JP2000328170A - Cubic boron nitride-containing hard member and its production - Google Patents

Cubic boron nitride-containing hard member and its production

Info

Publication number
JP2000328170A
JP2000328170A JP11140344A JP14034499A JP2000328170A JP 2000328170 A JP2000328170 A JP 2000328170A JP 11140344 A JP11140344 A JP 11140344A JP 14034499 A JP14034499 A JP 14034499A JP 2000328170 A JP2000328170 A JP 2000328170A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
hard member
containing hard
nitride particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11140344A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11140344A priority Critical patent/JP2000328170A/en
Publication of JP2000328170A publication Critical patent/JP2000328170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject member hard to fall, having sufficient densiness of the metallic structure and excellent in wear resistance by composing it of a specified volume % of cubic boron nitride particles, and the balance cemented carbide or cermet and providing it with a coating layer composed of a metal selected from the group VIa elements, Re, or the like, an alloy composed of elements such as the group IVa and Va elements, carbides, or the like. SOLUTION: This member contains 3 to 50 vol.% cubic boron nitride particles and has one or more coating layers of a metal selected from the group VIa elements in the Periodic Table, Re, Os, or the like, an alloy consisting of two or more kinds of elements among the group IVa, Va and VIa elements in the Periodic Table, Al and Si and a compd. of the carbides, nitrides, oxides, or the like, of the group IVa, Va and VIa elements in the Periodic Table, Al and Si or the solid solutions thereof, or the like. The m.p. of this coating layer is >=1300 deg.C, the average particle diameter D of the cubic boron nitride particles is 0.1 to 100 μm, and in the case the thickness of the coating layer is defined as (d), k, i.e., the value of ((0.5D+d)/0.5D)3 is 1.002 to 1.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超硬合金又はサーメ
ットに立方晶窒化硼素粒子を含有させた硬質部材に関す
るものである。
The present invention relates to a hard member in which cubic boron nitride particles are contained in a cemented carbide or cermet.

【0002】[0002]

【従来の技術】近年、WC基超硬合金はその優れた靭
性、耐摩耗性によりその適用分野を大幅に広げてきてい
る。また、立方晶窒化硼素焼結体も超硬合金を大幅に上
回る耐摩耗性により、その適用分野を増やしてきてい
る。
2. Description of the Related Art In recent years, the application field of WC-based cemented carbide has been greatly expanded due to its excellent toughness and wear resistance. Further, the application field of the cubic boron nitride sintered body has been increasing due to its wear resistance which is much higher than that of cemented carbide.

【0003】しかしながら従来の立方晶窒化硼素焼結体
は超高圧発生装置により製造されるため製造コストが高
く、また立方晶窒化硼素焼結体の形状面の制約が大きい
上、その強度、靭性が超硬合金と比較して劣り、優れた
性能を発揮できるのは限定された用途のみであった。
[0003] However, the conventional cubic boron nitride sintered body is manufactured by an ultra-high pressure generator, so that the manufacturing cost is high, the shape of the cubic boron nitride sintered body is largely restricted, and its strength and toughness are not good. It was inferior to cemented carbide and could exhibit excellent performance only in limited applications.

【0004】これに対して、特開昭60−33336号
公報、特開平2−302371号公報では超高圧装置を
用いずに製造することが提案された。これは、立方晶窒
化硼素が熱力学的に安定でない圧力、温度条件で立方晶
窒化硼素含有硬質部材を焼結する方法である。
On the other hand, Japanese Patent Application Laid-Open Nos. 60-33336 and 2-302371 have proposed manufacturing without using an ultra-high pressure device. This is a method of sintering a cubic boron nitride-containing hard member under pressure and temperature conditions under which cubic boron nitride is not thermodynamically stable.

【0005】しかしながら、この超高圧装置を用いずに
製造した立方晶窒化硼素含有硬質部材は、その組織の緻
密性が十分でなく、立方晶窒化硼素粒子が破壊、脱落し
やすいといった問題点や低強度であるといった問題点を
有していた。そこで、上記問題点を解決するため、WC
基超硬合金の母体相(マトリックス)中に立方晶窒化硼
素粒子を分散したものを通電加圧で焼結するに際して、
WC基超硬合金に液相が生成する条件下で短時間で製造
する方法(特開平9−194978号公報)が提案され
た。これにより、立方晶窒化硼素含有硬質部材の組織が
緻密で、立方晶窒化硼素粒子が破壊や脱落現象を起こし
にくく、したがって、ある程度耐摩耗性に優れた立方晶
窒化硼素含有硬質部材を安価に製造することができる。
[0005] However, the cubic boron nitride-containing hard member manufactured without using the ultra-high pressure apparatus has a problem that the structure is not dense enough and the cubic boron nitride particles are easily broken or dropped. There was a problem such as strength. Then, in order to solve the above problem, WC
When sintering cubic boron nitride particles dispersed in a base phase (matrix) of a base cemented carbide,
There has been proposed a method of producing a WC-based cemented carbide in a short time under the condition that a liquid phase is formed (Japanese Patent Laid-Open No. 9-194978). As a result, the structure of the cubic boron nitride-containing hard member is dense, and the cubic boron nitride particles are less likely to break or fall off. Therefore, a cubic boron nitride-containing hard member excellent in abrasion resistance to some extent can be manufactured at low cost. can do.

【0006】また、立方晶窒化硼素粒子とマトリックス
との結合力を高める技術としては、立方晶窒化硼素粒子
に被覆層を設ける方法が従来より数多く提案され、特に
立方晶窒化硼素砥石用材料として検討されている。しか
し、これらの提案はマトリックスが1300℃よりも融
点の低い物質を含有しない純粋な超硬合金やサーメット
に関するものではなく、また、焼結された立方晶窒化硼
素含有硬質部材の緻密性が不十分なものであり、結果的
に強度も十分ではなかった。
As a technique for increasing the bonding strength between the cubic boron nitride particles and the matrix, a number of methods for providing a coating layer on the cubic boron nitride particles have been proposed. Have been. However, these proposals do not relate to pure cemented carbides and cermets in which the matrix does not contain a substance having a melting point lower than 1300 ° C., and the denseness of sintered cubic boron nitride-containing hard members is insufficient. As a result, the strength was not sufficient.

【0007】さらに、前記特開平2−302371号公
報には、立方晶窒化硼素粒子に被覆層を設け、立方晶窒
化硼素をグラファイト型相(六方晶)に相転移を促進し
ない無機材料の原料を焼結することが提案されている。
しかし、本発明のように、立方晶窒化硼素を六方晶に相
転移させる触媒作用を有する鉄族金属を含むマトリック
ス材料と立方晶窒化硼素粒子の複合材料を、立方晶窒化
硼素を六方晶に相転移させずに安価に焼結するために好
適な被覆膜質、被覆膜厚、焼結条件(特に焼結圧力、焼
結時間)に対する最適化は不十分であった。
[0007] Further, Japanese Patent Application Laid-Open No. 2-302371 discloses a coating layer provided on cubic boron nitride particles, and a raw material of an inorganic material which does not promote the phase transition of cubic boron nitride to a graphite type phase (hexagonal). Sintering has been proposed.
However, as in the present invention, a composite material of a matrix material containing an iron group metal and a cubic boron nitride particle having a catalytic action to convert cubic boron nitride into a hexagonal crystal is converted from cubic boron nitride to a hexagonal crystal. Optimization of coating film quality, coating film thickness, and sintering conditions (particularly, sintering pressure and sintering time) suitable for inexpensive sintering without transfer was insufficient.

【0008】また、前記特開平9−194978号公
報、特開平5−239585号公報には、立方晶窒化硼
素と同じ高圧安定型であるダイヤモンド粒子に被覆層を
設け、鉄族金属を含むWC基超硬合金との複合材料を製
造することが提案されている。しかし、これらの提案に
おける超硬質粒子サイズに応じた被覆膜厚、被覆膜質、
焼結条件に関する最適化は不十分で、耐摩耗部材として
使用した場合、立方晶窒化硼素粒子の脱落による耐摩耗
性の劣化が見られるケースがあった。
Japanese Patent Application Laid-Open Nos. 9-194998 and 5-239585 disclose that a coating layer is provided on diamond particles of the same type as cubic boron nitride, which are stable under high pressure, and that a WC base containing an iron group metal is provided. It has been proposed to produce composite materials with cemented carbides. However, the coating film thickness, coating film quality,
Optimization of the sintering conditions is insufficient, and when used as a wear-resistant member, deterioration of wear resistance due to falling off of cubic boron nitride particles was observed in some cases.

【0009】[0009]

【発明が解決しようとする課題】このため、組織の緻密
性をさらに向上させ、立方晶窒化硼素粒子と超硬合金又
はサーメットからなるマトリックスとの結合力を向上さ
せることにより、さらに広い分野に立方晶窒化硼素含有
硬質部材を応用することが望まれている。
Therefore, by further improving the compactness of the structure and improving the bonding force between the cubic boron nitride particles and the matrix made of cemented carbide or cermet, the cubic field can be expanded in a wider field. It is desired to apply hard members containing polycrystalline boron nitride.

【0010】本発明は、超硬合金又はサーメットをマト
リックスとした際に、立方晶窒化硼素粒子が非常に脱落
しにくく、金属組織の緻密性が十分であって、耐摩耗性
に極めて優れた立方晶窒化硼素含有硬質部材とその製造
方法の提供を課題としたものである。
According to the present invention, a cubic boron nitride particle which is hardly dropped off when a cemented carbide or cermet is used as a matrix, has a sufficiently dense metal structure and is extremely excellent in wear resistance. It is an object of the present invention to provide a crystalline boron nitride-containing hard member and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】立方晶窒化硼素粒子と、
残部が超硬合金又はサーメットからなり、前記立方晶窒
化硼素粒子が3〜50体積%含有され、かつ周期率表の
VIa族元素、レニウム(Re)、オスミウム(Os)、
ロジウム(Rh)、イリジウム(Ir)、白金(Pt)
から選ばれた金属、周期率表のIVa、Va、VIa族元
素、アルミニウム(Al)、シリコン(Si)から選ば
れた2種以上の元素からなる合金、周期率表のIVa、V
a、VIa族元素、Al、Siの炭化物、窒化物、酸化
物、珪化物、硼化物又はこれらの固溶体から選ばれた化
合物から選ばれた少なくとも1つの被覆層を有してい
る。そして、被覆層の融点が1300℃以上であって、
前記立方晶窒化硼素粒子の平均粒径Dが0.1〜100
μmであり、前記被覆層の厚さをdとしたとき((0.
5D+d)/0.5D)3の値Kが1.002〜1.5
である。
A cubic boron nitride particle;
The balance is made of cemented carbide or cermet, the cubic boron nitride particles are contained in an amount of 3 to 50% by volume, and
Group VIa element, rhenium (Re), osmium (Os),
Rhodium (Rh), iridium (Ir), platinum (Pt)
Alloys composed of two or more elements selected from the group consisting of metals selected from the group consisting of elements IVa, Va and VIa in the periodic table, aluminum (Al) and silicon (Si), and IVa and V in the periodic table
It has at least one coating layer selected from a compound selected from carbides, nitrides, oxides, silicides, borides, or solid solutions of a, VIa group elements, Al and Si. And the melting point of the coating layer is 1300 ° C. or more,
The average particle diameter D of the cubic boron nitride particles is 0.1 to 100.
μm, and the thickness of the coating layer is d ((0.
5D + d) /0.5D) The value K of 3 is 1.002 to 1.5
It is.

【0012】本願において、超硬合金とは、WCを主体
としてIVa、Va、VIa族元素の炭化物、窒化物、炭窒
化物及び又はこれらの固溶体から選ばれた少なくとも1
種を硬質相とし、鉄族金属からなる結合相からなる焼結
体のことである。また、サーメットとはTiN、TiC
N、TiCのいずれかを主体としてIVa、Va、VIa族
元素の炭化物、窒化物、炭窒化物及び又はこれらの固溶
体から選ばれた少なくとも1種を硬質相とし、鉄族金属
からなる結合相からなる焼結体のことである。
In the present application, the cemented carbide means at least one selected from the group consisting of carbides, nitrides, carbonitrides and / or solid solutions of IVa, Va, and VIa group elements mainly composed of WC.
It is a sintered body composed of a binder phase composed of an iron group metal and having a hard phase as a seed. The cermet is TiN, TiC
A hard phase containing at least one selected from the group consisting of carbides, nitrides, carbonitrides, and solid solutions of IVa, Va, and VIa elements, mainly containing any one of N and TiC, and a binder phase composed of an iron group metal. Sinter.

【0013】さらに、前記立方晶窒化硼素含有硬質部材
中に、WS2、MoS2、黒鉛などの潤滑性物質が含有さ
れていると好ましい。これは、本発明の立方晶窒化硼素
粒子はマトリックス中に島のように不連続で存在してい
るため、50%よりも多い立方晶窒化硼素粒子を含有す
る材料よりも相手材に対する攻撃性が高くなるが、WS
2、MoS2、黒鉛などの潤滑性物質が含有されているこ
とで、相手攻撃性を低下できるためである。さらに、発
生した摩耗粉による凝着現象が防げ、耐摩耗性をより向
上させることができる。なお、通常、WS2、MoS2
超硬合金に含有させて、超硬合金が緻密化する温度で焼
結すると、WS2、MoS2は分解し、ほとんど焼結体中
に残存させることはできないが、本願発明の条件で焼結
することにより、これらの潤滑性物質を多量に残存させ
た焼結体の作製が容易になる。さらに好ましくは、本願
発明の立方晶窒化硼素粒子に行う被覆処理をWS2、M
oS2にも実施することによって、生成した液相から保
護することができるので、さらにWS2、MoS2の残存
率を高くすることができる。
Furthermore, it is preferable that the cubic boron nitride-containing hard member contains a lubricating substance such as WS 2 , MoS 2 and graphite. This is because the cubic boron nitride particles of the present invention exist discontinuously like islands in the matrix, and therefore have a higher aggressiveness to the mating material than a material containing more than 50% of cubic boron nitride particles. Higher, but WS
2 , MoS 2 , graphite, and other lubricating substances can reduce the aggressiveness of the opponent. Furthermore, the adhesion phenomenon due to the generated wear powder can be prevented, and the wear resistance can be further improved. In general, when WS 2 and MoS 2 are contained in a cemented carbide and sintered at a temperature at which the cemented carbide is densified, WS 2 and MoS 2 are decomposed and hardly remain in the sintered body. Although not possible, sintering under the conditions of the present invention facilitates the production of a sintered body in which a large amount of these lubricating substances remain. More preferably, the coating treatment performed on the cubic boron nitride particles of the present invention is performed by using WS 2 , M
By performing the process on oS 2 , it is possible to protect from the generated liquid phase, so that the residual ratio of WS 2 and MoS 2 can be further increased.

【0014】ここで、立方晶窒化硼素粒子の平均粒径を
0.1〜100μmとしたのは、0.1μmよりも小さ
いと立方晶窒化硼素粒子を添加した効果が得られにく
く、また、被覆層を立方晶窒化硼素粒子に形成すること
が難しいためであって、また、100μmよりも大きく
すると耐摩材料として、本発明の材料を使用した場合
に、相手材に傷をつけることが予想され、好ましくない
ためである。特に好ましいのは30μm以下のときであ
る。この立方晶窒化硼素粒子の粒径範囲は、センタレス
ブレード、ベアリング加工用工具、ゲージ類、レースセ
ンター、吸着ノズルなどの耐摩耗、摺動用材料として好
適で、精密機械部品や加工精度を向上させるガイドパッ
ドなどの耐摩部品や製缶用工具として優れている。
Here, the reason why the average particle size of the cubic boron nitride particles is 0.1 to 100 μm is that if the average particle size is smaller than 0.1 μm, it is difficult to obtain the effect of adding the cubic boron nitride particles, This is because it is difficult to form a layer on the cubic boron nitride particles, and when the thickness is larger than 100 μm, when the material of the present invention is used as a wear-resistant material, it is expected that the mating material will be damaged, This is because it is not preferable. Particularly preferred is when the thickness is 30 μm or less. This cubic boron nitride particle size range is suitable for wear and sliding materials such as centerless blades, bearing processing tools, gauges, race centers, suction nozzles, etc., and guides to improve precision machine parts and processing accuracy. Excellent as wear-resistant parts such as pads and can-making tools.

【0015】立方晶窒化硼素粒子としては、立方晶窒化
硼素粒内の不純物量が0.3重量%以下、好ましくは0.2重
量%以下であるものが好ましい。これは、超硬合金及び
又はサーメットに液相が生成する温度で焼結される本材
料にとって立方晶窒化硼素粒子の劣化を制御する上で好
ましいためである。
The cubic boron nitride particles preferably have an impurity content of 0.3% by weight or less, preferably 0.2% by weight or less in the cubic boron nitride grains. This is because it is preferable to control deterioration of the cubic boron nitride particles for the present material which is sintered at a temperature at which a liquid phase is formed in the cemented carbide and / or cermet.

【0016】つまり、不純物量が0.3重量%よりも多い
と、高温での焼結時に立方晶窒化硼素粒内で立方晶窒化
硼素と不純物との間で熱膨張係数のミスマッチが生じ、
立方晶窒化硼素粒子の破壊もしくは粒内に発生したキレ
ツや歪みに伴う耐摩耗性の低下を招きやすいためであ
る。ここでいう不純物とはAl,Si、Fe、Ni、C
o、Mg、Li、Mn、Ta、Cu、Caなどの金属元
素のことである。この現象は、本発明の好ましい製造方
法である通電加熱焼結による急速加熱、急速冷却に基づ
く焼結条件下で特に起こりやすく、重要な制御ポイント
である。なお、立方晶窒化硼素粒子内の不純物量は少な
い程好ましいが、0.01重量%よりも高純度の立方晶
窒化硼素は高価であるので本発明のねらいの一つである
安価な材料とするためには、不純物が0.01〜0.3
重量%の立方晶窒化硼素粒子を用いることが好ましい。
さらに、各焼結体の立方晶窒化硼素粒子中に含まれる不
純物量を、マトリックスである硬質合金を酸で溶かして
除去後、立方晶窒化硼素粒子を溶融塩を用いて溶解し、
さらに、酸を加えて水溶液とし、誘導結合プラズマ発光
分析法により測定したが、原料時に含まれていた不純物
量と大きな変化がないことも確認できた。
That is, if the amount of impurities is more than 0.3% by weight, a mismatch in thermal expansion coefficient between cubic boron nitride and impurities occurs in the cubic boron nitride grains during sintering at a high temperature,
This is because the cubic boron nitride particles are liable to be broken or the wear resistance is reduced due to cracks or strains generated in the particles. The impurities referred to here are Al, Si, Fe, Ni, C
Metal elements such as o, Mg, Li, Mn, Ta, Cu, and Ca. This phenomenon is particularly likely to occur under sintering conditions based on rapid heating and rapid cooling by current heating sintering, which is a preferred production method of the present invention, and is an important control point. It should be noted that although the amount of impurities in the cubic boron nitride particles is preferably as small as possible, cubic boron nitride having a purity higher than 0.01% by weight is expensive, so that it is an inexpensive material which is one of the aims of the present invention. In order for impurities to be 0.01-0.3
It is preferred to use cubic boron nitride particles in weight percent.
Further, after removing the amount of impurities contained in the cubic boron nitride particles of each sintered body by dissolving the hard alloy as a matrix with an acid, the cubic boron nitride particles are dissolved using a molten salt,
Furthermore, an acid was added to form an aqueous solution, and the solution was measured by inductively coupled plasma emission spectrometry. As a result, it was confirmed that there was no significant change from the amount of impurities contained in the raw material.

【0017】また、立方晶窒化硼素粒子の含有量を3〜
45体積%としたのは、3体積%よりも立方晶窒化硼素
粒子の含有量が少ないと立方晶窒化硼素含有硬質部材の
耐摩耗性向上の効果が小さく、45体積%よりも多いと
立方晶窒化硼素含有硬質部材の強度の低下が著しくなる
ためである。特に好ましいのは、立方晶窒化硼素粒子の
含有量が10〜30体積%のときである。立方晶窒化硼
素粒子の含有量を30体積%以下とし、さらに立方晶窒
化硼素粒子の分散を均一にすることで立方晶窒化硼素含
有硬質部材の硬度をビッカース硬度で2500以下、好
ましくは2000以下とすると、立方晶窒化硼素含有硬
質部材の靱性、強度を非常に高めることができる。これ
は、立方晶窒化硼素粒子の含有量、分散性を制御するこ
とで、立方晶窒化硼素含有硬質部材の硬度をマトリック
スである超硬合金とほぼ同一の硬度とすることができる
ためである。このように、硬度を超硬マトリックス並み
にした場合でも耐摩耗性は超硬合金又はサーメット単体
と比べてはるかに高く、超高圧焼結立方晶窒化硼素の耐
摩耗性に迫るものにできるという驚くべき結果が得られ
た。なお、立方晶窒化硼素含有硬質部材の硬度をビッカ
ース硬度で2500以下、好ましくは2000以下とし
たのは、超硬マトリックスのビッカース硬度は結合相量
を極小にした場合でも2500が上限であり、超硬合金
としての優れた靱性、強度を実現するためには2000
以下が好ましいためである。
Further, the content of the cubic boron nitride particles is 3 to
The reason for setting the volume to 45% by volume is that when the content of the cubic boron nitride particles is less than 3% by volume, the effect of improving the wear resistance of the cubic boron nitride-containing hard member is small, and when the content is more than 45% by volume, the content is cubic. This is because the strength of the boron nitride-containing hard member significantly decreases. Particularly preferred is when the content of the cubic boron nitride particles is 10 to 30% by volume. By setting the content of the cubic boron nitride particles to 30% by volume or less and further uniformly dispersing the cubic boron nitride particles, the hardness of the cubic boron nitride-containing hard member is reduced to 2500 or less, preferably 2000 or less in Vickers hardness. Then, the toughness and strength of the cubic boron nitride-containing hard member can be greatly increased. This is because by controlling the content and dispersibility of the cubic boron nitride particles, the hardness of the cubic boron nitride-containing hard member can be made substantially the same as that of the cemented carbide as the matrix. As described above, even when the hardness is set to the same level as that of the cemented carbide matrix, the wear resistance is much higher than that of the cemented carbide or cermet alone, and it is surprising that the wear resistance can approach the wear resistance of ultrahigh-pressure sintered cubic boron nitride. The desired result was obtained. Note that the hardness of the cubic boron nitride-containing hard member is set to 2500 or less in Vickers hardness, preferably 2000 or less, because the Vickers hardness of the superhard matrix is 2500 at the upper limit even when the amount of the binder phase is minimized. In order to achieve excellent toughness and strength as a hard alloy, 2000
This is because the following is preferable.

【0018】本願発明では、マトリックスに超硬合金、
サーメットを用いているが、これらの材料は鉄族金属を
含有し、これらの金属は焼結体の靭性向上、焼結性向上
に有用である。ところが、鉄族金属は立方晶窒化硼素に
対して、六方晶に相転移させる触媒作用を有し、焼結体
の硬度低下を招きやすい。特にこの触媒作用は鉄族金属
が液相化したときに顕著であり、この液相に立方晶窒化
硼素粒子が直接接触することを防ぎつつ、しかもマトリ
ックスとの結合力を高めることが必要となる。また、立
方晶窒化硼素粒子は極めて硬質であり、両者が直接に接
触する個所が存在すると応力集中しやすく、破壊の起点
となりやすいので、被覆層を設けることが有用となる。
In the present invention, a cemented carbide is used for the matrix,
Although cermet is used, these materials contain iron group metals, and these metals are useful for improving the toughness and sinterability of the sintered body. However, the iron group metal has a catalytic action of causing a cubic boron nitride to undergo a phase transition to hexagonal, and tends to cause a decrease in hardness of the sintered body. In particular, this catalytic action is remarkable when the iron group metal is liquefied, and it is necessary to prevent the cubic boron nitride particles from directly contacting this liquid phase and to increase the bonding force with the matrix. . Further, cubic boron nitride particles are extremely hard, and if there is a place where they are in direct contact with each other, stress concentration is likely to occur, and the cubic boron nitride particles tend to be a starting point of destruction. Therefore, it is useful to provide a coating layer.

【0019】そこで立方晶窒化硼素粒子の被覆層は、液
相温度において、溶解しないことがまず第1の要件であ
る。次の要件は、鉄族金属との濡れ性が優れていること
である。濡れ性が優れているということは、鉄族金属と
の結合力が高いという意味である。本願発明における被
覆層は、このような観点から選択されたものである。
The first requirement is that the coating layer of cubic boron nitride particles does not dissolve at the liquidus temperature. The next requirement is to have good wettability with iron group metals. Excellent wettability means that the bond strength with the iron group metal is high. The coating layer in the present invention is selected from such a viewpoint.

【0020】被覆層としては、周期率表のVIa族元素、
Re、Os、Rh、Ir、Ptから選ばれた金属、周期
率表のIVa、Va、VIa族元素、Al、Siから選ばれ
た2種以上の元素からなる合金、周期率表のIVa、V
a、VIa族元素、Al、Siの炭化物、窒化物、酸化
物、珪化物、硼化物又はこれらの固溶体から選ばれた化
合物であって、中でもCr、W、Mo、Cr−Mo、T
i−Ta、Ti−Mo、Nb−V、Ti−Al−V、T
iC、TiN、Al23、SiC、WC、MoSi 2
TiBN、TiAlN、TiZrNなどの金属、合金、
化合物が好ましい。これらの材料は、融点または分解温
度が1300℃以上であり、被覆層の融点より焼結温度
を低くすることが肝要である。
As the coating layer, a group VIa element in the periodic table,
Metal, period selected from Re, Os, Rh, Ir, Pt
Selected from the group IVa, Va, VIa group elements, Al and Si
Alloy consisting of two or more elements, IVa and V in the periodic table
a, VIa group element, Al, Si carbide, nitride, oxidation
Selected from materials, silicides, borides or solid solutions thereof
Compounds, especially Cr, W, Mo, Cr-Mo, T
i-Ta, Ti-Mo, Nb-V, Ti-Al-V, T
iC, TiN, AlTwoOThree, SiC, WC, MoSi Two,
Metals, alloys such as TiBN, TiAlN, TiZrN,
Compounds are preferred. These materials have a melting point or decomposition temperature
Temperature is 1300 ° C or higher, and the sintering temperature is higher than the melting point of the coating layer.
It is important to lower

【0021】次に((0.5D+d)/0.5D)3
値(K)を導入した理由であるが、前述のように立方晶
窒化硼素粒子に被覆層を設けることは多数提案されてい
る。しかし、立方晶窒化硼素粒子と超硬合金又はサーメ
ットマトリックスとの結合力および焼結性、そして立方
晶窒化硼素含有硬質部材の耐摩耗性をより一層高めるた
めには、立方晶窒化硼素粒子1個の体積に応じて最適な
被覆層体積を設定することが必要であることが判明し
た。これは、本発明の硬質部材中では立方晶窒化硼素粒
子の含有量が50%より少なく、液相焼結時にはマトリッ
クスである超硬合金やサーメットの海の中に、立方晶窒
化硼素粒子が島のように浮いている状態であるため、特
に重要なことである。
Next, the reason for introducing the value (K) of ((0.5D + d) /0.5D) 3 is that many proposals have been made to provide a coating layer on cubic boron nitride particles as described above. I have. However, in order to further enhance the bonding strength and sinterability between the cubic boron nitride particles and the cemented carbide or cermet matrix and the wear resistance of the cubic boron nitride-containing hard member, one cubic boron nitride particle is required. It was found that it was necessary to set the optimum coating layer volume according to the volume of the coating layer. This is because the content of the cubic boron nitride particles in the hard member of the present invention is less than 50%, and the cubic boron nitride particles are contained in the matrix of the cemented carbide or cermet as a matrix during liquid phase sintering. This is particularly important because it is in a floating state.

【0022】そこで、被覆層厚みを含む立方晶窒化硼素
粒子の体積を立方晶窒化硼素粒子の体積で除した値であ
るKを導入し、その数値を最適化したものである。な
お、数値限定理由であるが、Kが1.002よりも小さ
いと被覆層の効果が得られにくいためマトリックスとの
保持力を確保できず、1.5よりも大きくすると均一な
被覆層を得難くなって特性がばらつきやすくなる上、厚
い被覆層が邪魔となり立方晶窒化硼素粒子やマトリック
ス原料の充填密度を上げることが難しくなり、焼結性の
低下すなわち緻密度の低下を招くため、このように限定
した。特に好ましいKの値は1.01〜1.2のときで
ある。
Therefore, K, which is a value obtained by dividing the volume of the cubic boron nitride particles including the thickness of the coating layer by the volume of the cubic boron nitride particles, is introduced, and the numerical value is optimized. The reason for the numerical limitation is that if K is smaller than 1.002, the effect of the coating layer is difficult to obtain, so that the holding power with the matrix cannot be secured. If K is larger than 1.5, a uniform coating layer is obtained. In addition to the difficulty, the characteristics tend to vary, and the thick coating layer hinders the increase in the packing density of the cubic boron nitride particles and the matrix raw material. Limited to. Particularly preferred value of K is from 1.01 to 1.2.

【0023】このような被覆層を形成する方法として
は、スパッタリング法やイオンプレーティング法などの
物理蒸着法や化学蒸着法の他、メッキ法や、浸漬法が挙
げられる。なお、厚い被覆層を有する立方晶窒化硼素粒
子同士がブリッジングすることにより、立方晶窒化硼素
粒子やマトリックス原料の充填密度が低下する場合があ
る。この現象は立方晶窒化硼素粒子の含有量が多い場合
に発生しやすくなり、立方晶窒化硼素粒子の含有量が多
くなりすぎると、優れた耐摩耗性を有する硬質部材を製
造する上で障害となる。
As a method for forming such a coating layer, there are a physical vapor deposition method such as a sputtering method and an ion plating method, a chemical vapor deposition method, a plating method, and a dipping method. Note that the bridging between cubic boron nitride particles having a thick coating layer may lower the packing density of the cubic boron nitride particles and the matrix material. This phenomenon is likely to occur when the content of the cubic boron nitride particles is large, and when the content of the cubic boron nitride particles is too large, it is an obstacle in producing a hard member having excellent wear resistance. Become.

【0024】このため、立方晶窒化硼素の含有量は10
〜30体積%であるときに特に優れた耐摩耗性を発揮で
きる。これは10体積%よりも少ないと耐摩耗性の向上
効果が小さく、30体積%よりも多いと前述の理由で緻
密化しにくくなり、本材料の強度低下が著しくなるため
である。
Therefore, the content of cubic boron nitride is 10
When it is で 30% by volume, particularly excellent wear resistance can be exhibited. This is because if it is less than 10% by volume, the effect of improving the wear resistance is small, and if it is more than 30% by volume, it becomes difficult to densify for the above-mentioned reason, and the strength of the material is significantly reduced.

【0025】本発明の超硬合金およびまたはサーメット
は液相を生成する焼結温度で焼結されることが好まし
い。好ましい焼結温度は1300〜1450℃で、特に
好ましいのは1300〜1400℃である。また、前記
焼結温度での保持時間が10秒以上30分以内、加圧力
が5〜100MPaの条件で通電加圧焼結して製造され
るのが好ましい。
The cemented carbide and / or cermet of the present invention is preferably sintered at a sintering temperature that produces a liquid phase. The preferred sintering temperature is 1300 to 1450 ° C, and particularly preferred is 1300 to 1400 ° C. Further, it is preferable that the sintering temperature is maintained for 10 seconds or more and 30 minutes or less, and that the sintering is performed by current pressure sintering under the conditions of a pressure of 5 to 100 MPa.

【0026】ここで、液相を生成する焼結温度での保持
時間を10秒以上30分以内としたのは、10秒よりも
保持時間が短いと緻密化が不十分であり、30分よりも
長いと立方晶窒化硼素の六方晶窒化硼素への変態が起こ
りやすい為である。特に好ましいのは1分以上10分以
内である。また、加圧力は5〜100MPaの条件が好
ましい。これは加圧力が5MPaよりも低いと立方晶窒
化硼素含有硬質部材のマトリックスの緻密化が起こりに
くく、100MPaよりも高い圧力であると特殊な焼結
形式が必要となり製造コストが増大するためである。
Here, the reason why the holding time at the sintering temperature at which the liquid phase is generated is set to 10 seconds or more and 30 minutes or less is that if the holding time is shorter than 10 seconds, densification is insufficient, and If the length is too long, the transformation of cubic boron nitride to hexagonal boron nitride is likely to occur. Particularly preferred is 1 minute or more and 10 minutes or less. The pressure is preferably 5 to 100 MPa. This is because if the pressure is lower than 5 MPa, the matrix of the cubic boron nitride-containing hard member is less likely to be densified, and if the pressure is higher than 100 MPa, a special sintering method is required and the production cost increases. .

【0027】なお、前記通電加圧焼結が電流ON時間が
1〜100msec、電流OFF時間が1msec以上
である矩形パルス電流を用いて行われた場合には、非常
に緻密で立方晶窒化硼素粒子の脱落が生じにくい立方晶
窒化硼素含有硬質部材を得ることができる。
When the current pressure sintering is performed using a rectangular pulse current having a current ON time of 1 to 100 msec and a current OFF time of 1 msec or more, very dense cubic boron nitride particles are obtained. A cubic boron nitride-containing hard member that is less likely to fall off can be obtained.

【0028】前記被覆層中にはCo、Ni、W、Ti、
C、B、Nから選ばれた少なくとも一種の元素が拡散し
ていると、立方晶窒化硼素とマトリックスである硬質合
金との結合力が向上する。特にCo、Niが拡散した効
果は大きく、これらの拡散は1〜100msecの矩形
パルス電流を用いた通電加圧焼結により得られやすい。
本願は、液相を用いて焼結することが好ましいが、液相
の成分であるCo、Niとその中に溶解しているW、T
i、C、Nが被覆層中へ拡散する。またB、Nは、立方
晶窒化硼素からも拡散する。Co、Ni、W、Ti、
C、B、Nの拡散は被覆層の全厚みにわたって起こって
いることが望ましい。
In the coating layer, Co, Ni, W, Ti,
When at least one element selected from C, B and N is diffused, the bonding strength between cubic boron nitride and the hard alloy as the matrix is improved. In particular, the effect of diffusion of Co and Ni is great, and these diffusions can be easily obtained by current pressure sintering using a rectangular pulse current of 1 to 100 msec.
In the present application, sintering is preferably performed using a liquid phase. However, components of the liquid phase, such as Co and Ni, and W and T dissolved therein are used.
i, C and N diffuse into the coating layer. B and N also diffuse from cubic boron nitride. Co, Ni, W, Ti,
It is desirable that the diffusion of C, B, and N occurs over the entire thickness of the coating layer.

【0029】本願で得られた立方晶窒化硼素含有硬質部
材は、焼結後に加工されて他の超硬合金や鋼等に接合さ
れて実際に利用される。しかしながら、化学的に安定な
立方晶窒化硼素粒子を含有し、その粒子表面の被覆層が
加工により除去されるので、ロウ付けなどが困難とな
る。特に、立方晶窒化硼素含有量が多い場合に顕著であ
る。そこで、発明者はさらに検討を加え、焼結時に立方
晶窒化硼素含有硬質部材の原料と超硬合金又は鋼とを直
接に接触させて焼結して焼結と同時に接合する方法を見
出した。
The cubic boron nitride-containing hard member obtained in the present application is worked after sintering and joined to another cemented carbide, steel, or the like for practical use. However, it contains chemically stable cubic boron nitride particles, and the coating layer on the surface of the particles is removed by processing, so that brazing or the like becomes difficult. In particular, it is remarkable when the cubic boron nitride content is large. Therefore, the inventor further studied and found a method of directly contacting the raw material of the cubic boron nitride-containing hard member and the cemented carbide or steel during sintering and sintering to join them simultaneously with sintering.

【0030】前記立方晶窒化硼素含有硬質部材がWC基
超硬合金、鋼の少なくとも1つに接合されていると、熱
膨張係数の関係から立方晶窒化硼素含有硬質部材に圧縮
残留応力が生じて強靭化されるとともに、ロウづけや溶
接施工が不要もしくは容易となり、本発明による立方晶
窒化硼素含有硬質部材の適用分野を広げることができ
る。
When the cubic boron nitride-containing hard member is joined to at least one of a WC-base cemented carbide and steel, a compressive residual stress is generated in the cubic boron nitride-containing hard member due to a coefficient of thermal expansion. As well as being toughened, brazing and welding work become unnecessary or easy, and the application field of the cubic boron nitride-containing hard member according to the present invention can be expanded.

【0031】また、前記硬質部材にダイヤモンド、ダイ
ヤモンドライクカーボン(以下Diamond Lik
e carbonを以下DLCと称す。)、立方晶窒化
硼素の少なくとも1つの被覆層は、前記硬質部材中の立
方晶窒化硼素粒子を核として成膜されるため、非常に密
着力に優れたものとなる。この結果、硬質部材全面がダ
イヤモンド、DLC、立方晶窒化硼素の少なくとも1つ
で被覆されることにより、優れた耐摩耗性、潤滑性を示
す。特にDLCを被覆した際には、被覆層が平滑で潤滑
性に優れるため剥離が生じにくく、耐摩耗部材として非
常に優れた性能が得られる。この優れた密着力は硬質部
材中の立方晶窒化硼素粒子と超硬合金及び又はサーメッ
トからなるマトリックスの結合力が本発明により高めら
れていることで、特に優れた性能を得ることができたも
のである。
In addition, diamond or diamond-like carbon (hereinafter referred to as Diamond Lik) is used for the hard member.
e carbon is hereinafter referred to as DLC. ), At least one coating layer of cubic boron nitride is formed with cubic boron nitride particles in the hard member as nuclei, so that it has extremely excellent adhesion. As a result, the entire hard member is coated with at least one of diamond, DLC, and cubic boron nitride, thereby exhibiting excellent wear resistance and lubricity. In particular, when coated with DLC, the coating layer is smooth and excellent in lubricity, so that peeling does not easily occur, and very excellent performance as a wear-resistant member can be obtained. This excellent adhesion is achieved by the fact that the bonding force between the cubic boron nitride particles in the hard member and the matrix made of the cemented carbide and / or cermet is enhanced by the present invention, so that particularly excellent performance can be obtained. It is.

【0032】なお、前記立方晶窒化硼素粒子を用いて、
WC及び又はTiの炭化物、窒化物又は炭窒化物と、鉄
族金属からなる結合相金属とを100重量%としたと
き、前記鉄族金属の含有量が2〜50重量%であると、
立方晶窒化硼素粒子をバインディングするマトリックス
として優れた靱性、強度、硬度、焼結性、耐熱亀裂性を
有するため優れており、特に好ましいのは前記鉄族金属
の含有量が2〜20重量%であるときである。特にこの
鉄族金属量のマトリックスを用いた場合、高圧力が負荷
される環境で優れた耐摩耗性を得る事ができる。
Incidentally, using the cubic boron nitride particles,
When the carbide, nitride or carbonitride of WC and / or Ti and the binder phase metal composed of the iron group metal are 100% by weight, the content of the iron group metal is 2 to 50% by weight,
It is excellent because it has excellent toughness, strength, hardness, sinterability, and heat crack resistance as a matrix for binding cubic boron nitride particles. It is particularly preferable that the content of the iron group metal is 2 to 20% by weight. There is one time. In particular, when a matrix having this amount of iron group metal is used, excellent wear resistance can be obtained in an environment where a high pressure is applied.

【0033】[0033]

【発明の実施の形態】以下、本発明の具体的な実施例及
びその他の比較例を示す。 (試験例1) まず、実施例1〜5、併せて比較例1〜4
を示す。平均粒径5μmのWC粉末、平均粒径1μmの
Cr32粉末及び平均粒径2μmのCo粉末を準備し、
WC粉末とCo粉末、Cr32粉末をCo量が10重量
%、Cr32量が0.7重量%となるように秤量し、そ
の粉末をアトライターを用いて粉砕混合し、WC−0.
7重量%Cr32―10重量%Co粉末を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples of the present invention and other comparative examples will be described. (Test Example 1) First, Examples 1 to 5 and Comparative Examples 1 to 4 were combined.
Is shown. A WC powder having an average particle size of 5 μm, a Cr 3 C 2 powder having an average particle size of 1 μm, and a Co powder having an average particle size of 2 μm were prepared.
The WC powder, the Co powder, and the Cr 3 C 2 powder were weighed so that the amount of Co became 10% by weight and the amount of Cr 3 C 2 became 0.7% by weight, and the powders were pulverized and mixed using an attritor. -0.
A 7 wt% Cr 3 C 2 -10 wt% Co powder was obtained.

【0034】次に平均粒径0.5μmの立方晶窒化硼素粒
子に、TiNをPVD法で被覆した。なお、前記K(被
覆層厚)の値が比較例1では1.001、実施例1では
1.002、実施例2では1.01、実施例3では1.
2、実施例4では1.3、実施例5では1.4、比較例
2では2.0、比較例3では3.4となるように被覆し
た。なお、立方晶窒化硼素粒子には、粒内の不純物量が
0.3重量%である立方晶窒化硼素を用いた。そして、
この被覆した立方晶窒化硼素粒子が25体積%となるよ
うに、前記WC−0.7重量%Cr32−10重量%C
o粉末にボールミルを用いて混合した。
Next, cubic boron nitride particles having an average particle size of 0.5 μm were coated with TiN by a PVD method. The value of K (coating layer thickness) was 1.001 in Comparative Example 1, 1.002 in Example 1, 1.01 in Example 2, and 1.0 in Example 3.
2, the coating was made to be 1.3 in Example 4, 1.4 in Example 5, 2.0 in Comparative Example 2, and 3.4 in Comparative Example 3. The cubic boron nitride particles used had a cubic boron nitride content of 0.3% by weight. And
The WC-0.7% by weight Cr 3 C 2 -10% by weight C so that the coated cubic boron nitride particles become 25% by volume.
o The powder was mixed using a ball mill.

【0035】このようにして準備した粉末を内径30m
mの黒鉛型に充填し、0.01トル(Torr)以下の
真空中で圧力30MPaを付加しながら、直流電流の通
電で加圧焼結した。昇温パターンは6分間で1320℃
まで昇温、その温度で3分間保持して、40℃/min
の速度で冷却した。このようにして得られた焼結体のサ
イズは直径30mm、厚み10mmの円板の焼結体で、
割れもなく良好な外観を呈していた。
The powder prepared in this way is 30 m in inner diameter.
m, and sintered under pressure by applying a direct current while applying a pressure of 30 MPa in a vacuum of 0.01 Torr or less. 1320 ° C for 6 minutes
Temperature, hold at that temperature for 3 minutes, 40 ° C / min
Cooled at the speed. The size of the sintered body thus obtained is a disk-shaped sintered body having a diameter of 30 mm and a thickness of 10 mm.
It had good appearance without cracking.

【0036】これらの焼結体の黒皮を除去して、実施例
1〜5及び比較例1〜3について、比重をアルキメデス
法で測定し、理論密度に対する割合を求めた。実施例1
〜5及び比較例1の焼結体は理論密度に対する割合が9
5%以上の緻密度を有していたが、比較例2、3の試料
は理論密度に対する割合がそれぞれ89%と79%と低
い緻密度を示した。
After removing the black scale of these sintered bodies, the specific gravity of each of Examples 1 to 5 and Comparative Examples 1 to 3 was measured by the Archimedes method, and the ratio to the theoretical density was determined. Example 1
5 and Comparative Example 1 had a ratio of 9 to the theoretical density.
Although the densities were 5% or more, the samples of Comparative Examples 2 and 3 exhibited low densities of 89% and 79%, respectively, relative to the theoretical density.

【0037】次に、実施例1〜5及び比較例1〜3の焼
結体から縦10mm、横20mm、高さ10mmの焼結
体を切り出し、この焼結体に平均粒径20μmのSiC
粉を5kg/cm2の圧力で60分間サンドブラスト
し、摩耗量の測定を行った。
Next, a sintered body having a length of 10 mm, a width of 20 mm and a height of 10 mm was cut out from the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 3, and this sintered body was made of SiC having an average particle diameter of 20 μm.
The powder was sandblasted at a pressure of 5 kg / cm 2 for 60 minutes, and the amount of wear was measured.

【0038】比較例4として、実施例1〜5及び比較例
1〜3と同じ前述のWC−0.7重量%Cr32−10
重量%Co粉末材料(立方晶窒化硼素粒子含まず)を同
様の条件で通電加圧焼結し、この焼結体の摩耗量を10
0としたときの、実施例1〜5及び比較例1〜3の焼結
体の摩耗量割合を表1中に記載した。
As Comparative Example 4, the same WC-0.7 wt% Cr 3 C 2 -10 as in Examples 1 to 5 and Comparative Examples 1 to 3 was used.
% By weight of a Co powder material (not including cubic boron nitride particles) under current-pressure sintering under the same conditions.
Table 1 shows the wear ratios of the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 3 when 0 was set.

【0039】[0039]

【表1】 [Table 1]

【0040】また、実施例1〜5及び比較例1〜4の焼
結体から縦3mm、横4mm、高さ12mmの試験片を
ワイヤカット装置、平研を用いて切り出し、三点曲げ抗
折力試験を行った。その結果も表1中にあわせて示す。
Further, a test piece having a length of 3 mm, a width of 4 mm and a height of 12 mm was cut out from the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 4 using a wire cutting apparatus and Hiraken, and subjected to three-point bending bending. A force test was performed. The results are also shown in Table 1.

【0041】表1の結果より、立方晶窒化硼素粒子にK
値が1.002〜1.4となるTiNを被覆した実施例
1〜5は優れた耐摩耗性と強度を示すことが確認でき
た。中でもK値が1.01〜1.2である実施例2〜3
は特に優れた性能を示した。
From the results in Table 1, it is found that cubic boron nitride particles
It was confirmed that Examples 1 to 5 coated with TiN having a value of 1.002 to 1.4 exhibited excellent wear resistance and strength. Above all, Examples 2-3 in which the K value is 1.01-1.2
Showed particularly good performance.

【0042】また、耐摩耗性を評価したサンプルの摩耗
部を垂直に切断し、摩耗部を詳細に評価したところ、K
値が1.001の比較例1の試料では六方晶窒化硼素の
存在が多く観察され、K値が1.4を越える比較例2、
3の試料では凝集物が塊状に脱落したような痕跡が確認
できた。これは緻密化が不十分なため立方晶窒化硼素粒
子の凝集体が脱落しやすく、耐摩耗性が低下したものと
考えられた。
The wear portion of the sample for which the wear resistance was evaluated was cut vertically, and the wear portion was evaluated in detail.
In the sample of Comparative Example 1 having a value of 1.001, a large amount of hexagonal boron nitride was observed, and in Comparative Example 2 having a K value exceeding 1.4,
In the sample of No. 3, a trace was observed as if the aggregates were dropped off in a lump. This was considered to be due to the fact that the agglomerates of the cubic boron nitride particles were liable to fall off due to insufficient densification, and the wear resistance was reduced.

【0043】(試験例2) 実施例6、7は、実施例
2、3と同じ組成、同じTiN被覆層厚の粉末を内径3
0mmの黒鉛型に充填し、0.01トル(Torr)以
下の真空中で圧力30MPaを負荷しながら、ON時間
が80msec、OFF時間が20msecの矩形パル
ス電流で通電加圧焼結した。昇温パターンは6分間で1
320℃まで昇温、その温度で3分間保持して、50℃
/minの速度で冷却した。
(Test Example 2) In Examples 6 and 7, powders having the same composition and the same TiN coating layer thickness as those of Examples 2 and 3 were used.
It was filled in a 0 mm graphite mold, and subjected to current pressure sintering with a rectangular pulse current having an ON time of 80 msec and an OFF time of 20 msec while applying a pressure of 30 MPa in a vacuum of 0.01 Torr (Torr) or less. Heating pattern is 1 in 6 minutes
Raise the temperature to 320 ° C, hold at that temperature for 3 minutes,
/ Min.

【0044】この実施例6、7の焼結体の耐摩耗性と抗
折力を、実施例1〜5、比較例1〜4と同様にして測定
した。その結果を表2中に示す。実施例6、7の焼結体
は実施例2、3よりも優れた耐摩耗性と強度を示すこと
が判明した。
The wear resistance and bending strength of the sintered bodies of Examples 6 and 7 were measured in the same manner as in Examples 1 to 5 and Comparative Examples 1 to 4. The results are shown in Table 2. It was found that the sintered bodies of Examples 6 and 7 exhibited better wear resistance and strength than Examples 2 and 3.

【0045】[0045]

【表2】 [Table 2]

【0046】この理由を調べるため、実施例2、3、
6、7の焼結体のTEM(Transmission
Electron Microscope)観察用試料
を作製し、TiN被覆層の状態をEDXにより評価し
た。その結果、実施例6、7のTiN被覆層には被覆層
全厚みにわたってCoが拡散しており、この拡散したC
oによって立方晶窒化硼素粒子とWC基超硬合金のマト
リックスとの結合力が高まり、優れた耐摩耗性を示した
ものと考えられた。
In order to investigate the reason, Examples 2, 3,
TEM (Transmission) of 6 and 7 sintered bodies
Electron Microscope) A sample for observation was prepared, and the state of the TiN coating layer was evaluated by EDX. As a result, Co diffused in the TiN coating layers of Examples 6 and 7 over the entire thickness of the coating layer.
It was considered that o increased the bonding force between the cubic boron nitride particles and the matrix of the WC-based cemented carbide, and exhibited excellent wear resistance.

【0047】(試験例3) 実施例8〜14について
は、平均粒径9μmの立方晶窒化硼素粒子を準備し、W
を0.15μmの厚さで被覆した立方晶窒化硼素粉末
(K値1.09)と、Wを3μm被覆した粉末(K値
4.63)を準備し、試験例1と同様にして準備したW
C−0.7重量%Cr32−10重量%Co粉末に、立
方晶窒化硼素粒子が0、5、10、15、20、30、
40、50体積%となるように配合して、特に立方晶窒
化硼素粒子の分散性が良くなるように長時間ボールミル
で混合した。なお、立方晶窒化硼素粒子には、粒内の不
純物量が0.2重量%である立方晶窒化硼素を用いた。
(Test Example 3) In Examples 8 to 14, cubic boron nitride particles having an average particle size of 9 μm were prepared.
Was prepared in the same manner as in Test Example 1 by preparing a cubic boron nitride powder (K value 1.09) coated with 0.15 μm in thickness and a powder (K value 4.63) coated with 3 μm of W. W
In C-0.7 wt% Cr 3 C 2 -10 wt% Co powder, cubic boron nitride particles are contained in 0, 5, 10, 15, 20, 30,
It was blended so as to be 40% by volume and 50% by volume, and particularly mixed by a ball mill for a long time so that the dispersibility of the cubic boron nitride particles was improved. Note that, as the cubic boron nitride particles, cubic boron nitride containing 0.2% by weight of impurities in the grains was used.

【0048】この粉末を試験例1と同様にして、内径3
0mmの黒鉛型に充填し、0.01トル(Torr)以
下の真空中で圧力40MPaを負荷しながら、ON時間
が99msec、OFF時間が1msecの矩形パルス
電流で通電加圧焼結した。昇温パターンは10分間で1
380℃まで昇温、その温度で1分間保持して、20℃
/minの速度で冷却した。このようにして作製した焼
結体(実施例8〜14、比較例5)の摩耗量を試験例1
と同様にして測定した。また、これらの焼結体のビッカ
ース硬度を50kg荷重で測定した。
This powder was prepared in the same manner as in Test Example 1,
It was filled in a 0 mm graphite mold, and was subjected to current pressure sintering with a rectangular pulse current having an ON time of 99 msec and an OFF time of 1 msec while applying a pressure of 40 MPa in a vacuum of 0.01 Torr (Torr) or less. Heating pattern is 1 in 10 minutes
Heat up to 380 ° C, hold at that temperature for 1 minute,
/ Min. Test Example 1 shows the amount of wear of the sintered bodies (Examples 8 to 14 and Comparative Example 5) thus manufactured.
The measurement was performed in the same manner as described above. The Vickers hardness of these sintered bodies was measured under a load of 50 kg.

【0049】その結果を表3に示す。表3の結果より、
K値が1.09の試料はK値が4.63である試料より
も耐摩耗性に優れること、また、K値が1.09の試料
の中で、立方晶窒化硼素粒子含有量が10〜30体積%
である実施例9〜12は、特に優れた耐摩耗性を示すこ
とが判明した。また、立方晶窒化硼素粒子の含有量が3
0体積%以下である実施例8〜12の試料のビッカース
硬度は約1550kg/mm2と立方晶窒化硼素粒子を
含有しない比較例5と同等の硬度であることが判明し
た。そこで、実施例8〜14、比較例5の焼結体の研削
面に対して垂直方向から直径20mmの超硬ボールを用
いて10ジュール(J)のエネルギーで20回衝撃を加
えた。その結果、実施例13,14は大破したのに対
し、実施例8〜12、比較例5の焼結体には全く欠けが
見られなかった。
Table 3 shows the results. From the results in Table 3,
The sample having a K value of 1.09 is more excellent in wear resistance than the sample having a K value of 4.63, and the sample having a K value of 1.09 has a cubic boron nitride particle content of 10%. ~ 30% by volume
Examples 9 to 12 were found to exhibit particularly excellent wear resistance. When the content of the cubic boron nitride particles is 3
The Vickers hardness of the samples of Examples 8 to 12 in which the content was 0% by volume or less was about 1550 kg / mm 2 , which was equivalent to the hardness of Comparative Example 5 containing no cubic boron nitride particles. Therefore, impact was applied 20 times with an energy of 10 joules (J) using a carbide ball having a diameter of 20 mm from the perpendicular direction to the ground surfaces of the sintered bodies of Examples 8 to 14 and Comparative Example 5. As a result, while Examples 13 and 14 were severely damaged, the sintered bodies of Examples 8 to 12 and Comparative Example 5 did not show any chipping.

【0050】[0050]

【表3】 [Table 3]

【0051】(試験例4) 次に実施例15について示
す。すなわち、材質がSCM435である直径100m
m、厚み10mmの鋼の円板を内径100mmの黒鉛型
に挿入し、その上にWC−30重量%Co粉末を充填し
た。そして、平均粒径100μmの立方晶窒化硼素粒子
にTiCを0.8μmの厚さで被覆した立方晶窒化硼素
粉末(K値1.06)が25体積%となるように、WC
−20重量%Co粉末と混合した粉末を、前記WC−3
0重量%Co粉末の上に充填して、0.01トル(To
rr)以下の真空中で圧力20MPaを負荷しながら、
ON時間が99msec、OFF時間が1msecの矩
形パルス電流で通電加圧焼結した。なお、立方晶窒化硼
素粒子には粒内の不純物量が0.05重量%である立方
晶窒化硼素を用いた。
(Test Example 4) Next, Example 15 will be described. That is, the diameter is 100 m and the material is SCM435.
A steel disc having a thickness of 10 mm and a thickness of 10 mm was inserted into a graphite mold having an inner diameter of 100 mm, and WC-30 wt% Co powder was filled thereon. Then, the cubic boron nitride powder (K value: 1.06), in which cubic boron nitride particles having an average particle diameter of 100 μm are coated with TiC to a thickness of 0.8 μm, has a volume ratio of 25% by volume.
-20% by weight Co powder mixed with the WC-3
0 wt% Co powder and filled to 0.01 Torr (To
rr) While applying a pressure of 20 MPa in the following vacuum,
Electric current pressing sintering was performed with a rectangular pulse current having an ON time of 99 msec and an OFF time of 1 msec. The cubic boron nitride particles used had a cubic boron nitride content of 0.05% by weight in the grains.

【0052】昇温パターンは30分間で1340℃まで
昇温、その温度で10分間保持して、20℃/minの
速度で冷却した。このようにして得た円板状の焼結体
は、鋼部の厚みが10mm、WC−30重量%Coの焼
結体部分の厚みが5mm、立方晶窒化硼素粒子含有超硬
部材部分の厚みが5mmであった。試験片断面を鏡面研
磨し、光学顕微鏡で観察した結果、各層間は亀裂の発生
もなく、しっかりと接合されていることが判明した。
In the heating pattern, the temperature was raised to 1340 ° C. in 30 minutes, kept at that temperature for 10 minutes, and cooled at a rate of 20 ° C./min. The disc-shaped sintered body thus obtained has a steel part thickness of 10 mm, a WC-30 wt% Co sintered body part thickness of 5 mm, and a cubic boron nitride particle-containing cemented carbide member thickness. Was 5 mm. As a result of mirror-polishing the cross section of the test piece and observing it with an optical microscope, it was found that there was no crack between the layers and the layers were firmly joined.

【0053】次の実施例16は、実施例15の立方晶窒
化硼素粒子含有超硬部材の層と同じ組成の粉末材料のみ
を直径100mmの黒鉛型に直に挿入し、実施例15と
同じ焼結方法で厚み15mmの焼結体を作製した。
In the following Example 16, only the powder material having the same composition as that of the layer of the cubic boron nitride particle-containing carbide member of Example 15 was directly inserted into a graphite mold having a diameter of 100 mm, and the same firing as in Example 15 was performed. A sintered body having a thickness of 15 mm was produced by a knotting method.

【0054】次に、実施例15、16の焼結体の上面
(実施例15では立方晶窒化硼素粒子含有部に相当)の
黒皮をダイヤモンド砥石を用いて除去し、これらの面に
対して垂直方向から直径20mmの超硬ボールを用い
て、10ジュール(J)のエネルギーで50回衝撃を加
えた。
Next, the black scale on the upper surface (corresponding to the portion containing cubic boron nitride particles in Example 15) of the sintered bodies of Examples 15 and 16 was removed using a diamond grindstone. Using a carbide ball having a diameter of 20 mm from the vertical direction, impact was applied 50 times with an energy of 10 joules (J).

【0055】その結果、実施例15には小さな欠けがみ
られたものの大破していないのに対して、実施例16は
大破していることが判明した。これは、実施例15で
は、超硬部分の層が鋼に接合されていたため、熱膨張係
数の関係から立方晶窒化硼素を含有する超硬部材の層の
表面部のWCに約500MPaの圧縮残留応力が導入さ
れ、強靭化されたことと、発生した亀裂の進展が下層の
強靭な超硬合金の焼結体層で止められた結果、大破しな
かったが、実施例16では超硬、鋼との接合がなく、表
面に圧縮残留応力の発生もなかったことから大破したも
のと考えられる。
As a result, it was found that although Example 15 had small chips, it was not severely damaged, whereas Example 16 was severely damaged. This is because in Example 15, since the layer of the superhard portion was bonded to steel, the compression residual of about 500 MPa was added to the WC of the surface of the layer of the superhard member containing cubic boron nitride in view of the coefficient of thermal expansion. Although stress was introduced and toughened, and the propagation of the generated cracks was stopped by the lower layer of the sintered layer of the tough cemented carbide, the material did not break as a result. It was considered that the joint was severely damaged because there was no bonding with the steel and no compressive residual stress was generated on the surface.

【0056】(試験例5) 実施例15の試験片の立方
晶窒化硼素粒子を含有する超硬部材の層にさらにPVD
(Physical Vapor Depositio
n)法でDLCを3μmの厚さで被覆した実施例17の
試験片、CVD(Chemical Vapor De
position)法で立方晶窒化硼素を3μmの厚さ
で被覆した実施例18の試験片を作製した。試験例1と
同様にして作製したWC−3重量%Co粉末を試験例4
の条件で通電加圧焼結し、比較例6の試料とした。
Test Example 5 The test piece of Example 15 was further subjected to PVD on the layer of the superhard member containing cubic boron nitride particles.
(Physical Vapor Deposition
n) The test piece of Example 17 coated with DLC to a thickness of 3 μm by the method, CVD (Chemical Vapor De)
A test piece of Example 18 in which cubic boron nitride was coated at a thickness of 3 μm by the position method was produced. WC-3 wt% Co powder produced in the same manner as in Test Example 1 was used in Test Example 4.
Under the conditions described above, current pressure sintering was performed to obtain a sample of Comparative Example 6.

【0057】そして、実施例15、16、17、18及
び比較例6の試料を、ピンオンディスク試験機を用い
て、相手材をSUJ2ボール、試験片の回転速度を3m
/min、圧力を10ニュートン(N)として、60分
間、大気中で摩耗量と動摩擦係数の測定を行った。実施
例15、16の摩耗量比と、動摩擦係数は同じであっ
た。なお、摩耗量の測定結果は、比較例6の試験片の摩
耗量を100とした摩耗量割合で表した。
Then, the samples of Examples 15, 16, 17, 18 and Comparative Example 6 were subjected to a pin-on-disk tester with a mating material of SUJ2 ball and a rotation speed of the test piece of 3 m.
/ Min, the pressure was set to 10 Newtons (N), and the wear amount and the dynamic friction coefficient were measured in the atmosphere for 60 minutes. The wear ratios and the dynamic friction coefficients of Examples 15 and 16 were the same. In addition, the measurement result of the abrasion amount was represented by the abrasion amount ratio with the abrasion amount of the test piece of Comparative Example 6 being 100.

【0058】[0058]

【表4】 [Table 4]

【0059】その結果を表4に示す。表4の結果より、
DLC及び立方晶窒化硼素を被覆した実施例17、18
は非常に優れた耐摩耗性と非常に低い動摩擦係数を示す
ことが明らかである。
Table 4 shows the results. From the results in Table 4,
Examples 17 and 18 coated with DLC and cubic boron nitride
Shows very good wear resistance and very low coefficient of kinetic friction.

【0060】(試験例6) 平均粒径5μmのTiCN
-20重量%WC−10重量%TaC固溶体粉末に平均
粒径1μmのNi及びCo粉末がそれぞれ8重量%にな
るように配合して、その粉末をアトライターにより混合
粉砕した。次に平均粒径5μmの立方晶窒化硼素粒子に
表5に示すKの値が1.12の被覆層を設けた。すなわ
ち、実施例19はTiCN、実施例20、21はMo、
実施例22はNbを、被覆厚さ0.1μm被覆した。
(Test Example 6) TiCN having an average particle size of 5 μm
-20% by weight WC-10% by weight TaC solid solution powder was mixed with Ni and Co powders having an average particle size of 1 μm so as to be 8% by weight, respectively, and the powder was mixed and pulverized by an attritor. Next, a coating layer having a K value of 1.12 shown in Table 5 was provided on cubic boron nitride particles having an average particle size of 5 μm. That is, Example 19 is TiCN, Examples 20 and 21 are Mo,
In Example 22, Nb was coated at a coating thickness of 0.1 μm.

【0061】[0061]

【表5】 [Table 5]

【0062】この被覆した立方晶窒化硼素粒子が30体
積%になるように、前記混合粉末に加えて混合した。こ
の粉末を、試験例2と同様の条件で減圧窒素雰囲気下で
焼結し、実施例19〜22を作製した。また、前記混合
粉末のみを焼結して作製したサーメットからなる比較例
7も作製した。これらの焼結体から試験例1と同様にし
て試験試料を作製し摩耗試験を行った。この結果を、表
5に示すように、摩耗量割合は、実施例19は4、実施
例20〜22は6であり、Mo、Nbを被覆した場合に
も優れた耐摩耗性を得ることができることを確認した。
The cubic boron nitride particles thus coated were added to and mixed with the above mixed powder so that the volume became 30% by volume. This powder was sintered under the same conditions as in Test Example 2 under a reduced-pressure nitrogen atmosphere to produce Examples 19 to 22. Further, Comparative Example 7 consisting of a cermet produced by sintering only the mixed powder was also produced. Test samples were prepared from these sintered bodies in the same manner as in Test Example 1, and a wear test was performed. As shown in Table 5, the wear amount ratio was 4 in Example 19 and 6 in Examples 20 to 22, indicating that excellent wear resistance was obtained even when Mo and Nb were coated. I confirmed that I can do it.

【0063】(試験例7) 平均粒径5μmのWC粉末
に平均粒径2μmのCo粉末が5重量%になるように配
合して、その粉末をアトライターにより混合粉砕した。
この混合粉末に試験例6の実施例19で用いた被覆され
た立方晶窒化硼素粒子を20体積%混合し、内径100
mmの黒鉛型に充填した。但し、黒鉛型にはあらかじめ
表6に示す超硬合金または鋼の円板を試験例4と同様に
敷いた。
(Test Example 7) A WC powder having an average particle diameter of 5 μm was mixed with a Co powder having an average particle diameter of 2 μm so as to be 5% by weight, and the powder was mixed and pulverized by an attritor.
20% by volume of the coated cubic boron nitride particles used in Example 19 of Test Example 6 were mixed with this mixed powder,
mm of graphite mold. However, a disc of cemented carbide or steel shown in Table 6 was previously spread on the graphite mold in the same manner as in Test Example 4.

【0064】[0064]

【表6】 [Table 6]

【0065】すなわち、実施例23は、WC−15重量
%Co超硬合金粉末、実施例24は、第三の円板である
SCM415製鋼の上に第二、第一とWC−35重量%
Co超硬合金粉末、WC−15重量%Co超硬合金粉末
を順に積層して充填したもので、その上に前記の20体
積%立方晶窒化硼素粒子を混合したWC−5重量%Co
超硬合金粉末を充填した。
That is, in Example 23, WC-15% by weight Co cemented carbide powder was used. In Example 24, the second, first and WC-35% by weight were coated on a third disk, ie, SCM415 steelmaking.
Co cemented carbide powder and WC-15 wt% Co cemented carbide powder are stacked and filled in this order, and WC-5 wt% Co obtained by mixing the above 20% by volume cubic boron nitride particles thereon.
Filled with cemented carbide powder.

【0066】そして、0.01トル(Torr)以下の
真空中で圧力40MPaを負荷しながら、ON時間が8
0msec、OFF時間が20msecの矩形パルス電
流で実施例23、24、比較例8(立方晶窒化硼素含有
超硬粉末のみ)を通電加圧焼結した。昇温パターンは8
分間で1340℃まで昇温、その温度で5分間保持し
て、毎分40℃の速度で冷却した。
Then, while applying a pressure of 40 MPa in a vacuum of 0.01 Torr or less, the ON time is set to 8 hours.
Examples 23 and 24 and Comparative Example 8 (only cubic boron nitride-containing superhard powder) were subjected to current pressure sintering with a rectangular pulse current having 0 msec and OFF time of 20 msec. The heating pattern is 8
The temperature was raised to 1340 ° C. for 1 minute, kept at that temperature for 5 minutes, and cooled at a rate of 40 ° C. per minute.

【0067】このようにして作製した焼結体である実施
例23、24、比較例8の材料をSCM415製部材に
金属ローを用いてロー付け接合した。なお、実施例23
の材料はWC−15重量%Co超硬合金の面、実施例2
4の材料はSCM415の面を、各々SCM415製部
材に金属ローを用いてロー付け接合したものである。そ
の結果、比較例8の材料には、割れが生じ、良好な接合
ができなかったが、実施例23、24の材料の材料は割
れが生じることなく接合ができた。
The materials of Examples 23, 24 and Comparative Example 8, which were the sintered bodies produced in this manner, were joined to a member made of SCM415 using a metal brazing. Example 23
Is WC-15 wt% Co cemented carbide surface, Example 2
The material No. 4 is obtained by joining the surface of the SCM 415 to a member made of the SCM 415 using a metal brazing. As a result, the material of Comparative Example 8 was cracked and could not be joined well, but the materials of Examples 23 and 24 could be joined without cracking.

【0068】これは、実施例23、24の材料の立方晶
窒化硼素含有層には表6に示す圧縮残留応力が導入さ
れ、下層に熱膨張係数の大きい強靭な超硬合金の層が積
層されていた結果、ロー付け時にSCM415製部材と
の間に生じた熱応力が緩和され、熱亀裂の発生が防止で
きたためと考えられる。従って、立方晶窒化硼素含有硬
質部材の熱膨張係数を大きくすることを目的に、熱膨張
係数の大きい超硬合金粉末、または鋼の少なくとも1つ
を積層し、同時焼結することが望ましい。
The cubic boron nitride-containing layers of the materials of Examples 23 and 24 were subjected to compressive residual stress shown in Table 6, and a lower layer of a tough cemented carbide layer having a large thermal expansion coefficient was laminated. As a result, it is considered that the thermal stress generated between the member and the SCM415 member at the time of brazing was alleviated, and the occurrence of thermal cracks was prevented. Therefore, in order to increase the coefficient of thermal expansion of the cubic boron nitride-containing hard member, it is desirable to laminate and simultaneously sinter at least one of cemented carbide powder or steel having a large coefficient of thermal expansion.

【0069】(試験例8) 平均粒径100μmのWS2
MoS2、平均粒径5μmのWC、平均粒径1μmのCo
粉末、平均粒径30μmの立方晶窒化硼素粒子を準備し、
WC-10重量%Co-10重量%(WS2もしくはMoS2
-20体積%立方晶窒化硼素となるように配合して、ボー
ルミルで混合し、焼結用粉末を準備した。これらの粉末
を試験例4の条件で通電加圧焼結し、実施例25(WS2
含有)、実施例26(MoS2含有)の試料を作製した。
また、同様にして、WC-10重量%Co-20体積%立方晶
窒化硼素の組成の粉末を準備し、試験例4の条件で通電
加圧焼結し、実施例27の焼結体を作製した。
(Test Example 8) WS 2 having an average particle size of 100 μm,
MoS 2 , WC with an average particle size of 5 μm, Co with an average particle size of 1 μm
Prepare powder, cubic boron nitride particles having an average particle size of 30 μm,
WC-10 wt% Co-10 wt% (WS 2 or MoS 2)
-20% by volume cubic boron nitride was blended and mixed by a ball mill to prepare a powder for sintering. These powders were sintered under electric pressure under the conditions of Test Example 4 to obtain a powder of Example 25 (WS 2
) And Example 26 (containing MoS 2 ).
Similarly, a powder having a composition of WC-10% by weight, Co-20% by volume, cubic boron nitride was prepared, and was subjected to current pressure sintering under the conditions of Test Example 4 to produce a sintered body of Example 27. did.

【0070】そして、実施例25、26、27の試料
を、ピンオンディスク試験機を用いて、相手材をAlボー
ル、試験片の回転速度を3m/min、圧力を10ニュ
ートン(N)として、60分間、大気中で摩耗量と動摩
擦係数の測定を行った。なお、摩耗量の測定結果は、実
施例27の試験片の摩耗量を100とした摩耗量割合で
表した。
Then, the samples of Examples 25, 26 and 27 were subjected to a pin-on-disk tester using an Al ball as a counterpart material, a rotation speed of a test piece of 3 m / min, and a pressure of 10 Newton (N). The wear amount and the dynamic friction coefficient were measured in the atmosphere for 60 minutes. In addition, the measurement result of the abrasion amount was represented by the abrasion amount ratio with the abrasion amount of the test piece of Example 27 being 100.

【0071】[0071]

【表7】 [Table 7]

【0072】その結果を表7に示す。表7の結果より、
WS2およびMoS2を添加した実施例25、26は非常
に優れた耐摩耗性と低い動摩擦係数を示すことが明らか
である。
Table 7 shows the results. From the results in Table 7,
It is evident that Examples 25 and 26 with the addition of WS 2 and MoS 2 show very good wear resistance and a low coefficient of dynamic friction.

【0073】[0073]

【発明の効果】超硬合金又はサーメットのマトリックス
中に適正な厚さの被覆膜を有する平均粒径0.1〜10
0μmの立方晶窒化硼素粒子を分散したものを、超硬合
金及び又はサーメットに液相が生成する条件下で通電加
圧焼結製造することにより、立方晶窒化硼素粒子が脱落
しにくく、耐摩耗性に優れた立方晶窒化硼素含有硬質部
材を提供することができる。
According to the present invention, an average particle size of 0.1 to 10 having a coating film of an appropriate thickness in a matrix of cemented carbide or cermet.
0μm dispersed cubic boron nitride particles are produced by current pressure sintering under conditions where a liquid phase is formed in the cemented carbide and / or cermet, so that the cubic boron nitride particles are less likely to fall off and wear resistant. A cubic boron nitride-containing hard member having excellent properties can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 7/00 C01B 21/064 M 7/08 C22C 29/02 A C01B 21/064 29/04 B C22C 29/02 B22F 3/14 101B 29/04 3/24 102A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22F 7/00 C01B 21/064 M 7/08 C22C 29/02 A C01B 21/064 29/04 B C22C 29 / 02 B22F 3/14 101B 29/04 3/24 102A

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 立方晶窒化硼素粒子と、残部が超硬合金
またはサーメットからなり、前記立方晶窒化硼素粒子が
3〜45体積%含有され、かつ周期率表のVIa族元素、
レニウム(Re)、オスミウム(Os)、ロジウム(R
h)、イリジウム(Ir)、白金(Pt)から選ばれた
金属、周期率表のIVa、Va、VIa族元素、アルミニウ
ム(Al)、シリコン(Si)から選ばれた2種以上の
元素からなる合金、周期率表のIVa、Va、VIa族元
素、アルミニウム(Al)、シリコン(Si)の炭化
物、窒化物、酸化物、珪化物、硼化物又はこれらの固溶
体から選ばれた化合物から選ばれた少なくとも1つの被
覆層を有し、該被覆層の融点が1300℃以上であっ
て、前記立方晶窒化硼素粒子の平均粒径Dが0.1〜1
00μmであり、前記被覆層の厚さをdとしたとき
((0.5D+d)/0.5D)3の値Kが1.002
〜1.5であり、立方晶窒化硼素が準安定な条件で焼結
法により作製されたことを特徴とする立方晶窒化硼素含
有硬質部材。
1. A cubic boron nitride particle and a balance of cemented carbide or cermet, wherein the cubic boron nitride particle is contained in an amount of 3 to 45 vol.
Rhenium (Re), Osmium (Os), Rhodium (R
h), a metal selected from iridium (Ir), platinum (Pt), two or more elements selected from the group IVa, Va, VIa elements of the periodic table, aluminum (Al), and silicon (Si). Selected from alloys, IVa, Va, Group VIa elements of the periodic table, carbides, nitrides, oxides, silicides, borides or solid solutions of aluminum (Al) and silicon (Si) It has at least one coating layer, the melting point of the coating layer is 1300 ° C. or more, and the average particle diameter D of the cubic boron nitride particles is 0.1 to 1
When the thickness of the coating layer is d, the value K of ((0.5D + d) /0.5D) 3 is 1.002.
Cubic boron nitride, wherein the cubic boron nitride is produced by a sintering method under metastable conditions.
【請求項2】 前記Kの値が1.01〜1.2であるこ
とを特徴とする請求項1に記載の立方晶窒化硼素含有硬
質部材。
2. The cubic boron nitride-containing hard member according to claim 1, wherein the value of K is 1.01 to 1.2.
【請求項3】 前記立方晶窒化硼素粒子の粒内に含まれ
る不純物量が0.3重量%以下であることを特徴とする請求
項1に記載の立方晶窒化硼素含有硬質部材。
3. The cubic boron nitride-containing hard member according to claim 1, wherein the amount of impurities contained in the cubic boron nitride particles is 0.3% by weight or less.
【請求項4】 前記立方晶窒化硼素粒子の平均粒径が30
μm以下であることを特徴とする請求項1に記載の立方
晶窒化硼素含有硬質部材。
4. An average particle diameter of the cubic boron nitride particles is 30.
The cubic boron nitride-containing hard member according to claim 1, wherein the thickness is not more than μm.
【請求項5】 前記被覆層が、コバルト(Co)、ニッ
ケル(Ni)、タングステン(W)、チタン(Ti)、
カーボン(C)、ボロン(B)、窒素(N)の少なくと
も1つを含有していることを特徴とする請求項1に記載
の立方晶窒化硼素含有硬質部材。
5. The coating layer is made of cobalt (Co), nickel (Ni), tungsten (W), titanium (Ti),
The cubic boron nitride-containing hard member according to claim 1, wherein the hard member contains at least one of carbon (C), boron (B), and nitrogen (N).
【請求項6】 前記立方晶窒化硼素粒子の含有量が10
〜30体積%であることを特徴とする請求項1に記載の
立方晶窒化硼素含有硬質部材。
6. A cubic boron nitride particle having a content of 10
The cubic boron nitride-containing hard member according to claim 1, wherein the content is 30 to 30% by volume.
【請求項7】 前記立方晶窒化硼素含有硬質部材の立方
晶窒化硼素粒子含有量が30体積%以下であり、かつ、
ビッカース硬度が2500以下であることを特徴とする
請求項1に記載の立方晶窒化硼素含有硬質部材。
7. The cubic boron nitride-containing hard member has a cubic boron nitride particle content of 30% by volume or less, and
The cubic boron nitride-containing hard member according to claim 1, wherein the Vickers hardness is 2500 or less.
【請求項8】 前記立方晶窒化硼素含有硬質部材中に、
WS2、MoS2、黒鉛などの潤滑性物質が含有されてい
ることを特徴とする請求項1に記載の立方晶窒化硼素含
有硬質部材。
8. The cubic boron nitride-containing hard member includes:
WS 2, MoS 2, cubic boron nitride-containing rigid member according to claim 1, characterized in that lubricating material such as graphite is contained.
【請求項9】 前記立方晶窒化硼素含有硬質部材がWC
基超硬合金、鋼の少なくとも1つに接合されていること
を特徴とする請求項1に記載の立方晶窒化硼素含有硬質
部材。
9. The cubic boron nitride-containing hard member is made of WC
The cubic boron nitride-containing hard member according to claim 1, wherein the hard member is bonded to at least one of a base cemented carbide and steel.
【請求項10】 前記立方晶窒化硼素含有硬質部材が、
ダイヤモンド、ダイヤモンドライクカーボン(DL
C)、立方晶窒化硼素の少なくとも1つで被覆されてな
ることを特徴とする請求項1に記載の立方晶窒化硼素含
有硬質部材。
10. The cubic boron nitride-containing hard member,
Diamond, diamond-like carbon (DL
3. The cubic boron nitride-containing hard member according to claim 1, wherein the hard member is coated with at least one of C) and cubic boron nitride.
【請求項11】 前記立方晶窒化硼素粒子を除いて、W
CおよびまたはTiの炭化物、窒化物又は炭窒化物と、
鉄族金属からなる結合相金属とを100重量%としたと
き、前記鉄族金属の含有量が2〜20重量%であることを
特徴とする請求項1に記載の立方晶窒化硼素含有硬質部
材。
11. Except for the cubic boron nitride particles, W
C and or Ti carbides, nitrides or carbonitrides;
The cubic boron nitride-containing hard member according to claim 1, wherein the content of the iron group metal is 2 to 20% by weight when the binder phase metal composed of the iron group metal is 100% by weight. .
【請求項12】 立方晶窒化硼素粒子に周期率表のVIa
族元素、レニウム(Re)、オスミウム(Os)、ロジ
ウム(Rh)、イリジウム(Ir)、白金(Pt)から
選ばれた金属、周期率表のIVa、Va、VIa族元素、ア
ルミニウム(Al)、シリコン(Si)から選ばれた2
種以上の元素からなる合金、周期率表のIVa、Va、VI
a族元素、アルミニウム(Al)、シリコン(Si)の
炭化物、窒化物、酸化物、珪化物、硼化物又はこれらの
固溶体から選ばれた化合物から選ばれた少なくとも1つ
を被覆し、前記立方晶窒化硼素粒子の平均粒径Dが0.
1〜100μmであり、前記被覆層の厚さが、被覆層の
厚さをdとしたとき((0.5D+d)/0.5D)3
の値Kが1.002〜1.5であるように被覆した立方
晶窒化硼素粒子3〜45体積%と、タングステンカーバ
イト(WC)粉末、窒化チタン(TiN)粉末、炭窒化
チタン(TiCN)粉末、炭化チタン(TiC)粉末か
ら選ばれた少なくとも一種の硬質化合物と鉄族金属から
なる結合相金属粉末とを混合し、成型し、鉄族金属が液
相を生成する温度以上、かつ立方晶窒化硼素が準安定な
条件で焼結法により作製されたことを特徴とする立方晶
窒化硼素含有硬質部材の製造方法。
12. The cubic boron nitride particles are added with VIa in the periodic table.
Group element, metal selected from rhenium (Re), osmium (Os), rhodium (Rh), iridium (Ir), platinum (Pt), group IVa, Va, group VIa element of periodic table, aluminum (Al), 2 selected from silicon (Si)
Alloys composed of more than one element, IVa, Va, VI in the periodic table
coating at least one selected from a group a element, aluminum (Al), silicon (Si) carbide, nitride, oxide, silicide, boride or a solid solution thereof; The average particle diameter D of the boron nitride particles is 0.
1 to 100 μm, and the thickness of the coating layer is ((0.5D + d) /0.5D) 3 where d is the thickness of the coating layer.
Of cubic boron nitride particles coated so that the value K is 1.002 to 1.5, tungsten carbide (WC) powder, titanium nitride (TiN) powder, titanium carbonitride (TiCN) Powder and at least one hard compound selected from titanium carbide (TiC) powder and a binder phase metal powder composed of an iron group metal are mixed and molded, and a temperature higher than a temperature at which the iron group metal forms a liquid phase and cubic A method for producing a cubic boron nitride-containing hard member, wherein boron nitride is produced by a sintering method under metastable conditions.
【請求項13】 前記焼結が温度1300〜1450
℃、その保持時間が10秒以上30分以内、加圧力が5
〜100MPaで通電加圧焼結することを特徴とする請
求項12に記載の立方晶窒化硼素含有硬質部材の製造方
法。
13. The method according to claim 1, wherein the sintering is performed at a temperature of 1300 to 1450.
° C, the holding time is 10 seconds or more and 30 minutes or less,
The method for producing a cubic boron nitride-containing hard member according to claim 12, wherein current-pressure sintering is performed at 100 to 100 MPa.
【請求項14】 前記通電加圧焼結が1〜100mse
cの矩形パルス電流を用いることを特徴とする、請求項
13に記載の立方晶窒化硼素含有硬質部材の製造方法。
14. The method of claim 1, wherein the current-pressure sintering is performed for 1 to 100 msec.
c. A rectangular pulse current of c is used.
13. The method for producing a cubic boron nitride-containing hard member according to item 13.
JP11140344A 1999-05-20 1999-05-20 Cubic boron nitride-containing hard member and its production Pending JP2000328170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140344A JP2000328170A (en) 1999-05-20 1999-05-20 Cubic boron nitride-containing hard member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140344A JP2000328170A (en) 1999-05-20 1999-05-20 Cubic boron nitride-containing hard member and its production

Publications (1)

Publication Number Publication Date
JP2000328170A true JP2000328170A (en) 2000-11-28

Family

ID=15266655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140344A Pending JP2000328170A (en) 1999-05-20 1999-05-20 Cubic boron nitride-containing hard member and its production

Country Status (1)

Country Link
JP (1) JP2000328170A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
JP2008502576A (en) * 2004-06-10 2008-01-31 アロメット コーポレイション Consolidation method for hard coated hard powder
JP2008517868A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2010235369A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Method of synthesizing cubic boron nitride and method of manufacturing cubic boron nitride sintered compact
JP2013543539A (en) * 2010-09-24 2013-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for producing a sintered composite
CN103537699A (en) * 2012-07-11 2014-01-29 吉林师范大学 Preparation method of polycrystalline cubic boron nitride composite sheet
US20140087210A1 (en) * 2012-09-27 2014-03-27 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
CN111809092A (en) * 2020-07-21 2020-10-23 广东正信硬质材料技术研发有限公司 Hard alloy extrusion die material and preparation method thereof
JPWO2019188850A1 (en) * 2018-03-29 2021-02-12 日本製鉄株式会社 Press molding equipment and manufacturing method of press molded products
JP2021139022A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP2021139021A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
US7703710B2 (en) 2003-08-20 2010-04-27 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact
JP4684599B2 (en) * 2003-08-20 2011-05-18 昭和電工株式会社 Method for producing cubic boron nitride
JP2008502576A (en) * 2004-06-10 2008-01-31 アロメット コーポレイション Consolidation method for hard coated hard powder
JP2008517868A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2010235369A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Method of synthesizing cubic boron nitride and method of manufacturing cubic boron nitride sintered compact
JP2013543539A (en) * 2010-09-24 2013-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for producing a sintered composite
US9399600B2 (en) 2010-09-24 2016-07-26 Sandvik Intellectual Property Ab Method for producing a sintered composite body
CN103537699A (en) * 2012-07-11 2014-01-29 吉林师范大学 Preparation method of polycrystalline cubic boron nitride composite sheet
KR20150063457A (en) * 2012-09-27 2015-06-09 알로메트 코포레이션 Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
KR102208400B1 (en) 2012-09-27 2021-01-28 알로메트 코포레이션 Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
US9186726B2 (en) 2012-09-27 2015-11-17 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
JP2016500626A (en) * 2012-09-27 2016-01-14 アロメット コーポレイション Method of forming a metal or ceramic article having a novel composition of functionally graded material and article containing the same
US20140087210A1 (en) * 2012-09-27 2014-03-27 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
TWI649294B (en) * 2012-09-27 2019-02-01 美商艾洛米特公司 Method of forming a metal or ceramic article having a novel composition of functionally graded materials and articles containing the composition
WO2014052754A1 (en) * 2012-09-27 2014-04-03 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
JPWO2019188850A1 (en) * 2018-03-29 2021-02-12 日本製鉄株式会社 Press molding equipment and manufacturing method of press molded products
JP7088284B2 (en) 2018-03-29 2022-06-21 日本製鉄株式会社 Manufacturing method of press molding equipment and press molded products
JP2021139022A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP2021139021A (en) * 2020-03-06 2021-09-16 三菱マテリアル株式会社 Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP7441415B2 (en) 2020-03-06 2024-03-01 三菱マテリアル株式会社 WC-based cemented carbide and WC-based cemented carbide cutting tools
JP7441416B2 (en) 2020-03-06 2024-03-01 三菱マテリアル株式会社 WC-based cemented carbide and WC-based cemented carbide cutting tools
CN111809092A (en) * 2020-07-21 2020-10-23 广东正信硬质材料技术研发有限公司 Hard alloy extrusion die material and preparation method thereof

Similar Documents

Publication Publication Date Title
US5106674A (en) Blade member of tungsten-carbide-based cemented carbide for cutting tools and process for producing same
US7309373B2 (en) Method of making a ceramic body of densified tungsten carbide
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
EP0223585B1 (en) A hard sintered compact for a tool
JPH08119774A (en) Combined material having high hardness for tool
EP1462534A1 (en) Compositionally graded sintered alloy and method of producing the same
JP5716577B2 (en) Hard material, manufacturing method thereof, and cutting tool
EP2407263B1 (en) Cermet and coated cermet
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JPS6053721B2 (en) Composite sintered parts for cutting tools
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JP4191663B2 (en) Composite high hardness material for tools
JPS6225631B2 (en)
JP2001040446A (en) Diamond-containing hard member and its production
JP4069749B2 (en) Cutting tool for roughing
JPH10237650A (en) Wc base cemented carbide and its production
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JP5906813B2 (en) Hard materials and cutting tools
JPH10310838A (en) Superhard composite member and its production
JPS644989B2 (en)
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JP2020132972A (en) Cemented carbide and cutting tool
JP2020132971A (en) Cemented carbide and cutting tool
JPH10310840A (en) Superhard composite member and its production