する。すなわち、超硬合金やサーメットなどのマトリッ
クス中にダイヤモンド粒子を分散して保持する焼結体で
あって、SHS/HIP焼結により得られたことを特徴
とする。
SUMMARY OF THE INVENTION The composite member of the present invention meets this demand, and is composed of lr, Os, Pt, Re, Rh, and C.
a diamond particle having an outer layer coating formed of at least one metal selected from the group consisting of r, Mo, and W;
It comprises at least one hard phase selected from TiN and TiCN and a binder phase metal made of an iron group metal, and these are integrally SHS / HIP sintered. That is, a sintered body in which diamond particles are dispersed and held in a matrix such as a cemented carbide or a cermet, and is characterized by being obtained by SHS / HIP sintering.

【0008】ここで、ダイヤモンド粒子の外層被覆はダ
イヤモンドの劣化を防止するために形成している。WC
基超硬合金やTiC基サーメットの緻密な焼結体を得る
ためには、1300℃を上回る焼結温度が好ましいが、その
ような条件では発生した液相からダイヤモンド、CBN
がアタックされやすい。そこで、このアタックを防ぐた
めに外層被覆を形成した。前述した金属による外層被覆
は、ダイヤモンドの劣化防止に特に優れた効果を発揮す
る。外層被覆の膜厚としては0.1〜50μmが好ましい。こ
れは、0.1μmよりも薄いと被覆した効果が小さいため
で、50μmよりも厚いと硬質材料としての耐摩耗性が低
下するためこのように限定した。特に好ましいのは5〜2
0μmである。
Here, the outer layer coating of diamond particles is formed in order to prevent the deterioration of diamond. WC
In order to obtain a dense sintered body of a base cemented carbide or a TiC-based cermet, a sintering temperature higher than 1300 ° C. is preferable.
Is easy to be attacked. Thus, an outer layer coating was formed to prevent this attack. The above-mentioned outer layer coating with a metal exhibits a particularly excellent effect for preventing the deterioration of diamond. The thickness of the outer layer coating is preferably 0.1 to 50 μm. This is because if the thickness is less than 0.1 μm, the effect of coating is small, and if the thickness is more than 50 μm, the wear resistance as a hard material is reduced. Particularly preferred is 5 to 2
0 μm.

【0009】上記のダイヤモンド粒子と複合化する部材
としては、WC基超硬合金、すなわちWCを硬質相と
し、CoやNiを結合相とするものを用いることが好ま
しい。これは、WC基硬合金の剛性率が高く、強度、靭
性に優れるためである。結合相金属としては、Co,N
i,Cr,Feなどの鉄族金属が好適である。なお、不
可避的不純物を含んでも構わないことは言うまでもな
い。不可避的不純物には、例えばAl,Ba,Ca,C
u,Fe,Mg,Mn,Ni,Si,Sr,S,O,
N,Mo,Sn,Cr等が挙げられる。
As the member to be composited with the diamond particles, it is preferable to use a WC-based cemented carbide, that is, a material having WC as a hard phase and Co or Ni as a binder phase. This is because the WC base hard alloy has a high rigidity, and is excellent in strength and toughness. Co, N
Iron group metals such as i, Cr, and Fe are preferred. It goes without saying that unavoidable impurities may be included. Inevitable impurities include, for example, Al, Ba, Ca, C
u, Fe, Mg, Mn, Ni, Si, Sr, S, O,
N, Mo, Sn, Cr and the like.

【0010】SHS/HIP焼結では、例えば加圧窒素
雰囲気中で金属珪素粉末と窒素とを化学的に連鎖反応さ
せ、急速に加熱・加圧・冷却できるため、10分以内の
短時間で焼結を終了できる。そのため、従来の焼結で最
高温度保持時間を単に短くした場合よりも被焼結材料が
高温にさらされる時間を短くでき、ダイヤモンドが黒鉛
に変態することなく焼結を終了できる。その上、SHS
/HIP焼結は、等方静水圧を利用して加圧・焼結する
ため、焼結体のニアネットシェイプが可能であるという
大きな利点を有する。このことは本発明部材のようにダ
イヤモンドが分散した超硬質部材には重要なポイント
で、加工費の大幅コストダウンという大きなメリットを
手に入れることができる。さらに、短時間サイクルでの
製造が可能なため、設備の稼働率向上による低コスト化
も期待できる。
In SHS / HIP sintering, for example, a metal silicon powder and nitrogen are chemically chain-reacted in a pressurized nitrogen atmosphere, and can be rapidly heated, pressed, and cooled. The ending can be ended. Therefore, the time during which the material to be sintered is exposed to a high temperature can be shortened as compared with the case where the maximum temperature holding time is simply shortened in the conventional sintering, and the sintering can be completed without the diamond being transformed into graphite. Besides, SHS
/ HIP sintering has a great advantage in that the sintered body can be near-net-shaped because it is pressed and sintered using isotropic hydrostatic pressure. This is an important point for a super-hard member in which diamond is dispersed as in the member of the present invention, and a great merit of greatly reducing the processing cost can be obtained. Furthermore, since production can be performed in a short cycle, cost reduction can be expected by improving the operation rate of equipment.

【0011】この複合部材には、上記の要件に加えて下
記の要件を単独で、または組み合わせて具備することが
好適である。
It is preferable that the composite member has the following requirements in addition to the above requirements, alone or in combination.

【0012】(1) SHS/HIP焼結をダイヤモンドが
熱力学的に準安定にあり、かつ液相の存在する条件下で
行う。従来の超高圧容器を用いる製造法によるものは、
ダイヤモンドと結合相(Coなど)の共融点以上の温度
でダイヤモンドが熱力学的に安定な状態で焼結されてい
るため、焼結中、液相のCo中にダイヤモンドが溶解
し、ダイヤモンド表面に再析出する過程を繰返すこと
で、ダイヤモンド同士の直接結合(D−D結合)が生
じ、スケルトンを形成して焼結体強度を向上すると言わ
れていた。
(1) SHS / HIP sintering is performed under conditions where diamond is thermodynamically metastable and a liquid phase exists. By the manufacturing method using the conventional ultra-high pressure vessel,
Since diamond is sintered in a thermodynamically stable state at a temperature equal to or higher than the eutectic point of diamond and a bonding phase (such as Co), the diamond dissolves in Co in the liquid phase during sintering, It has been said that by repeating the process of re-precipitation, a direct bond (DD bond) between diamonds is generated, a skeleton is formed, and the strength of the sintered body is improved.

【0013】それに対し、本発明においてはダイヤモン
ドが準安定な条件で焼結するものであるから、ダイヤモ
ンドの結合金属中への溶解は極力抑制され、液相中にダ
イヤモンドが一旦溶解してしまうとダイヤモンドとして
再析出しない。従って、ダイヤモンド同士の直接結合は
生じず、焼結体の強度は超硬合金などのマトリックス側
が負担することとなる。また、SHS/HIP焼結によ
り短時間で焼結を終了するため、液相の存在下で焼結を
行ってもダイヤモンドの黒鉛への変態を抑制でき、液相
の生成により緻密な焼結体を作製することができる。従
って、マトリックス自体の優れた強度と靭性に加え、ダ
イヤモンドとマトリックスとの結合力の向上により、十
分な焼結体強度が得られる。
On the other hand, in the present invention, since diamond is sintered under metastable conditions, the dissolution of diamond in the bonding metal is suppressed as much as possible, and once the diamond is dissolved in the liquid phase, Does not reprecipitate as diamond. Therefore, direct bonding between diamonds does not occur, and the strength of the sintered body is borne by the matrix side such as a cemented carbide. Further, since sintering is completed in a short time by SHS / HIP sintering, transformation of diamond to graphite can be suppressed even when sintering is performed in the presence of a liquid phase, and a dense sintered body is formed by the formation of a liquid phase. Can be produced. Therefore, in addition to the excellent strength and toughness of the matrix itself, a sufficient sintered body strength can be obtained by improving the bonding force between the diamond and the matrix.

【0014】(2) 結合相金属にCoを含み、このCoの
主たる結晶系がfcc である。液相を出現させて焼結を行
った場合には、緻密でダイヤモンド粒子の結合力の高い
超硬質複合部材とすることができ、Coの主たる結晶系
もfcc で安定させることができる。なお、短時間焼結と
急冷によりCoはhcp の結晶系のものを混在させること
ができる。これにより耐衝撃性能が向上する。
(2) Co is contained in the binder phase metal, and the main crystal system of Co is fcc. When sintering is performed with the appearance of a liquid phase, it is possible to obtain a super-hard composite member that is dense and has a high bonding force of diamond particles, and the main crystal system of Co can be stabilized at fcc. It should be noted that, by short-time sintering and rapid cooling, Co can be mixed with hcp crystal. Thereby, impact resistance performance is improved.

【0015】(3) ISO規格でA00〜08、B00〜
B08までの範囲を満たす緻密度を有する。緻密な構造
とすることで、ダイヤモンドの保持力が高く、耐磨耗性
に優れた複合部材とできる。特に好ましいのはA04、
B04の範囲内である。また、理論比重で言えば理論比
重の98%以上を構成していることが好ましい。緻密であ
るかどうかは、この材料の断面を鏡面加工後、光学顕微
鏡により組織観察することによって評価できる。
(3) ISO standards A00-08, B00-
It has a denseness that satisfies the range up to B08. By having a dense structure, it is possible to obtain a composite member having a high holding force of diamond and excellent wear resistance. Particularly preferred is A04,
It is within the range of B04. In terms of the theoretical specific gravity, it is preferable that it constitutes 98% or more of the theoretical specific gravity. Whether or not the material is dense can be evaluated by mirror-processing the cross section of this material and then observing the structure with an optical microscope.

【0016】(4) 液相出現温度が1300℃よりも高温であ
る。WC基超硬合金が液相を生成する温度は共晶組成の
融点が1320℃であり、この合金を緻密に焼結するために
必要な1350℃以上の焼結温度ではダイヤモンドと超硬合
金の間での反応が期待でき、従来品よりもダイヤモンド
の保持力の大きな複合部材とすることが期待できる。13
00℃を越える温度はダイヤモンドが準安定の条件で焼結
するには従来の方法と比べてかなり高温であるが、本発
明のSHS/HIP焼結では急速昇温、短時間焼結が可
能であるため、ダイヤモンドの黒鉛への変態を抑制した
優れた複合部材を作製することができる。
(4) The liquid phase appearance temperature is higher than 1300 ° C. The melting point of the eutectic composition of the WC-based cemented carbide is 1320 ° C, and the sintering temperature of 1350 ° C or more required for dense sintering of this alloy causes the diamond and cemented carbide to form a liquid phase. It is expected that a composite member having a larger diamond holding power than conventional products can be expected. 13
Temperatures exceeding 00 ° C. are considerably higher than conventional methods for sintering diamond under metastable conditions, but the SHS / HIP sintering of the present invention enables rapid temperature rise and short-time sintering. Therefore, an excellent composite member in which the transformation of diamond into graphite is suppressed can be manufactured.

【0017】(5) 外層被覆とダイヤモンド粒子との間に
Co、Niから選ばれた一種以上の金属からなる内層被
覆を具える。前記外層被覆とダイヤモンド粒子の間にC
o、Niから選ばれた一種以上の金属が被覆されている
と、強い衝撃が加わる用途で使用した場合に、変形能が
小さいWC基超硬合金の欠点を補うことができる。しか
も、ダイヤモンド粒子の保持力が向上するため、特に優
れた性能を発揮する。この内層被覆層の厚みは0.1〜100
μm が好ましい。これは0.1μm よりも薄いと被覆した
効果が認められず、100μm よりも厚いと硬質材料とし
ての耐摩耗性が低下するためである。特に好ましいのは
5〜50μmである。この内層被覆は硬質相粒子に設けても
よい。
(5) An inner layer coating made of one or more metals selected from Co and Ni is provided between the outer layer coating and the diamond particles. C between the outer coating and the diamond particles
When coated with at least one metal selected from the group consisting of o and Ni, it can compensate for the disadvantage of a WC-based cemented carbide having a low deformability when used in applications where a strong impact is applied. In addition, since the retention of diamond particles is improved, particularly excellent performance is exhibited. The thickness of this inner coating layer is 0.1 to 100
μm is preferred. This is because if the thickness is less than 0.1 μm, the coating effect is not recognized, and if the thickness is more than 100 μm, the wear resistance as a hard material decreases. Particularly preferred is
5 to 50 μm. This inner layer coating may be provided on the hard phase particles.

【0018】(6) 外層被覆中にW、Ti、Co、Ni、
Cから選ばれた一種以上の元素の拡散が生じている。前
記外層被覆中にW、Ti、Co、Ni、Cから選ばれた
一種以上の元素の拡散が生じていると、WC基超硬合金
やTiC(N)基サーメットと金属を被覆したダイヤモ
ンド粒子との結合力が向上し、優れた性能を発揮する。
(6) W, Ti, Co, Ni,
One or more elements selected from C have been diffused. If one or more elements selected from W, Ti, Co, Ni, and C are diffused in the outer layer coating, WC-based cemented carbide or TiC (N) -based cermet and metal-coated diamond particles Improves the bonding force and exhibits excellent performance.

【0019】(7) 結晶粒径が3μmより大きいWCを任
意の断面組織で全WCのうち面積率で50%以上含有す
る。結晶粒径が3μmより大きいWCを全WCのうち面
積率で50%以上含有すると、鉱山土木工具のように大き
な衝撃力が付加される用途には優れた特性の複合部材と
することができる。
(7) WC having a crystal grain size of more than 3 μm is contained in an arbitrary cross-sectional structure in an area ratio of 50% or more of all WC. When WC having a crystal grain size of more than 3 μm is contained in an area ratio of 50% or more of all WCs, a composite member having excellent characteristics can be obtained for applications in which a large impact force is applied, such as a mine civil engineering tool.

【0020】(8) −硬質相であるWCの平均粒径が1
μmより小さい。WCの微粒化により高硬度化が達成で
きるからである。 (8) −結晶粒径が1μmより小さく、WCを任意の断
面組織でWCのうち面積率で10〜35%含有する。結晶粒
径が1μmより小さいWCを全WCのうち面積率で10〜3
5%含有すると、超硬合金の硬度が向上する。また、W
C粒径が微細なため、本発明のような短時間焼結でも液
相が毛細管力によりWC粒子に浸透しやすく、焼結性が
向上するため好ましい。
(8) The average particle size of the hard phase WC is 1
smaller than μm. This is because high hardness can be achieved by atomizing WC. (8) The crystal grain size is smaller than 1 μm, and WC has an arbitrary sectional structure and contains 10 to 35% by area of WC. WC having a crystal grain size of less than 1 μm is 10 to 3
When the content is 5%, the hardness of the cemented carbide is improved. Also, W
Since the C particle size is fine, the liquid phase easily penetrates into the WC particles due to the capillary force even in the short-time sintering as in the present invention, which is preferable because the sinterability is improved.

【0021】(9) WCの平均粒径が3μmより小さく、
かつダイヤモンド粒子の平均粒径が10μmよりも小さ
い。特に、WCの平均粒径は0.1μm 〜1.5μm が好まし
い。このような構成により、工作機械の軸受けなどの摺
動耐摩材料、木工チップ、線引きダイスなどの比較的衝
撃力の小さい用途に対して優れた複合部材とすることが
できる。より好ましくは、WCの平均粒径を1μmより
小さくし、ダイヤモンド粒子の平均粒径を3μmより小
さくする。
(9) The average particle size of WC is smaller than 3 μm,
And the average diameter of the diamond particles is smaller than 10 μm. In particular, the average particle size of WC is preferably from 0.1 μm to 1.5 μm. With such a configuration, it is possible to provide a composite member which is excellent for applications having relatively small impact force, such as a sliding wear-resistant material such as a bearing of a machine tool, a woodworking chip, and a drawing die. More preferably, the average particle size of WC is smaller than 1 μm, and the average particle size of diamond particles is smaller than 3 μm.

【0022】(10)内部に遊離炭素が存在していること。
超硬合金中に遊離炭素が存在している、即ち、結合相中
にカーボンが過剰に存在していると、焼結中に液相が生
じたときに、ダイヤモンドがカーボンとして液相中に溶
解しにくいと言う効果も期待できる。また、この遊離炭
素は優れた潤滑性を有するため、摺動耐摩材料などとし
て用いたときに自己潤滑性を有する複合部材として機能
する。
(10) Free carbon exists inside.
If free carbon is present in the cemented carbide, that is, if there is an excessive amount of carbon in the binder phase, diamond will dissolve in the liquid phase as carbon when a liquid phase is formed during sintering. It can also be expected to have the effect of being difficult to do. Further, since this free carbon has excellent lubricating properties, it functions as a composite member having self-lubricating properties when used as a sliding wear-resistant material.

【0023】(11)硬質相とダイヤモンドとの界面の少な
くとも一部に、IVa、Va、VIa族元素の炭化物お
よびSiCから選択された1種以上が析出しているこ
と。原料粉末として、IVa、Va、VIa族元素、S
iから選ばれた1種以上を用いると、ダイヤモンドが結
合金属の液相中にカーボンとして溶解した場合でも、カ
ーボンとIVa、Va、VIa族元素、Siが反応して
炭化物を形成し、複合部材の硬度の向上に寄与し得る。
(11) At least one selected from carbides of group IVa, Va and VIa elements and SiC is deposited on at least a part of the interface between the hard phase and the diamond. As raw material powder, IVa, Va, VIa group element, S
When one or more kinds selected from i are used, even when diamond is dissolved as carbon in the liquid phase of the binding metal, carbon reacts with the IVa, Va, VIa group element, or Si to form carbide, and the composite member Can contribute to the improvement of the hardness.

【0024】(12)ダイヤモンド粒子の平均粒径が10〜10
00μmであること。ダイヤモンド粒子の平均粒径は、10
μm未満の微粒では表面積が大きくてカーボンに変態し
やすく、1000μmを越える大粒となると強度が低下する
問題があり、かつこの中間の粒径のものにおいては、マ
トリックス中への埋め込み効果がよく、脱落が生じにく
いと言う利点もあるので、この中間内の範囲とすること
が好ましい。
(12) The average diameter of the diamond particles is 10 to 10
00 μm. The average diameter of the diamond particles is 10
Fine particles of less than μm have a large surface area and are easily transformed into carbon, while large particles of more than 1000 μm have the problem of reduced strength, and those with an intermediate particle size have a good embedding effect in the matrix and fall off. There is also an advantage that it is unlikely to occur, so it is preferable to set the range within this intermediate range.

【0025】(13)ダイヤモンド粒子の含有量が5〜50体
積%であること。ダイヤモンドの含有量が5体積%未満
ではダイヤモンドを分散させた効果が期待できず、50%
を越えるとダイヤモンドとダイヤモンドが直接接する箇
所が多くなるため、ダイヤモンド粒子のマトリックスに
対する結合力が低下し、ダイヤモンド粒子の脱落が生じ
易くなるのでこの範囲に限定した。
(13) The content of diamond particles is 5 to 50% by volume. If the content of diamond is less than 5% by volume, the effect of dispersing diamond cannot be expected, and 50%
If the number exceeds the limit, the number of places where the diamond is in direct contact with the diamond increases, so that the bonding force of the diamond particles to the matrix decreases and the diamond particles easily fall off.

【0026】(14)結合相金属の含有量が10〜50体積%で
あること。複合部材中の結合相量としては、ダイヤモン
ドが準安定な低温で、しかも短時間で緻密な焼結を進め
るためには、10〜50体積%の範囲が好ましい。
(14) The content of the binder phase metal is 10 to 50% by volume. The amount of the binder phase in the composite member is preferably in the range of 10 to 50% by volume in order to promote dense sintering in a short time at a low temperature at which the diamond is metastable.

【0027】(15)超硬質複合部材の一面側ほどダイヤモ
ンドが多く、他面側ほど少なくなるように厚さ方向にダ
イヤモンドの含有量が変化されてなること。このような
構成により硬度と靱性を兼ね備えた複合部材を得ること
ができる。すなわち、ダイヤモンドの多い側の熱膨張係
数がダイヤモンドの少ない側の熱膨張係数よりも小さく
なることにより、ダイヤモンドの多い側の層に圧縮残留
応力が発生し、強靱でダイヤモンドの保持力に優れる表
面層を作製できる。ダイヤモンド含有量の変化の仕方
は、段階的であっても連続的であってもよい。
(15) The diamond content is varied in the thickness direction such that the diamond is increased on one surface side of the super-hard composite member and reduced on the other surface side. With such a configuration, a composite member having both hardness and toughness can be obtained. In other words, the thermal expansion coefficient of the diamond-rich side becomes smaller than the thermal expansion coefficient of the diamond-less side, so that compressive residual stress is generated in the diamond-rich side layer, and the surface layer is tough and has excellent diamond holding power. Can be produced. The manner of changing the diamond content may be stepwise or continuous.

【0028】(16)WC基超硬合金、TiC(N)基サー
メットおよび金属材料のいずれかよりなる基体上に接合
されてなること。金属材料としては鋼などが挙げられ
る。また、複合材料と金属材料との間に薄いインサート
材を挿入し、金属材料のカーケンダール効果によるボイ
ド抑制を行うこともできる。複合材料と金属材料との接
合体とすることで、硬度と靱性を具える部材を得ること
ができる。なお、複合部材の接合面側の結合相量を多く
することで基体と複合部材の接合強度を高めることがで
きる。その上、熱膨張係数の関係で表面に圧縮残留応力
を発生できるため好都合である。
(16) Being bonded on a substrate made of any of a WC-based cemented carbide, a TiC (N) -based cermet, and a metal material. Examples of the metal material include steel. In addition, a thin insert material can be inserted between the composite material and the metal material to suppress voids by the Kirkendall effect of the metal material. By forming a joined body of a composite material and a metal material, a member having hardness and toughness can be obtained. The bonding strength between the base and the composite member can be increased by increasing the amount of the bonding phase on the bonding surface side of the composite member. In addition, it is advantageous because a compressive residual stress can be generated on the surface due to the coefficient of thermal expansion.

【0029】(17)ダイヤモンド粒子の少なくとも一部を
立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なく
とも一方に置き換える。SHS/HIP焼結により、低
温、10分以内の短時間で緻密な焼結体が作製でき、CB
Nなどの品質の劣化防止および界面での反応の抑制が可
能であるため、従来よりも特性に優れた超硬質複合部材
を製造できる。特に、CBNを用いる場合、次の条件の
少なくとも1つを満たすことによりCBNとマトリック
スの結合力を向上させることに効果的である。 マトリックスとしてWC基超硬合金を用いる。 CBNの含有量を5〜50体積%とする。 熱力学的に準安定で、液相の存在する条件でSHS/
HIP焼結する。 1300℃よりも高温で液相の出現する結合相を用いる。
(17) At least a part of the diamond particles is replaced with at least one of cubic boron nitride and wurtzite boron nitride. By SHS / HIP sintering, a dense sintered body can be manufactured in a short time within 10 minutes at low temperature, and CB
Since it is possible to prevent the deterioration of the quality of N and the like and to suppress the reaction at the interface, it is possible to manufacture a super-hard composite member having better characteristics than before. In particular, when CBN is used, it is effective to improve the bonding strength between CBN and the matrix by satisfying at least one of the following conditions. A WC-based cemented carbide is used as a matrix. The content of CBN is set to 5 to 50% by volume. Thermodynamically metastable, SHS /
HIP sintering. Use a bonded phase in which a liquid phase appears at a temperature higher than 1300 ° C.

【0030】また、本発明複合材料は、WC,TiCお
よびTiNから選択された少なくとも1種の硬質相と、
結合相金属と、ダイヤモンド粒子とを含み、これらが一
体に焼結されてなる超硬質複合部材であって、下記,
の少なくとも一方を具えていることを特徴とする。 ダイヤモンド粒子がスケルトンを形成していない。 ダイヤモンド粒子同士の直接結合した部分が存在しな
い。この構成の複合部材は、SHS/HIP焼結で得た
ものはもちろん、他の方法で製造する場合も含む。
Further, the composite material of the present invention comprises at least one hard phase selected from WC, TiC and TiN,
A super-hard composite member comprising a binder phase metal and diamond particles, which are sintered together,
Characterized by having at least one of the following. Diamond particles do not form a skeleton. There is no directly bonded portion between diamond particles. The composite member having this configuration includes not only one obtained by SHS / HIP sintering but also one manufactured by another method.

【0031】さらに、上記の各本発明複合材料は、シー
ルド掘進機用カッタービットとして用いることが望まし
い。トンネル工事などでシールド掘進機は立坑から立坑
をカッタービットの交換なしで掘削することが要求さ
れ、必ず目的の立坑までの掘削を継続する必要があっ
た。そのため、このようなカッタービットには掘削途中
で絶対欠損しないという特性が要求されている。そのた
めの対策として、硬めの超硬合金を使用したり(特開平
7-269293号公報)、カッタービットの個数を増やすこと
(特開平6-74698号公報)などが行われている。しか
し、高硬度の超硬合金は靱性が低下する傾向があり、欠
損が避けられない。また、ビット数を増やすことはコス
トアップにつながる。なお、立て坑の数を増やせば掘削
継続距離を短くできるが、工機の長期化やコスト高を招
く。さらに、海底,川底などでは立て坑を増やすことは
非常なコスト高となる。
Further, each of the above-mentioned composite materials of the present invention is desirably used as a cutter bit for a shield machine. In tunnel construction and the like, a shield machine was required to excavate a shaft from a shaft without exchanging a cutter bit, and it was necessary to continue excavation to a target shaft. For this reason, such a cutter bit is required to have such a property that it does not break during cutting. As a countermeasure for this, use a hard cemented carbide or
JP-A-7-269293) and increasing the number of cutter bits (JP-A-6-74698). However, high-hardness cemented carbides tend to have reduced toughness, and fracture is inevitable. Also, increasing the number of bits leads to an increase in cost. In addition, if the number of shafts is increased, the digging continuation distance can be shortened, but the length of the machine and the cost are increased. Further, on the seabed, riverbed, etc., increasing the number of shafts would be extremely costly.

【0032】これに対して、本発明の超硬質複合部材
は、ダイヤモンドが有する優れた耐摩耗性と超硬合金が
有する優れた靱性を合わせ持つため、長距離の掘削を安
定して行うことが可能であり、シールド掘進機用カッタ
ービット材料として非常に優れた特性を発揮する。しか
も、従来の超高圧発生容器を用いた製造プロセスを用い
なくても製造ができ、安価なコストで超硬質複合部材を
製造できる。
On the other hand, the super-hard composite member of the present invention has the excellent wear resistance of diamond and the excellent toughness of cemented carbide, so that long-distance excavation can be performed stably. It is possible and exhibits extremely excellent properties as a cutter bit material for shield machine. In addition, it can be manufactured without using a manufacturing process using a conventional ultrahigh-pressure generating container, and an ultra-hard composite member can be manufactured at low cost.

【0033】上記の複合部材の製造方法は、lr、O
s、Pt、Re、Rh、Cr、Mo、Wから選ばれた少
なくとも一種の金属でダイヤモンド粒子に外層被覆をす
る工程と、この外層被覆ダイヤモンド粒子、硬質相粒子
および結合相金属からなる原料粉末を混合する工程と、
この混合原料をSHS/HIP装置に装入する工程と、
3MPa 以上の窒素ガス圧力下でSHS/HIP焼結する
工程とを具えることを特徴とする。
The above-mentioned method for producing a composite member comprises the steps of
s, Pt, Re, Rh, Cr, Mo, W, a step of coating the outer layer of diamond particles with at least one metal selected from the group consisting of: Mixing,
Charging the mixed raw material into an SHS / HIP device;
SHS / HIP sintering under a nitrogen gas pressure of 3 MPa or more.

【0034】原料粉末のうち、ダイヤモンド粒子などに
前述の外層被覆や内層被覆を形成するには、予め公知の
メッキ法、CVD法、PVD法などを利用すれば良い。
In order to form the above-mentioned outer layer coating and inner layer coating on diamond particles among the raw material powder, a known plating method, CVD method, PVD method or the like may be used in advance.

【0035】原料粉末を混合する工程では、機械的合金
化法を用いることが好適である。機械的合金化法(メカ
ニカルアロイング)を用いることにより、結合相金属が
硬質相粒子を覆った形の原料粉末となるので焼結時の焼
結性が向上し、緻密化が促進される。
In the step of mixing the raw material powders, it is preferable to use a mechanical alloying method. By using a mechanical alloying method (mechanical alloying), the binder phase metal becomes a raw material powder in the form of covering the hard phase particles, so that the sinterability at the time of sintering is improved and the densification is promoted.

【0036】混合原料をSHS/HIP装置に装入する
工程には、混合粉末をそのままSHS/HIP装置に装
入することはもちろん、予めプレスした圧粉体、中間焼
結体、これらの積層体などを装入する場合も含む。複合
材料と基体との接合体を形成するには、混合原料を基体
の上に配置した複合体をSHS/HIP装置に装入すれ
ばよい。
In the step of charging the mixed raw material into the SHS / HIP apparatus, the mixed powder may be directly charged into the SHS / HIP apparatus, as well as a pre-pressed green compact, an intermediate sintered body, or a laminate of these. Including the case of charging. In order to form a joined body of the composite material and the substrate, the composite in which the mixed raw materials are arranged on the substrate may be charged into an SHS / HIP apparatus.

【0037】SHS/HIP法では、高価な焼結炉を使
用せず、短時間に同時に多数個の焼結が可能であるた
め、低コストでダイヤ焼結体の製造ができる。SHS/
HIP法は燃料に安価な金属珪素を用い、加圧窒素雰囲
気中でこの金属珪素を窒化燃焼してダイヤモンド,硬質
相および結合相粉末を瞬時に焼結する。そのため、高圧
反応容器を用いずにダイヤの炭素への変態を抑止しなが
ら焼結体を緻密化できる。また、燃料に金属珪素を用い
ることで焼結に要する熱源を原料以外から供給できるた
め、原料系を自由に選ぶことができ、原料の燃焼反応に
より熱源を得ているSHSと比べて有利である。ここ
で、加圧窒素雰囲気中で金属珪素を窒化燃焼する具体的
手段としては次の3つが挙げられる。 (1)混合原料を加圧窒素雰囲気中に装填して、該雰囲
気中で金属珪素粉末と化学的連鎖反応をさせ、この反応
熱により焼結する。 (2)混合原料を予備プレスしてカプセルに封入し、こ
れを着火剤とともに金属珪素粉末中に埋め、窒素封入容
器内にセットし、温度を上昇させ着火剤の自然発熱を利
用して金属珪素粉末と窒素とを化学的連鎖反応させる。 (3)混合原料を予備プレスしてカプセルに封入し、こ
れを金属粉末中に埋め、窒素封入容器内にセットし、金
属珪素粉末中に着火ヒーターを挿入し、窒素封入容器外
部からの通電により金属珪素粉末と窒素とを化学的連鎖
反応させる。
In the SHS / HIP method, since a large number of pieces can be sintered simultaneously in a short time without using an expensive sintering furnace, a diamond sintered body can be manufactured at low cost. SHS /
In the HIP method, inexpensive metal silicon is used as a fuel, and the metal silicon is nitrided and burned in a pressurized nitrogen atmosphere to instantaneously sinter diamond, hard phase and binder phase powder. Therefore, the sintered body can be densified without using a high-pressure reaction vessel while suppressing the transformation of the diamond into carbon. In addition, since the heat source required for sintering can be supplied from sources other than the raw material by using metal silicon as the fuel, the raw material system can be freely selected, which is advantageous as compared with SHS which obtains the heat source by the combustion reaction of the raw material. . Here, there are the following three specific means for nitriding and burning metallic silicon in a pressurized nitrogen atmosphere. (1) The mixed raw material is charged in a pressurized nitrogen atmosphere, a chemical chain reaction is caused with the metal silicon powder in the atmosphere, and sintering is performed by the reaction heat. (2) The mixed raw material is pre-pressed and encapsulated in a capsule, which is buried in a metallic silicon powder together with an igniting agent, set in a nitrogen enclosure, and the temperature is raised to increase the temperature of the metallic silicon by utilizing the natural heat generation of the igniting agent A chemical chain reaction is performed between the powder and nitrogen. (3) The mixed raw material is pre-pressed and sealed in a capsule, buried in a metal powder, set in a nitrogen sealed container, inserted with an ignition heater in the metal silicon powder, and energized from outside the nitrogen sealed container. A chemical chain reaction is performed between the metallic silicon powder and nitrogen.

【0038】この焼結工程において、窒素ガス圧力が3
MPa よりも低い場合には燃焼反応が生じず、複合部材の
緻密化が進行しにくい。焼結時間は10分以内であること
が好ましい。特に好ましくは1分以内である。超硬合金
の液相生成温度では、生成した液相にダイヤモンドが溶
解し、カーボンとして析出しやすくなる。しかし、この
反応には時間を要するため、液相発生時間を10分以内、
好ましくは1分以内に抑えることにより、カーボンへの
変態は極力抑制することができる。
In this sintering step, the nitrogen gas pressure is 3
If the pressure is lower than MPa, no combustion reaction occurs, and the densification of the composite member does not easily progress. The sintering time is preferably within 10 minutes. Particularly preferably, it is within 1 minute. At the liquid phase generation temperature of the cemented carbide, diamond is dissolved in the generated liquid phase and is likely to precipitate as carbon. However, since this reaction requires time, the liquid phase generation time is within 10 minutes,
Transformation into carbon can be suppressed as much as possible by suppressing the content within one minute.

【0039】なお、ダイヤモンドの含有量が厚さ方向に
変化する複合部材を製造するには、原料粉末を混合する
工程において、ダイヤモンド粒子の混合割合の異なる複
数種を準備しておけばよい。そして、混合原料をSHS
/HIP装置に装入する工程において、これら複数種の
混合粉末をダイヤモンド粒子の含有量順に積層して配置
する。ダイヤモンド粒子の混合割合の異なる原料の種類
が少なければ、厚さ方向に段階的に組成の異なる複合材
料を得ることができ、この種類を多くして積層される各
層の厚みを薄くすれば実質上連続的に組成の変化する複
合材料を得ることができる。このような傾斜組成複合部
材を基体上に接合するには、接合面側のダイヤモンド含
有量を少なく、表面側の含有量を多くすることが望まし
い。その場合、接合面付近の複合部材中には全くダイヤ
モンド粒子が含まれていなくてもよい。
In order to manufacture a composite member in which the content of diamond changes in the thickness direction, a plurality of types of diamond particles having different mixing ratios may be prepared in the step of mixing the raw material powders. And the mixed raw material is SHS
In the step of charging the / HIP apparatus, these mixed powders are stacked and arranged in the order of the content of diamond particles. If there are few kinds of raw materials having different mixing ratios of diamond particles, it is possible to obtain a composite material having a different composition stepwise in the thickness direction. A composite material having a continuously changing composition can be obtained. In order to join such a graded composition composite member to a substrate, it is desirable to reduce the diamond content on the joining surface side and increase the content on the surface side. In that case, the composite member in the vicinity of the joint surface may not contain any diamond particles.

【0040】[0040]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(試験例1)市販のダイヤモンド粉(平均粒径300μm
)にCrを3μm被覆したもの、WC粉(同2μm)、
Co粉(同2μm)、TiC粉(同 1.5μm)、Ni粉
(同5μm)を用いて表1に示すような割合(体積%)
となる配合粉末(試料 No.1−1〜1−7) を準備し、
この各配合粉末をボールミルで5時間湿式混合したのち
乾燥した。
(Test Example 1) Commercially available diamond powder (average particle diameter 300 μm)
) Coated with 3 μm of Cr, WC powder (2 μm),
Using Co powder (2 μm), TiC powder (1.5 μm) and Ni powder (5 μm) as shown in Table 1 (volume%)
Prepare the compound powder (Sample No. 1-1 to 1-7)
Each of the compounded powders was wet-mixed with a ball mill for 5 hours and then dried.

【0041】[0041]

【表1】 [Table 1]

【0042】次に、この乾燥粉末を200MPaの圧力で金型
成型した後、ガラスカプセルに真空封入した。これをカ
ーボン坩堝にいれ、燃焼剤としてSi粉末(平均粒径8
μm)を5g充填後、燃焼剤の上下に点火用ペレット
(Fe23 −Al)を配置し、これら全体をHIP装
置の高圧容器中に置いた。そして、780 ℃まで昇温し、
100MPaまで窒素ガスを導入後、引き続いて1150℃まで昇
温し、30分保持した。約950 ℃でペレットが着火し、S
iの窒化を励起した。
Next, the dried powder was molded in a mold at a pressure of 200 MPa, and then vacuum-sealed in a glass capsule. This was put in a carbon crucible, and Si powder (average particle size 8
After charging 5 g of (μm), ignition pellets (Fe 2 O 3 —Al) were arranged above and below the combustion agent, and the whole was placed in a high-pressure vessel of a HIP device. Then, the temperature was raised to 780 ° C,
After introducing nitrogen gas to 100 MPa, the temperature was subsequently raised to 1150 ° C. and maintained for 30 minutes. At about 950 ° C, the pellet ignites
Excited the nitridation of i.

【0043】得られた直径13mm、厚み5mmの焼結体を観
察したところ、いずれの試料にもクラックの発生は見ら
れなかった。さらに各試料を平面研削した後、研削面を
200倍の光学顕微鏡で観察したところ、いずれの試料に
も気孔はなかった。
When the obtained sintered body having a diameter of 13 mm and a thickness of 5 mm was observed, no crack was observed in any of the samples. After surface grinding each sample,
When observed with an optical microscope at a magnification of 200 times, none of the samples had pores.

【0044】図1は試料 No.1−1の組織を200 倍で撮
影した写真で、灰色で表されているダイヤモンド粒子が
白地の超硬合金粒子によって結合保持されている。ま
た、X線回折により各試料におけるダイヤモンドの存在
を確認したところ、いずれの試料にも確実にダイヤモン
ド粒子が残存していた。
FIG. 1 is a photograph taken at a magnification of 200 times of the structure of Sample No. 1-1. Diamond particles shown in gray are bonded and held by white cemented carbide particles. When the presence of diamond in each sample was confirmed by X-ray diffraction, diamond particles were surely left in each sample.

【0045】さらに、比較のため試料No. 1−1の混合
粉末を従来の製造法(1350℃,1時間,真空中でキー
プ)およびダイヤモンドに被覆をせずに前述の条件でS
HS/HIP焼結した焼結体を作製し、この2つの比較
例焼結体を平面研削・鏡面研磨した後、その組織を倍率
200 倍で撮影した。図2はその顕微鏡写真を示すもの
で、(A)は従来の製造法による焼結体、(B)はCr
被覆なしのダイヤモンドを用いてSHS/HIP焼結し
た焼結体を示す。図から明らかなように、黒く見えるダ
イヤモンドは、比較例ではWCとの界面に黒鉛化による
と思われる劣化が見られ、ダイヤモンド自体にもひび等
の損傷が見られる。これに対して、本発明方法による試
料 No.1−1の焼結体は、図1に示すように、このよう
な劣化や損傷が見られない。
Further, for comparison, the mixed powder of Sample No. 1-1 was subjected to the conventional production method (1350 ° C., 1 hour, kept in vacuum), and S
HS / HIP-sintered sintered bodies were prepared, the two comparative sintered bodies were ground and mirror-polished, and then their structures were magnified.
Photographed at 200x. FIG. 2 is a photomicrograph of the sintered body, wherein (A) is a sintered body obtained by a conventional manufacturing method, and (B) is a Cr body.
The sintered compact which carried out SHS / HIP sintering using uncoated diamond is shown. As is clear from the figure, the diamond which looks black has a deterioration which seems to be caused by graphitization at the interface with WC in the comparative example, and the diamond itself has damages such as cracks. On the other hand, in the sintered body of Sample No. 1-1 according to the method of the present invention, such deterioration and damage are not seen as shown in FIG.

【0046】(試験例2)試験例1で作製した試料 No.
1−1の配合粉末でWCをTiCに、CoをNiに置き
換えた組成の粉末No. 2−1を作製し、実施例1と同様
にして焼結を行った。そして、得られた焼結体を#200
の研削砥石で平面研削し、直径20mm、厚み5mmの円板に
仕上げた。
(Test Example 2) Sample No. prepared in Test Example 1
Powder No. 2-1 having a composition in which WC was replaced with TiC and Co was replaced with Ni was prepared from the compounded powder of 1-1, and was sintered in the same manner as in Example 1. Then, the obtained sintered body is # 200
The surface was ground with a grinding wheel of No. 3 and finished into a disk having a diameter of 20 mm and a thickness of 5 mm.

【0047】この焼結体に平均粒径 300μmのSiCを
用いて、3kg/cm2 で30分間サンドブラストし、焼結体
の重量減少率を調べたところ0.35%であった。それに対
し、試料 No.1−1の焼結体に同様のサンドブラストを
かけたところ、その重量減少率は 0.12 %で、試料 No.
1−1の耐摩耗性が遥かに優れていることがわかった。
このことより、硬質相にはWCが,結合相にはCoが耐
摩耗性に優れていることがわかった。また、試料 No.1
−1の原料から得られた焼結体を鏡面研磨後、表面を電
解エッチングし、WCを除去後、Co相の結晶系をX線
回析(Cu−Kα線)により同定したところ、Coの主
たる結晶系はfcc であることが確認できた。
The sintered body was subjected to sandblasting at 3 kg / cm 2 for 30 minutes using SiC having an average particle size of 300 μm, and the weight reduction rate of the sintered body was determined to be 0.35%. On the other hand, when the same sand blast was applied to the sintered body of Sample No. 1-1, the weight reduction rate was 0.12%.
It was found that the wear resistance of 1-1 was far superior.
From this, it was found that WC was excellent in the hard phase, and Co was excellent in the wear resistance in the binder phase. Sample No. 1
-1 was subjected to mirror polishing, the surface was electrolytically etched, WC was removed, and the crystal system of the Co phase was identified by X-ray diffraction (Cu-Kα ray). It was confirmed that the main crystal system was fcc.

【0048】(試験例3)試験例1で作製した試料 No.
1−7と同じ組成で、超高圧容器を用いて1600℃、6GP
a の条件で焼結体を作製し、試料 No.3−1とした。試
料 No.1−7と3−1の両焼結体を王水に浸漬して、C
o、Niを溶かしたところ、 No.1−7が粉末状になっ
たのに対し、 No.3−1の形状変化は殆ど見られなかっ
た。
Test Example 3 Sample No. prepared in Test Example 1
The same composition as 1-7, 1600 ℃, 6GP using ultra high pressure vessel
A sintered body was prepared under the conditions of a, and was used as Sample No. 3-1. Immerse both sintered bodies of Sample Nos. 1-7 and 3-1 in aqua regia,
When o and Ni were melted, No. 1-7 became powdery, while the shape change of No. 3-1 was hardly observed.

【0049】これは、 No.1−7においては、ダイヤモ
ンド粒子間の直接結合や、スケルトンの形成がなかった
のに対し、 No.3−1においては、超高圧条件下で、ダ
イヤモンド粒子間の直接結合が生じ、スケルトンを形成
しているためと考えられる。
In No. 1-7, there was no direct bonding between diamond particles and no skeleton was formed, whereas in No. 3-1, no diamond particles were formed under ultra-high pressure conditions. It is considered that direct bonding has occurred to form a skeleton.

【0050】(試験例4)試験例3と同様にして、試料
No.1−6と同じ組成で、超高圧容器を用い1600℃、6
GPa の条件で作製した焼結体を試料 No.4−1とし、N
o. 1−6と No.4−1の両焼結体に次の試験を行っ
た。
Test Example 4 Samples were prepared in the same manner as in Test Example 3.
The same composition as No.1-6, using an ultra high pressure vessel at 1600 ° C, 6
The sintered body produced under the conditions of GPa was designated as Sample No. 4-1,
o The following tests were performed on both sintered bodies No. 1-6 and No. 4-1.

【0051】試料を平面研削し、さらに研削面をダイヤ
モンドペーストで鏡面研磨した後、研磨面をSEMおよ
びTEMを用いて観察した。
The surface of the sample was ground, and the ground surface was mirror-polished with a diamond paste, and the polished surface was observed using a SEM and a TEM.

【0052】その結果、試料 No.4−1にはダイヤモン
ド粒子同士の直接結合が生じているのに対し、試料 No.
1−6にはそれが生じていないことが判明した。
As a result, while direct bonding between diamond particles occurred in sample No. 4-1, sample no.
It was found that this did not occur in 1-6.

【0053】(試験例5)ダイヤモンド粒径を2μmと
した以外は実施例1と同様にして表2に示す組成の焼結
体を作製し、試料 No.5−1〜5−6とした。
(Test Example 5) Sintered bodies having the compositions shown in Table 2 were prepared in the same manner as in Example 1 except that the diamond particle size was changed to 2 µm, and Sample Nos. 5-1 to 5-6 were obtained.

【0054】[0054]

【表2】 [Table 2]

【0055】上記各試料を試験例2と同様にしてサンド
ブラストし、その際の焼結体の重量減少率を曲げ強度と
共に表2中に示した。この結果より、ダイヤモンド粒子
の含有量が5〜50体積%において耐エロージョン性能が
優れていることがわかる。特に優れているのは15〜35体
積%のときである。
Each of the samples was subjected to sandblasting in the same manner as in Test Example 2, and the weight reduction rate of the sintered body at that time was shown in Table 2 together with the bending strength. From these results, it can be seen that the erosion resistance is excellent when the content of the diamond particles is 5 to 50% by volume. It is particularly excellent when the content is 15 to 35% by volume.

【0056】(試験例6)試料 No.1−5と組成が同様
で、ダイヤモンド粒子の平均粒径のみを表3のように変
えたものを試料 No.6−1〜6−5とし、その焼結条件
は試験例2と同一にして作製した。
(Test Example 6) Samples Nos. 6-1 to 6-5 having the same composition as Sample No. 1-5 and changing only the average diameter of diamond particles as shown in Table 3 were obtained. The sintering conditions were the same as in Test Example 2.

【0057】[0057]

【表3】 [Table 3]

【0058】各試料を試験例2と同様にしてサンドブラ
ストした際の焼結体の重量減少率および曲げ強度を表3
中に示す。この結果よりダイヤモンド粒子の平均粒径が
10〜1000μmの焼結体において特に優れた耐エロージョ
ン性能を示すことがわかる。
Table 3 shows the weight reduction ratio and bending strength of the sintered body when each sample was sandblasted in the same manner as in Test Example 2.
Shown inside. From these results, the average diameter of the diamond particles was
It can be seen that particularly excellent erosion resistance is exhibited in the sintered body of 10 to 1000 μm.

【0059】(試験例7)表4に示す組成の粉末を使用
し、試験例2の焼結条件中Si燃料の量を10gに変更
し、各焼結体(試料 No.7−1〜7−4) を得た。
(Test Example 7) The powders having the compositions shown in Table 4 were used, and the amount of the Si fuel was changed to 10 g in the sintering conditions of Test Example 2. -4) was obtained.

【0060】[0060]

【表4】 [Table 4]

【0061】得られた各焼結体を鏡面加工し、この鏡面
をラマン分光法でスペクトル解析した。その結果、試料
No.7−1で検出された炭素のラマン線のピーク強度を
100%としたとき、試料 No.7−2〜7−4では、いず
れもそのピーク強度は小さくなっており、焼結中の黒鉛
の析出をTi、CrなどのIVa、Va、VIa族元素
もしくはSiの添加により抑制できることがわかる。
Each of the obtained sintered bodies was mirror-finished, and the mirror surface was analyzed for spectrum by Raman spectroscopy. As a result, the sample
The peak intensity of the Raman line of carbon detected in No. 7-1 is
At 100%, the peak intensities of Sample Nos. 7-2 to 7-4 were all small, and the precipitation of graphite during sintering was caused by group IVa, Va, VIa elements such as Ti, Cr, or the like. It can be seen that it can be suppressed by adding Si.

【0062】また、試料 No.7−2にはTiC、試料 N
o.7−3にはSiC、Cr23 、試料 No.7−4には
ZrCと思われる化合物が析出していることが、オージ
ェ電子分光解析およびX線回析により確められた。ま
た、その析出位置はダイヤモンド表面に多く見られるこ
とが、SEM観察により確かめられた。
Sample No. 7-2 includes TiC, sample N
It was confirmed by Auger electron spectroscopy and X-ray diffraction that SiC and Cr 2 C 3 were precipitated in Sample No. 7-3, and a compound thought to be ZrC was precipitated in Sample No. 7-4. Further, it was confirmed by SEM observation that the deposition position was often found on the diamond surface.

【0063】(試験例8)試料 No.7−1を作製する際
に5wt%のカーボンをさらに添加して焼結した試料 No.
8−1を作製した。試料 No.7−1と試料 No.8−1の
両試料を鏡面研磨したところ、試料 No.7−1ではダイ
ヤモンド粒子の周辺部にダイヤモンドが黒鉛化し、鏡面
研磨時に脱落したと見られる穴が一部に見られた。これ
に対し、試料 No.8−1ではダイヤモンド粒子周辺部は
正常で、 200倍の光学顕微鏡で観察すると遊離炭素の存
在が確認された。
(Test Example 8) Sample No. 7-1 was prepared by further adding 5 wt% of carbon and sintering.
8-1 was produced. When both Sample No. 7-1 and Sample No. 8-1 were mirror-polished, in Sample No. 7-1, diamond was graphitized around the diamond particles, and a hole that appeared to fall off during mirror polishing was observed. Some were seen. On the other hand, in Sample No. 8-1, the periphery of the diamond particles was normal, and the presence of free carbon was confirmed by observation with a 200-fold optical microscope.

【0064】さらに、両試料を試験例2と同様な方法で
サンドブラストテストしたところ、試料 No.7−1の重
量減少率が0.08%であるのに対し、試料 No.8−1のそ
れは0.04%と少なく、試料 No.8−1の方がエロージョ
ン性能が優れていることがわかった。
Further, both samples were subjected to a sand blast test in the same manner as in Test Example 2. As a result, the weight loss rate of Sample No. 7-1 was 0.08%, whereas that of Sample No. 8-1 was 0.04%. It was found that the sample No. 8-1 had better erosion performance.

【0065】(試験例9)表5に示す試料 No.9−1〜
9−6の組成のものを、試験例2と同一の焼結条件で作
製した。各試料を試験例2と同様にしてサンドブラスト
したところ、表5中に示すような重量減少率が見られ
た。この結果より結合相金属を形成する鉄族金属量とし
ては10〜50体積%が好ましいと判断された。
Test Example 9 Sample Nos. 9-1 to 9-1 shown in Table 5
A composition having a composition of 9-6 was produced under the same sintering conditions as in Test Example 2. When each sample was sandblasted in the same manner as in Test Example 2, a weight reduction rate as shown in Table 5 was observed. From these results, it was determined that the amount of iron group metal forming the binder phase metal was preferably 10 to 50% by volume.

【0066】[0066]

【表5】 [Table 5]

【0067】(試験例10)表6に示す組成(体積%)
を有する粉末と鋼(SCM435)とを層状にプレスしてガラス
カプセルに真空封入し、燃焼剤にSiを40g充填後、実
施例1と同様にしてSHS/HIP焼結を行った。得ら
れた直径50mm、厚み20mmの円板状焼結体を観察したとこ
ろ、各層の間にクラックの発生はなく、よく接合してい
た。この焼結体の厚み方向の断面を鏡面研磨し、EPM
Aにて組成分析を行ったが、各層間での元素の移動は比
較的少なく、従来の焼結体で問題があった層間の成分の
拡散が抑制されていた。
(Test Example 10) Composition (% by volume) shown in Table 6
Was pressed in layers and steel (SCM435) was pressed into a layer, vacuum-sealed in a glass capsule, and 40 g of Si was filled in the combustion agent, and SHS / HIP sintering was performed in the same manner as in Example 1. Observation of the obtained disk-shaped sintered body having a diameter of 50 mm and a thickness of 20 mm revealed that no cracks occurred between the layers and the layers were well bonded. The cross section in the thickness direction of this sintered body is mirror-polished, and the EPM
The composition analysis was performed at A, but the movement of elements between the layers was relatively small, and the diffusion of components between the layers, which was a problem in the conventional sintered body, was suppressed.

【0068】本構造の焼結体は表面層はダイヤモンドを
含有していることによる高耐摩耗性、内部層は超硬、鋼
層としたことによる高強度、高靭性を得ることができ、
通常相反する両特性を両立することのできる材料となっ
ている。しかも、超高圧容器を用いず安価にこのような
材料を製造できたメリットは非常に大きい。
The sintered body of the present structure has high wear resistance due to the surface layer containing diamond, and high strength and high toughness due to the use of a super hard and steel layer as the inner layer.
Usually, it is a material that can achieve both contradictory characteristics. Moreover, there is a great advantage that such a material can be manufactured at low cost without using an ultrahigh-pressure container.

【0069】[0069]

【表6】 [Table 6]

【0070】(試験例11)試験例5で作製した試料N
o. 5−2と同一組成の原料粉末を用い、Si燃料量を
変化させた以外は試験例5と同様にして焼結体を作製し
た。そして、そのすくい面をラッピングし、WC−Co
相中の気孔の存在有無を光学顕微鏡を用いて×200 の倍
率にて観察した。観察結果をISOに基づいてA00〜
B08まで分類し、表7中に記載した。また、表7中に
は各焼結体の曲げ強度も記載した。
(Test Example 11) Sample N prepared in Test Example 5
o. A sintered body was produced in the same manner as in Test Example 5, except that the raw material powder having the same composition as in 5-2 was used and the amount of Si fuel was changed. And wrap the rake face, WC-Co
The presence or absence of pores in the phase was observed at × 200 magnification using an optical microscope. The observation result is A00-based on ISO
Classified up to B08 and described in Table 7. Table 7 also shows the bending strength of each sintered body.

【0071】[0071]

【表7】 [Table 7]

【0072】表7より、Aタイプの気孔が04より少な
く、Bタイプの気孔が存在しない試料 No.11−3と11−
4の試料は特に緻密であり、優れた特性を示すことが確
認できた。
From Table 7, it can be seen that the sample Nos. 11-3 and 11- in which the type A pores are less than 04 and the type B pores do not exist.
It was confirmed that the sample No. 4 was particularly dense and exhibited excellent characteristics.

【0073】(試験例12)表1に示した組成の粉末
(試料 No.1−1,1−3,1−5)で、5μmのダイ
ヤモンド粉末の表面にlr、Os、Pt、Re、Rh、
Cr、Mo、Wなどの金属をPVD法で約3μmの厚さ
に被覆した原料粉末を用い、焼結体 No.12−1〜12−1
4)を作製した。試料No.12 −7はダイヤモンド表面に
2層の被覆を有し、外層がW、内層がCrで構成されて
いる。
(Test Example 12) Powder (rr, Os, Pt, Re, Rh) of the powder having the composition shown in Table 1 (Sample Nos. 1-1, 1-3, 1-5) was applied to the surface of a 5 μm diamond powder. ,
Using a raw material powder obtained by coating a metal such as Cr, Mo, W or the like to a thickness of about 3 μm by PVD method, a sintered body No. 12-1 to 12-1
4) was prepared. Sample No. 12-7 has two layers of coating on the diamond surface, the outer layer being composed of W and the inner layer being composed of Cr.

【0074】このようにして作製した焼結体を#250の
研削砥石で平面研削し、それに試験例2と同様にして10
kg/cm2の圧力で60分間のサントブラストテストを行っ
た。このテストによる重量減少率を表8中に示す。
The sintered body thus produced was subjected to surface grinding with a # 250 grinding wheel, and the surface was ground in the same manner as in Test Example 2.
A santoblast test was performed at a pressure of kg / cm 2 for 60 minutes. Table 8 shows the weight loss rate by this test.

【0075】[0075]

【表8】 [Table 8]

【0076】その結果、Ir、Os、Pt、Re、R
h、Cr、Mo、Wなどの金属を被覆したダイヤモンド
粒子を用いた試料は被覆を行なわなかった場合に比べ
て、いずれも重量減少率が低下しており、耐摩耗性が向
上したことが確認できた。しかも驚いたことに金属被覆
を有するダイヤモンドを用いた焼結体の抗折力は向上す
ることも判明した。
As a result, Ir, Os, Pt, Re, R
Samples using diamond particles coated with a metal such as h, Cr, Mo, W, etc., showed lower weight loss rates and improved abrasion resistance than those without coating. did it. Moreover, it has been surprisingly found that the die strength of the sintered body using diamond having a metal coating is improved.

【0077】なお、比較のため、Ti、ZrまたはVで
ダイヤモンド粒子を被覆した試料 No.12−12〜14を試作
し、評価を行ったが、いずれもCrを被覆した試料(N
o.12-11) と比較して耐摩耗性は低下した。このように
被覆した金属の種類によって耐摩耗性に性能差が生じた
のは、焼結工程で生成する液相の攻撃からダイヤモンド
を防御できるかどうかによるものと思われる。すなわ
ち、液相生成時にこれらの被覆金属が固相となって液相
とダイヤモンドとの接触を防止できたためと思われた。
For comparison, samples Nos. 12-12 to 14 coated with diamond particles with Ti, Zr or V were prototyped and evaluated, and all samples were coated with Cr (N
o.12-11), the wear resistance decreased. The performance difference in wear resistance depending on the type of metal coated in this way is considered to be due to the ability to protect the diamond from attack by the liquid phase generated in the sintering process. That is, it is considered that these coating metals became a solid phase when the liquid phase was generated, thereby preventing the contact between the liquid phase and the diamond.

【0078】なお、試料 No.12−1〜12−14の外層被覆
中の他の金属元素の有無をオージェ電子分光法により測
定したところ、これら外層被覆中には、W、Co、N
i、C、Ti(Tiは原料組成No. 1−3とNo. 1−5
の焼結体のみ)元素が拡散していることが判明した。こ
れら拡散元素により、ダイヤモンド粒子の保持力は向上
していると考えられる。
The presence or absence of other metal elements in the outer layer coating of Sample Nos. 12-1 to 12-14 was measured by Auger electron spectroscopy. As a result, W, Co, N
i, C, Ti (Ti is the raw material composition No. 1-3 and No. 1-5
It was found that the element was diffused. It is considered that the retention of diamond particles is improved by these diffusion elements.

【0079】(試験例13)平均結晶粒径5μmのWC
粉末A、平均結晶粒径2μmのWC粉末B、平均結晶粒
径0.5μm のWC粉末C、平均結晶粒径2μmのCo粉末
20vol %、および平均結晶粒径50μmのダイヤモンド粉
末5vol%を用いて、配合比の異なる6種類のプレス用
粉末を作製した。これらの粉末を実施例1と同様にして
焼結体(試料 No.13−1〜6)を得た。そして、焼結体
を5000倍にて撮影した組織写真を2値化処理後、画像解
析装置を用いてWCの粒度分布を測定した。また、これ
らの焼結体を用いて、シャルピー衝撃試験、20mmスパン
の3点曲げ試験を行った。これらの結果を表9に示す。
(Test Example 13) WC having an average crystal grain size of 5 μm
Powder A, WC powder B having an average crystal grain size of 2 μm, WC powder C having an average crystal grain size of 0.5 μm, and Co powder having an average crystal grain size of 2 μm
Using 20 vol% and 5 vol% of diamond powder having an average crystal grain size of 50 μm, six kinds of pressing powders having different mixing ratios were produced. Sintered bodies (Sample Nos. 13-1 to 6) were obtained from these powders in the same manner as in Example 1. Then, after the structure photograph of the sintered body photographed at 5,000 times was binarized, the WC particle size distribution was measured using an image analyzer. Using these sintered bodies, a Charpy impact test and a three-point bending test with a span of 20 mm were performed. Table 9 shows the results.

【0080】[0080]

【表9】 [Table 9]

【0081】同表に示すように、3μmより大きいWC
粒の存在割合が50%を越える試料No.13 −3〜6のシャ
ルピー衝撃値はその他のものよりも比較的高く、耐衝撃
特性の要求される用途に適すと考えられた。また、これ
らの中でも1μmより小さいWC粒の存在割合が10〜35
%の範囲にある試料 No.13−5と13−6の試料は曲げ強
度について優れた値を示し、優れた性能バランスを有し
ていることが確認できた。
As shown in the table, WC larger than 3 μm
The Charpy impact values of Sample Nos. 13 -3 to 6 in which the proportion of grains exceeded 50% were relatively higher than those of other samples, and were considered to be suitable for applications requiring impact resistance. Among them, the proportion of WC particles smaller than 1 μm is 10 to 35%.
%, The samples of Sample Nos. 13-5 and 13-6 exhibited excellent values of flexural strength, confirming that they had an excellent performance balance.

【0082】(試験例14)試験例1と同じ製造条件
で、使用するWC粉末およびダイヤモンド粉末の粒径の
みが異なる焼結体(試料 No.14−1〜9)を作製した。
ダイヤモンドの含有量は30vol%、Co含有量は15vol
%で固定した。作製した焼結体をISO型番RNGN120400
の形状に加工し、刃先に0.2 ×〜25°の面取り加工を施
して、花崗岩を次の条件で切削加工した。そのときの摩
耗量を表10中に示す。切削速度:50m/mim ,送り量:
0.2mm/rev ,切込み量:1.0mm ,切削油なし
(Test Example 14) Under the same manufacturing conditions as in Test Example 1, sintered bodies (Sample Nos. 14-1 to 14-9) differing only in the particle size of the WC powder and diamond powder used were produced.
Diamond content is 30vol%, Co content is 15vol%
Fixed at%. The produced sintered body is ISO model number RNGN120400
, And the edge was subjected to a chamfering of 0.2 × to 25 °, and the granite was cut under the following conditions. The amount of wear at that time is shown in Table 10. Cutting speed: 50m / mim, feed rate:
0.2mm / rev, depth of cut: 1.0mm, no cutting oil

【0083】[0083]

【表10】 [Table 10]

【0084】表10よりWCの平均粒径が3μm以下、
特に1μm以下の焼結体の耐摩耗性が優れており、ダイ
ヤモンドの平均粒径が10μm以下の焼結体の耐摩耗性は
されに優れている。従って、特に好ましいのはWCの平
均粒径が1μm以下、ダイヤモンドの平均粒径が3μm以
下の場合であることがわかる。
According to Table 10, the average particle size of WC was 3 μm or less.
In particular, the sintered body of 1 μm or less has excellent wear resistance, and the sintered body of diamond having an average particle diameter of 10 μm or less has excellent wear resistance. Therefore, it is understood that particularly preferred is a case where the average particle size of WC is 1 μm or less and the average particle size of diamond is 3 μm or less.

【0085】(試験例15)試験例1に記載した試料N
o. 1−1〜1−7のダイヤモンドを平均粒径5μmのC
BNまたは平均粒径10μmのWBNに一部または全てを
置きかえた試料15−1〜15−7を同一の製造条件にて作
製し、直径20mm、厚み5mmの焼結体を作製した。
Test Example 15 Sample N described in Test Example 1
o. A diamond having an average particle size of 5 μm
Samples 15-1 to 15-7 in which a part or all of BN or WBN having an average particle size of 10 μm were replaced were manufactured under the same manufacturing conditions, and a sintered body having a diameter of 20 mm and a thickness of 5 mm was manufactured.

【0086】[0086]

【表11】 [Table 11]

【0087】これらの焼結体を#250のダイヤモンド砥
石にて平面研削し、ラッピング後、光学顕微鏡にて観察
した。その結果、いずれの試料にもクラックの発生、C
BN粒子の脱落などは観察されず、緻密な焼結体とする
ことができていた。
These sintered bodies were ground with a # 250 diamond grindstone, lapped, and observed with an optical microscope. As a result, cracks occurred in all samples, and C
No dropout of the BN particles was observed, and a dense sintered body could be obtained.

【0088】[0088]

【発明の効果】以上説明したように、本発明によれば超
高圧容器を用いることなく、極めて硬度・耐摩耗性に優
れたダイヤモンド粒子を、強度・靭性の高い超硬合金や
サーメットなどで強固に分散・保持した超硬質・高強度
の部材を得ることができる。
As described above, according to the present invention, diamond particles having extremely high hardness and abrasion resistance can be hardened without using an ultra-high pressure vessel with a cemented carbide or cermet having high strength and toughness. A super-hard and high-strength member dispersed and held in the substrate can be obtained.

【0089】従って、本発明の材料は、ケーシングビッ
ト,アースオーガビット,シールドカッタビットなどの
鉱山土木用工具、木工用・金属加工用・樹脂加工用チッ
プなどの切削加工用工具、工作機械の軸受け,ノズルな
どの耐摩材料、線引ダイスなどの塑性加工用工具、研削
加工用の工具などに利用することができる。
Therefore, the material of the present invention can be used for mining and civil engineering tools such as casing bits, earth auger bits and shield cutter bits, cutting tools such as woodworking, metalworking and resin processing chips, and bearings for machine tools. It can be used for wear-resistant materials such as nozzles, plastic working tools such as drawing dies, and tools for grinding.

【0090】また、本発明の方法では、SHS/HIP
焼結により、短時間に焼結を行うことで硬度・耐摩耗性
に優れ、緻密な超硬質複合部材を得ることができる。ま
た、昇温時間、キープ時間も短時間化できるため、従来
の技術よりもさらに低コスト化が期待できる。
In the method of the present invention, the SHS / HIP
By performing sintering in a short time by sintering, a dense super-hard composite member having excellent hardness and wear resistance can be obtained. Further, since the heating time and the keeping time can be shortened, further cost reduction can be expected as compared with the conventional technology.

【0091】さらに、ガス圧力を使用して等方的に加圧
焼結し、焼結体をニアネットシェイプで製造できるた
め、加工が非常に難しい本発明部材の製造法として優れ
ている。
Further, since the sintered body can be manufactured by near net shape by sintering under pressure under gas pressure isotropically, it is an excellent method for manufacturing the member of the present invention which is extremely difficult to process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明超硬質複合部材の組織を示す光学顕微鏡
写真である。
FIG. 1 is an optical micrograph showing the structure of the ultra-hard composite member of the present invention.

【図2】(A)は従来の製造法による焼結体、(B)は
Cr被覆なしのダイヤモンドを用いてSHS/HIP焼
結した焼結体の光学顕微鏡写真である。
FIG. 2A is an optical micrograph of a sintered body obtained by a conventional manufacturing method, and FIG. 2B is an optical microscope photograph of a sintered body obtained by SHS / HIP sintering using diamond without Cr coating.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 1/05 C22C 29/02 Z 29/02 C01B 31/06 Z // C01B 31/06 B22F 3/14 E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 1/05 C22C 29/02 Z 29/02 C01B 31/06 Z // C01B 31/06 B22F 3/14 E

Claims (32)

【特許請求の範囲】[Claims] 【請求項1】 lr、Os、Pt、Re、Rh、Cr、
Mo、Wから選ばれた少なくとも一種の金属で外層被覆
が形成されたダイヤモンド粒子と、 WC,TiC,TiNおよびTiCNから選択された少
なくとも1種の硬質相と、 鉄族金属からなる結合相金属とを含み、 これらが一体にSHS/HIP焼結されてなることを特
徴とする超硬質複合部材。
Claims: 1. Ir, Os, Pt, Re, Rh, Cr,
A diamond particle having an outer layer coating formed of at least one metal selected from Mo and W, at least one hard phase selected from WC, TiC, TiN and TiCN, and a binder phase metal comprising an iron group metal; A super-hard composite member, comprising: SHS / HIP sintered together.
【請求項2】 硬質相がWCで、結合相金属がCoであ
ることを特徴とする請求項1記載の超硬質複合部材。
2. The super-hard composite member according to claim 1, wherein the hard phase is WC and the binder phase metal is Co.
【請求項3】 ダイヤモンドが熱力学的に準安定にあ
り、かつ液相の存在する条件下でSHS/HIP焼結を
行うことを特徴とする請求項1記載の超硬質複合部材。
3. The super-hard composite member according to claim 1, wherein the SHS / HIP sintering is performed under the condition that the diamond is thermodynamically metastable and a liquid phase exists.
【請求項4】 結合相金属にCoを含み、 このCoの主たる結晶系がfcc であることを特徴とする
請求項3記載の超硬質複合部材。
4. The ultra-hard composite member according to claim 3, wherein the binder phase metal contains Co, and the main crystal system of Co is fcc.
【請求項5】 ISO規格でA00〜08およびB00
〜B08までの範囲を満たす緻密度を有することを特徴
とする請求項3記載の超硬質複合部材。
5. ISO standards A00-08 and B00
The super-hard composite member according to claim 3, which has a denseness satisfying a range from B08 to B08.
【請求項6】 液相出現温度が1300℃よりも高温である
ことを特徴とする請求項3記載の超硬質複合部材。
6. The super-hard composite member according to claim 3, wherein the liquid phase appearance temperature is higher than 1300 ° C.
【請求項7】 外層被覆とダイヤモンド粒子との間にC
o、Niから選ばれた一種以上の金属からなる内層被覆
を具えることを特徴とする請求項3記載の超硬質複合部
材。
7. C between the outer coating and the diamond particles
The super-hard composite member according to claim 3, further comprising an inner layer coating made of at least one metal selected from o and Ni.
【請求項8】 外層被覆中にW、Ti、Co、Ni、C
から選ばれた一種以上の元素の拡散が生じていることを
特徴とする請求項1記載の超硬質複合部材。
8. W, Ti, Co, Ni, C in the outer layer coating
2. The super-hard composite member according to claim 1, wherein diffusion of one or more elements selected from the group consisting of:
【請求項9】 結晶粒径が3μmより大きいWCを任意
の断面組織で全WCのうち面積率で50%以上含有するこ
とを特徴とする請求項2記載の超硬質複合部材。
9. The super-hard composite member according to claim 2, wherein WC having a crystal grain size of more than 3 μm is contained in an arbitrary sectional structure in an area ratio of 50% or more of all WC.
【請求項10】 結晶粒径が1μmより小さいWCを任
意の断面組織でWCのうち面積率で10〜35%含有するこ
とを特徴とする請求項2に記載の超硬質複合部材。
10. The super-hard composite member according to claim 2, wherein WC having a crystal grain size of less than 1 μm is contained in an arbitrary sectional structure in an area ratio of 10 to 35% of WC.
【請求項11】 WCの平均粒径が1μmより小さいこ
とを特徴とする請求項2記載の超硬質複合部材。
11. The super-hard composite member according to claim 2, wherein the average particle size of WC is smaller than 1 μm.
【請求項12】 WCの平均粒径が3μmより小さく、
かつダイヤモンド粒子の平均粒径が10μmよりも小さい
ことを特徴とする請求項2記載の超硬質複合部材。
12. The WC has an average particle size of less than 3 μm,
3. The super-hard composite member according to claim 2, wherein the average diameter of the diamond particles is smaller than 10 μm.
【請求項13】 内部に遊離炭素が存在していることを
特徴とする請求項1記載の超硬質複合部材。
13. The super-hard composite member according to claim 1, wherein free carbon is present therein.
【請求項14】 硬質相とダイヤモンドとの界面の少な
くとも一部に、IVa、Va、VIa族元素の炭化物お
よびSiCから選択された1種以上が析出していること
を特徴とする請求項1記載の超硬質複合部材。
14. The method according to claim 1, wherein at least one selected from the group consisting of carbides of Group IVa, Va and VIa elements and SiC is precipitated on at least a part of the interface between the hard phase and the diamond. Super hard composite member.
【請求項15】 ダイヤモンド粒子の平均粒径が10〜10
00μmであることを特徴とする請求項1記載の超硬質複
合部材。
15. The diamond particles having an average particle size of 10 to 10
2. The super-hard composite member according to claim 1, wherein the thickness is 00 μm.
【請求項16】 ダイヤモンド粒子の含有量が5〜50体
積%であることを特徴とする請求項1記載の超硬質複合
部材。
16. The super-hard composite member according to claim 1, wherein the content of the diamond particles is 5 to 50% by volume.
【請求項17】 結合相金属の含有量が10〜50体積%で
あることを特徴とする請求項1記載の超硬質複合部材。
17. The super-hard composite member according to claim 1, wherein the content of the binder phase metal is 10 to 50% by volume.
【請求項18】 超硬質複合部材の一面側ほどダイヤモ
ンドが多く、他面側ほど少なくなるように厚さ方向にダ
イヤモンドの含有量が変化されてなることを特徴とする
請求項1記載の超硬質複合部材。
18. The ultra-hard composite material according to claim 1, wherein the diamond content is changed in the thickness direction such that the diamond is increased on one surface side of the super-hard composite member and is reduced on the other surface side. Composite members.
【請求項19】 WC基超硬合金、TiC(N)基サー
メットおよび金属材料のいずれかよりなる基体上に接合
されてなることを特徴とする請求項1記載の超硬質複合
部材。
19. The super-hard composite member according to claim 1, wherein the super-hard composite member is bonded to a base made of one of a WC-based cemented carbide, a TiC (N) -based cermet, and a metal material.
【請求項20】 ダイヤモンド粒子の少なくとも一部を
立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素の少なく
とも一方に置き換えたことを特徴とする請求項1記載の
超硬質複合部材。
20. The super-hard composite member according to claim 1, wherein at least a part of the diamond particles is replaced with at least one of cubic boron nitride and wurtzite-type boron nitride.
【請求項21】 lr、Os、Pt、Re、Rh、C
r、Mo、Wから選ばれた少なくとも一種の金属で外層
被覆が形成されたダイヤモンド粒子と、 WC,TiC,TiNおよびTiCNから選択された少
なくとも1種の硬質相と、 結合相金属とを含み、 これらが一体に焼結されてなる超硬質複合部材であっ
て、 下記,の少なくとも一方を具えていることを特徴と
する超硬質複合部材。 ダイヤモンド粒子がスケルトンを形成していない。 ダイヤモンド粒子同士の直接結合した部分が存在しな
い。
21. Ir, Os, Pt, Re, Rh, C
diamond particles having an outer layer coating formed of at least one metal selected from r, Mo, and W; at least one hard phase selected from WC, TiC, TiN, and TiCN; and a binder phase metal, An ultra-hard composite member obtained by sintering them integrally, comprising at least one of the following. Diamond particles do not form a skeleton. There is no directly bonded portion between diamond particles.
【請求項22】 シールド掘進機用カッタービットとし
て用いられることを特徴とする請求項2記載の超硬質複
合材料。
22. The super-hard composite material according to claim 2, which is used as a cutter bit for a shield machine.
【請求項23】 lr、Os、Pt、Re、Rh、C
r、Mo、Wから選ばれた少なくとも一種の金属でダイ
ヤモンド粒子に外層被覆をする工程と、 この外層被覆ダイヤモンド粒子、硬質相粒子および結合
相金属を含む原料粉末を混合する工程と、 この混合原料をSHS/HIP装置に装入する工程と、 3MPa 以上の窒素ガス圧力下でSHS/HIP焼結する
工程とを具えることを特徴とする超硬質複合部材の製造
方法。
23. Ir, Os, Pt, Re, Rh, C
a step of coating the diamond particles with an outer layer of at least one metal selected from the group consisting of r, Mo, and W; a step of mixing the raw material powder containing the outer layer-coated diamond particles, the hard phase particles, and the binder phase metal; And a step of sintering the SHS / HIP under a nitrogen gas pressure of 3 MPa or more.
【請求項24】 SHS/HIP焼結は次の1つ以上の
工程を具備することを特徴とする請求項23記載の超硬
質複合部材の製造方法。 (1)混合原料を加圧窒素雰囲気中に装填して、該雰囲
気中で金属珪素粉末と化学的連鎖反応をさせ、この反応
熱により焼結する。 (2)混合原料を予備プレスしてカプセルに封入し、こ
れを着火剤とともに金属珪素粉末中に埋め、窒素封入容
器内にセットし、温度を上昇させ着火剤の自然発熱を利
用して金属珪素粉末と窒素とを化学的連鎖反応させる。 (3)混合原料を予備プレスしてカプセルに封入し、こ
れを金属粉末中に埋め、窒素封入容器内にセットし、金
属珪素粉末中に着火ヒーターを挿入し、窒素封入容器外
部からの通電により任意の温度で金属珪素粉末と窒素と
を化学的連鎖反応させる。
24. The method according to claim 23, wherein the SHS / HIP sintering includes one or more of the following steps. (1) The mixed raw material is charged in a pressurized nitrogen atmosphere, a chemical chain reaction is caused with the metal silicon powder in the atmosphere, and sintering is performed by the reaction heat. (2) The mixed raw material is pre-pressed and encapsulated in a capsule, which is buried in a metallic silicon powder together with an igniting agent, set in a nitrogen enclosure, and the temperature is raised to utilize the spontaneous heat generation of the igniting agent. A chemical chain reaction is performed between the powder and nitrogen. (3) The mixed raw material is pre-pressed and encapsulated in a capsule, buried in a metal powder, set in a nitrogen enclosure, inserted with an ignition heater in the metal silicon powder, and energized from outside the nitrogen enclosure. At an arbitrary temperature, metal silicon powder and nitrogen are subjected to a chemical chain reaction.
【請求項25】 外層被覆をする前に、ダイヤモンド粒
子および硬質相粒子の少なくとも一方をCoおよびNi
の少なくとも一方で被覆しておくことを特徴とする請求
項23記載の製造方法。
25. Before coating the outer layer, at least one of the diamond particles and the hard phase particles is made of Co and Ni.
24. The method according to claim 23, wherein at least one of the steps is coated.
【請求項26】 原料粉末として、IVa、Va、VI
a族元素およびSiから選ばれた1種以上の金属を用い
ることを特徴とする請求項23記載の超硬質複合部材の
製造方法。
26. As a raw material powder, IVa, Va, VI
The method for manufacturing an ultra-hard composite member according to claim 23, wherein one or more metals selected from the group a elements and Si are used.
【請求項27】 原料粉末を混合する工程において、機
械的合金化法を用いることを特徴とする請求項23記載
の超硬質複合部材の製造方法。
27. The method according to claim 23, wherein the step of mixing the raw material powders uses a mechanical alloying method.
【請求項28】 焼結は液相を出現させて行うことを特
徴とする請求項23記載の超硬質複合部材の製造方法。
28. The method according to claim 23, wherein the sintering is performed by allowing a liquid phase to appear.
【請求項29】 液相出現下での焼結時間が1分以内で
あることを特徴とする請求項23記載の超硬質複合部材
の製造方法。
29. The method for producing an ultra-hard composite member according to claim 23, wherein the sintering time in the appearance of the liquid phase is within 1 minute.
【請求項30】 原料粉末を混合する工程において、ダ
イヤモンド粒子の混合割合の異なる複数種を準備し、 混合原料をSHS/HIP装置に装入する工程におい
て、これら複数種の混合粉末をダイヤモンド粒子の含有
量順に配置し、ダイヤモンド粒子の含有量を厚さ方向に
変化させることを特徴とする請求項23記載の超硬質複
合部材の製造方法。
30. In the step of mixing the raw material powders, a plurality of types having different mixing ratios of the diamond particles are prepared, and in the step of charging the mixed raw material into the SHS / HIP apparatus, the plurality of types of the mixed powders are mixed with the diamond particles. 24. The method for producing a super-hard composite member according to claim 23, wherein the components are arranged in the order of the contents, and the content of the diamond particles is changed in the thickness direction.
【請求項31】 原料粉末を混合する工程の後、この混
合原料を基体上に配置する工程を具え、 この基体と混合原料との複合体をSHS/HIP装置に
装入し、 この複合体を燃焼熱により加熱して混合原料を焼結する
と共に、この焼結体を基体上に焼結接合することを特徴
とする請求項23記載の超硬質複合部材の製造方法。
31. After the step of mixing the raw material powders, a step of arranging the mixed raw materials on a substrate is provided. The composite of the substrate and the mixed raw materials is charged into an SHS / HIP apparatus, 24. The method for manufacturing a super-hard composite member according to claim 23, wherein the mixed raw material is sintered by heating by combustion heat, and the sintered body is sintered and bonded to a substrate.
【請求項32】 原料粉末を混合する工程において、ダ
イヤモンド粒子の混合割合の異なる複数種を準備し、 混合原料をSHS/HIP装置に装入する工程におい
て、これら複数種の混合粉末をダイヤモンド粒子の含有
量順に配置し、ダイヤモンド粒子の含有量を厚さ方向に
変化させることを特徴とする請求項31記載の超硬質複
合部材の製造方法。
32. In the step of mixing raw material powders, a plurality of kinds of diamond particles having different mixing ratios are prepared, and in the step of charging the mixed raw material into an SHS / HIP apparatus, the plurality of kinds of mixed powders are mixed with diamond particles. The method for producing a super-hard composite member according to claim 31, wherein the diamond particles are arranged in the order of the content and the content of the diamond particles is changed in the thickness direction.
JP9137676A 1997-05-12 1997-05-12 Superhard composite member and its production Pending JPH10310838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9137676A JPH10310838A (en) 1997-05-12 1997-05-12 Superhard composite member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9137676A JPH10310838A (en) 1997-05-12 1997-05-12 Superhard composite member and its production

Publications (1)

Publication Number Publication Date
JPH10310838A true JPH10310838A (en) 1998-11-24

Family

ID=15204222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9137676A Pending JPH10310838A (en) 1997-05-12 1997-05-12 Superhard composite member and its production

Country Status (1)

Country Link
JP (1) JPH10310838A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406170C (en) * 2006-02-08 2008-07-30 江苏大学 Method for preparing TiC/Ni3Al intermetallic compound based surface composite coating
JP5466506B2 (en) * 2008-02-06 2014-04-09 住友電気工業株式会社 Diamond polycrystal
KR20150004757A (en) * 2013-07-03 2015-01-13 산드빅 인터렉츄얼 프로퍼티 에이비 A sintered body and method of producing a sintered body
CN106424714A (en) * 2016-11-18 2017-02-22 中国矿业大学 Composite WC alloy powder and preparation method and application thereof
CN107524449A (en) * 2017-07-24 2017-12-29 北京科技大学 A kind of shield machine resistive connection trowel seat and its manufacture method
CN109226741A (en) * 2018-10-30 2019-01-18 湖南工业大学 A kind of hard alloy and preparation method thereof
CN111318710A (en) * 2020-04-13 2020-06-23 长沙百川超硬材料工具有限公司 Preparation method of high-holding-force diamond-inlaid tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406170C (en) * 2006-02-08 2008-07-30 江苏大学 Method for preparing TiC/Ni3Al intermetallic compound based surface composite coating
JP5466506B2 (en) * 2008-02-06 2014-04-09 住友電気工業株式会社 Diamond polycrystal
US9630853B2 (en) 2008-02-06 2017-04-25 Sumitomo Electric Industries, Ltd. Method of preparing polycrystalline diamond
KR20150004757A (en) * 2013-07-03 2015-01-13 산드빅 인터렉츄얼 프로퍼티 에이비 A sintered body and method of producing a sintered body
CN106424714A (en) * 2016-11-18 2017-02-22 中国矿业大学 Composite WC alloy powder and preparation method and application thereof
CN107524449A (en) * 2017-07-24 2017-12-29 北京科技大学 A kind of shield machine resistive connection trowel seat and its manufacture method
CN107524449B (en) * 2017-07-24 2024-04-16 北京科技大学 Anti-mud-caking cutter seat for shield machine and manufacturing method thereof
CN109226741A (en) * 2018-10-30 2019-01-18 湖南工业大学 A kind of hard alloy and preparation method thereof
CN111318710A (en) * 2020-04-13 2020-06-23 长沙百川超硬材料工具有限公司 Preparation method of high-holding-force diamond-inlaid tool

Similar Documents

Publication Publication Date Title
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
US8697259B2 (en) Boron carbide composite materials
US8506881B2 (en) Intermetallic bonded diamond composite composition and methods of forming articles from same
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
JP5462622B2 (en) Cubic boron nitride composite material and tool
JP2004505786A (en) Manufacturing method of polishing products containing diamond
US20070032369A1 (en) High content CBN materials, compact incorporating the same and methods of making the same
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP2019006662A (en) Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPH10310838A (en) Superhard composite member and its production
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
WO2003057936A1 (en) Metal carbide composite
JPH10310840A (en) Superhard composite member and its production
JPS62105911A (en) Hard diamond mass and production thereof
CN112142481B (en) Binder for synthesis of polycrystalline cubic boron nitride material and use method thereof
JPS6137221B2 (en)
JPS6158432B2 (en)
JPH0215515B2 (en)
JPH10310839A (en) Super hard composite member with high toughness, and its production
JPS644987B2 (en)
JPS644986B2 (en)
JP2001240932A (en) Wear resistant tool material and its production method
JPS63121631A (en) Production of sintered body for microworking tool for precision small parts