JPS6053721B2 - Composite sintered parts for cutting tools - Google Patents

Composite sintered parts for cutting tools

Info

Publication number
JPS6053721B2
JPS6053721B2 JP54076641A JP7664179A JPS6053721B2 JP S6053721 B2 JPS6053721 B2 JP S6053721B2 JP 54076641 A JP54076641 A JP 54076641A JP 7664179 A JP7664179 A JP 7664179A JP S6053721 B2 JPS6053721 B2 JP S6053721B2
Authority
JP
Japan
Prior art keywords
sintered
intermediate layer
composite
base material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076641A
Other languages
Japanese (ja)
Other versions
JPS56208A (en
Inventor
文洋 植田
賢一 西垣
泰次郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP54076641A priority Critical patent/JPS6053721B2/en
Publication of JPS56208A publication Critical patent/JPS56208A/en
Publication of JPS6053721B2 publication Critical patent/JPS6053721B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、高硬度、並びにすぐれた耐摩耗性、靭性
、および耐食性などが要求される高硬度鋼や、Ni基あ
るいはCo基スーパーアロイなどの切削に、切削工具と
して使用するのに適した複合焼結部材およびその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention can be used as a cutting tool for cutting high hardness steel, which requires high hardness, and excellent wear resistance, toughness, and corrosion resistance, as well as Ni-based or Co-based super alloys. The present invention relates to a composite sintered member suitable for use and a method for manufacturing the same.

近年、上記の各種材料の切削に、立方晶窒化硼素焼結
材料や、これに少量のAlおよび鉄族金属を含有させた
立方晶窒化硼素基焼結材料を使用す ることが提案され
ているが、前者の焼結材料はすぐれた耐摩耗性をもつも
のの靭性が不足したものであり、また後者の焼結材料は
、特に高い熱発生を伴う条件下で使用した場合に耐摩耗
性を劣化するようになるなど、いずれも満足する特性を
備えた材料ではないのが現状である。 そこで、上記立
方晶窒化硼素焼結材料および立方晶窒化硼素基焼結材料
(以下、これらを総称して立方晶窒化硼素基焼結材料と
いう)に靭性を付与すべく、すぐれた靭性を有する炭化
タングステン(以下WCで示す)基超硬合金焼結基材に
、前記立方晶窒化硼素基焼結材料(以下C−BN基焼結
材料という)を複合した複合焼結部材が提案され、確か
に前記複合焼結部材は、前記C−BN基焼結材料によつ
てすぐれた耐摩耗性が、また前記WC基超硬合金焼結材
料によつてすぐれた靭性が確保されることから、すぐれ
た切削性能能を示すものとして注目されている。
In recent years, it has been proposed to use cubic boron nitride sintered materials and cubic boron nitride-based sintered materials containing small amounts of Al and iron group metals for cutting the various materials listed above. However, the former sintered material has excellent wear resistance but lacks toughness, and the latter sintered material has poor wear resistance especially when used under conditions with high heat generation. At present, none of these materials have satisfactory properties. Therefore, in order to impart toughness to the cubic boron nitride sintered material and the cubic boron nitride-based sintered material (hereinafter collectively referred to as cubic boron nitride-based sintered material), we developed a carbonized material with excellent toughness. A composite sintered member has been proposed in which the cubic boron nitride-based sintered material (hereinafter referred to as C-BN-based sintered material) is combined with a tungsten (hereinafter referred to as WC)-based cemented carbide sintered base material. The composite sintered member has excellent wear resistance due to the C-BN based sintered material and excellent toughness due to the WC based cemented carbide sintered material. It is attracting attention as an indicator of cutting performance.

しかしながら、上記複合焼結部材は、その使用・中に
接合界面に亀裂が発生し易く、極端な場合には剥離にま
で至るなどの問題点を有し、長期に亘る安定した使用が
困難なものであつた。
However, the above-mentioned composite sintered members have problems such as cracks easily occurring at the joint interface during use, and in extreme cases, even delamination, making it difficult to use them stably over a long period of time. It was hot.

本発明者等は、上述のような観点から、上記の従来複
合焼結部材のもつ問題点を解決して長期に・亘る安定し
た使用が可能な複合焼結部材を得べく研究を行なつた結
果、(a)上記従来複合焼結部材において、その接合強
度が劣る理由は、定かではないが接合界面にCO濃度の
高い領域(以下CO富化層という)が存在することに原
因するものであると考えられること。
From the above-mentioned viewpoints, the present inventors conducted research to solve the problems of the conventional composite sintered members and to obtain a composite sintered member that can be used stably over a long period of time. As a result, (a) the reason why the bonding strength of the conventional composite sintered member is inferior is that, although it is not clear, there is a region with a high CO concentration (hereinafter referred to as a CO-enriched layer) at the bonding interface. Something that is considered to be true.

(b)このように接合界面にCO富化層が存在すると接
合強度が劣化するようになる原因の1つとしては、C−
BN基焼結材料のヤング率が7×10−4kg/D,W
C基超硬合金焼結基材、例えばWC−6重量%CO焼結
基材のヤング率が6.4×101k9/Wltであるの
に対して、COのそれは2.2×10ik9/Wltと
低く、このように弾性係数に大きな相異があると、切削
工具として使用した際に受ける繰り返し負荷によつて特
にC−BN基焼結材料とCO富化層との界面に応力集中
が生じるようになり、この応力集中が原因で接合強度が
劣化することになると考えられること。
(b) One of the reasons why the bonding strength deteriorates when a CO-enriched layer exists at the bonding interface is that C-
Young's modulus of BN-based sintered material is 7 x 10-4 kg/D, W
The Young's modulus of a C-based cemented carbide sintered base material, for example, a WC-6 wt% CO sintered base material, is 6.4×101k9/Wlt, whereas that of CO is 2.2×10ik9/Wlt. If there is a large difference in the elastic modulus, stress concentration may occur especially at the interface between the C-BN-based sintered material and the CO-enriched layer due to repeated loads when used as a cutting tool. It is thought that this stress concentration causes the joint strength to deteriorate.

(c)また、同様にCO富化層が存在すると接合強度が
劣化するようになるもう1つの原因としては、C−BN
基焼結材料の線膨張係数が3.5×10−6/℃、例え
ばWC−6重量%CO焼結基材の線膨張係数料が5×1
0−6/℃であるのに対して、COのそれは12×10
−6/℃と大きく、このように熱膨張係数に大きな相異
があると、切削工具として使用した際に繰り返し受ける
高温加熱によつて、同様にC.BN基焼結材料とCO富
化層との界面に応力集中が生じるようになり、この応力
集中が原因で接合強度が劣化することになると考えられ
ること。
(c) Similarly, the presence of a CO-enriched layer is another reason why the bonding strength deteriorates.
The linear expansion coefficient of the base sintered material is 3.5 x 10-6/°C, for example, the linear expansion coefficient of the WC-6 wt% CO sintered base material is 5 x 1
0-6/℃, while that of CO is 12×10
-6/°C, and if there is such a large difference in thermal expansion coefficient, C. It is believed that stress concentration occurs at the interface between the BN-based sintered material and the CO-enriched layer, and that this stress concentration causes the bonding strength to deteriorate.

以上(a)〜(c)項に示される認織を得、さらにこれ
−ら認織にもとづき研究をおし進めた結果、(d)WC
基超合金焼結基材に、C−BN基焼結材料を接合した複
合焼結部材を製造するに際して、被覆処理および焼結を
有効に行なうために、前記基材としてはすでに焼結成形
されてい.るWC基超硬合金を使用し、この基材の接合
表面に、チタンの炭化物、窒化物、および硼化物、並び
にこれらの2種以上の複合化合物からなる群のうちの1
種または2種以上からなる中間層を、通常の物理蒸着法
、化学蒸着法、およ−び電気泳動法などにより被覆形成
した後、前記中間層を介してC−BN基混合粉末あるい
は圧粉体を隣接配置し、ついでこれら全体を高温高圧下
で焼結すると、接合界面にCO富化層の発生がなくなり
、しかも前記中間層を構成する成分と、前記WC基超硬
合金焼結基材のWC成分およびC−BN基焼結材料中の
C−BN成分とは高温高圧下で相互に良く拡散すること
から、強固な接合界面が確保されるようになること。
As a result of obtaining the certified fabrics shown in items (a) to (c) above and further conducting research based on these certified fabrics, (d) WC
When manufacturing a composite sintered member in which a C-BN-based sintered material is bonded to a base superalloy sintered base material, in order to effectively carry out the coating treatment and sintering, the base material is already sintered and formed. attitude. A WC-based cemented carbide is used, and one of the group consisting of titanium carbide, nitride, and boride, and a composite compound of two or more of these is used on the bonding surface of this base material.
After forming an intermediate layer consisting of a species or two or more species by a conventional physical vapor deposition method, chemical vapor deposition method, electrophoresis method, etc., a C-BN group mixed powder or compacted powder is applied via the intermediate layer. By arranging the bodies adjacent to each other and then sintering them as a whole under high temperature and high pressure, there is no generation of a CO-enriched layer at the joint interface, and the components constituting the intermediate layer and the WC-based cemented carbide sintered base material The WC component and the C-BN component in the C-BN-based sintered material diffuse well into each other under high temperature and high pressure, so that a strong bonding interface is ensured.

(e)上記中間層において、上記WC基超硬合金焼結基
材との界面近傍では炭化物濃度を、またC−BN基焼結
材料との界面近傍では窒化物および硼化物の濃度を、そ
れぞれ相対的に高くしl てやると、前記中間層と上記
両焼結材料との相互拡散がよソー層促進されるようにな
つて、飛躍的に向上した接合強度が得られること。以上
(d)および(e)項に示される知見を得たのである。
(e) In the intermediate layer, the carbide concentration near the interface with the WC-based cemented carbide sintered base material, and the nitride and boride concentrations near the interface with the C-BN-based sintered material, respectively. When the temperature is relatively high, interdiffusion between the intermediate layer and both sintered materials is promoted, resulting in dramatically improved bonding strength. The findings shown in sections (d) and (e) above were obtained.

したがつて、この発明は、上記知見にもとづいてなされ
たものであつて、WC基超硬合金焼結基材の表面を、チ
タンの炭化物、窒化物、および硼化物、並びにこれらの
2種以上の複合化合物からなる群のうちの1種または2
種以上からなる層厚0.001〜0.05醜の中間層で
被覆した後、前記中間層を介してC−BN基混合粉末あ
るいはその圧粉体を隣接配置し、ついでこれら全体を、
40Kb以上の高圧下で温度1200℃以上に加熱保持
して焼結することによつて、前記WC基超硬合金焼結基
材に、層厚0.001〜0.05wnの前記中間層を介
してC−BN基焼結材料を複合してなる複合焼結部材を
製造することに特徴を有するものである。
Therefore, the present invention was made based on the above findings, and the surface of the WC-based cemented carbide sintered base material is coated with titanium carbides, nitrides, and borides, or two or more of these. one or two of the group consisting of complex compounds of
After coating with an intermediate layer having a thickness of 0.001 to 0.05 mm or more, a C-BN based mixed powder or a green compact thereof is placed adjacently through the intermediate layer, and then the whole is coated with
By heating and holding at a temperature of 1200° C. or higher under high pressure of 40 Kb or higher and sintering, the WC-based cemented carbide sintered base material is coated with the intermediate layer having a layer thickness of 0.001 to 0.05 wn. The present invention is characterized in that a composite sintered member is manufactured by combining C-BN-based sintered materials.

なお、この発明において、上記中間層の層厚を0.00
1〜0.05mと限定したのは、0.001m未満の層
厚では所望のすぐれた接合強度を確保することができず
、一方0.05T!r!!Lを超えた層厚にすると、中
間層自体のもつ脆性が部材全体に影響を及ぼすようにな
り、部材の靭性が低下するようになるという理由にもと
づくものである。
In addition, in this invention, the layer thickness of the above-mentioned intermediate layer is 0.00
The reason why the layer thickness was limited to 1 to 0.05 m was because a layer thickness of less than 0.001 m would not ensure the desired excellent bonding strength, whereas 0.05 T! r! ! This is based on the reason that if the layer thickness exceeds L, the brittleness of the intermediate layer itself will affect the entire member, resulting in a decrease in the toughness of the member.

また、焼結圧力を40Kb以上、焼結温度を1200℃
以上としたのは、これら下限値未満の圧力および温度で
は、中間層を構成する成分、WC成分、およびC−BN
成分の相互拡散が不充分で所望の強固な接合界面を得る
ことができず、さらにC・BN基混合粉末あるいは圧粉
体の完全焼結には前記下限値以上の圧力および温度が必
要であるという理由によるものである。
In addition, the sintering pressure is 40Kb or more, and the sintering temperature is 1200℃.
The above is because at pressures and temperatures below these lower limits, the components constituting the intermediate layer, the WC component, and the C-BN
The mutual diffusion of components is insufficient, making it impossible to obtain the desired strong bonding interface, and furthermore, pressure and temperature higher than the above lower limit values are required for complete sintering of the C/BN-based mixed powder or green compact. This is for the reason.

ついで、この発明を実施例により説明する。Next, the present invention will be explained with reference to examples.

実施例1焼結基材としてJIS−KlO(7)WC基超
硬合金を用意し、この基材を化学蒸着反応炉に装入し、
前記反応炉内の温度を1000℃に加熱保持するととも
に、これにTiCl4:200cc/Min,CH4:
100cc/6min,N2:30cc/Min,H2
:9670cc/Minの割合(全ガス流量10e/M
in)で反応ガスを流入させながら、2時間保持するこ
とによつて、前記基材の接合表面1ごRlCO.7NO
.3の組成をもつた層厚0.005顛の炭窒化チタンか
らなる中間層を被覆形成した。
Example 1 JIS-KlO(7) WC-based cemented carbide was prepared as a sintering base material, and this base material was charged into a chemical vapor deposition reactor.
While heating and maintaining the temperature in the reactor at 1000°C, TiCl4: 200cc/Min, CH4:
100cc/6min, N2: 30cc/Min, H2
:9670cc/Min ratio (total gas flow rate 10e/M
In), the bonding surface 1 of the base material is heated to RlCO. 7NO
.. An intermediate layer of titanium carbonitride having a composition of 3 and a thickness of 0.005 mm was coated.

つぎに、上記中間層被覆のWC基超硬合金焼結基材をZ
r製円筒型薄肉容器内に装入した後、前記中間層上に、
平均粒径0.005μm(7)C−BN粉末:8喀量%
と同2μmの窒化タンタル(TaN)粉末:2喀量%か
らなるC−BN基混合粉末:60mgを充填し、ついで
、これら全体を通常の超高圧超高温発生装置内に装入し
、圧力ニ50Kb1温度:1300℃の条件で3紛間保
持して焼結することによつて、それぞれの厚さが、WC
基超硬合金基材:1Tfr!N,中間層:0.005T
sn,C・BN基焼結材料:0.8顛からなるこの発明
の複合焼結部材(以下本発明複合部材1という)を製造
した。
Next, the WC-based cemented carbide sintered base material covered with the intermediate layer is Z
After charging into a cylindrical thin-walled container made of R, on the intermediate layer,
Average particle size 0.005μm (7) C-BN powder: 8% weight
and tantalum nitride (TaN) powder with the same 2 μm diameter: 60 mg of C-BN based mixed powder consisting of 2% by weight was charged, and then the whole was charged into a normal ultra-high pressure and ultra-high temperature generator, and the pressure was increased. By holding and sintering the three powders at 50Kb1 temperature: 1300°C, the thickness of each powder becomes WC.
Base cemented carbide base material: 1Tfr! N, middle layer: 0.005T
A composite sintered member of the present invention (hereinafter referred to as the composite member 1 of the present invention) consisting of 0.8 pieces of sn, C/BN-based sintered material was produced.

また、反応ガスの割合をTiCl4:400cc/Mi
n,CH4:60cc/Min,N2:60cc/Mi
n,H2:9480cc/Minとし、反応温度を11
00℃、保持時間を2時間とすることによつてTiCO
・,NO.,の組成もつた中間層を被覆形成する以外は
、上記実施例におけると同一の条件で、それぞれの厚さ
が、WC基超硬合金基材:1Wft,中間層:0.02
W!I,C・BN基焼結基材:0.8Tf0nからなる
この発明の複合焼結部材(以下本発明複合部材2という
)を製造した。
In addition, the ratio of the reaction gas was TiCl4:400cc/Mi
n, CH4: 60cc/Min, N2: 60cc/Mi
n, H2: 9480cc/Min, reaction temperature 11
TiCO
・、NO. The conditions were the same as in the above example except that an intermediate layer having a composition of .
W! A composite sintered member of the present invention (hereinafter referred to as the composite member of the present invention 2) consisting of I, C/BN-based sintered base material: 0.8Tf0n was produced.

さらに、窒化チタン(TiN)からなる中間層を、基板
温度:500℃,N2雰囲気圧力ニ1×10−2t0r
r,負荷電圧:1K■,反応時間:10rninの条件
でイオンブレーティング法により形成する以外は、上記
本発明複合部材1の製造条件と同一の条件で、それぞれ
の厚さが、WC基超硬合金基材:1醜、中間層:0.0
3Twt1c●BN基焼結材料:0.8顛からなるこの
発明の複合焼結部材(以下本発明複合部材3という)を
製造した。なお、比較の目的で、中間層を被覆形成しな
い以外は、上記本発明複合部材1の製造条件と同一の条
件て比較複合焼結部材(以下比較複合部材1という)を
製造した。
Further, an intermediate layer made of titanium nitride (TiN) was formed at a substrate temperature of 500°C and a N2 atmosphere pressure of 1×10-2 t0r.
r, load voltage: 1 K■, reaction time: 10 rnin, except that it was formed by the ion blating method, under the same conditions as the manufacturing conditions of the composite member 1 of the present invention, and the thickness of each was changed to WC-based carbide. Alloy base material: 1 ugly, intermediate layer: 0.0
3Twt1c●BN-based sintered material: A composite sintered member of the present invention (hereinafter referred to as the composite member 3 of the present invention) consisting of 0.8 pieces was manufactured. For the purpose of comparison, a comparative composite sintered member (hereinafter referred to as comparative composite member 1) was manufactured under the same manufacturing conditions as the composite member 1 of the present invention, except that no intermediate layer was formed.

さらに、比較の目的で、中間層の層厚を、反応保持時間
を調整することによつて、それぞれ0.0008Tnお
よび0.07?とする以外は、上記本発明複合部材1お
よび本発明複合部材2の製造条件と同一の条件下で、比
較複合部材2および3をそれぞれ製造した。つぎに、こ
の結果得られた本発明複合部材1〜3および比較複合部
材1〜3より、切削用切刃を切出し、この切刃をWC基
超硬合金製チップに銀ろうを使用してろう付けすること
によつて本発明切削工具1〜3および比較切削工具1〜
3をそれぞれ製造した。
Furthermore, for comparison purposes, the layer thickness of the intermediate layer was adjusted to 0.0008Tn and 0.07Tn, respectively, by adjusting the reaction retention time. Comparative composite members 2 and 3 were manufactured under the same manufacturing conditions as the above-described composite member 1 of the present invention and composite member 2 of the present invention, except for the following. Next, cutting blades were cut out from the resulting composite members 1 to 3 of the present invention and comparative composite members 1 to 3, and the cutting blades were soldered to a WC-based cemented carbide tip using silver solder. By attaching the cutting tools 1 to 3 of the present invention and comparative cutting tools 1 to 3,
3 were produced respectively.

上記本発明切削工具1〜3および比較切削工具1〜3に
ついて、被削材:浸炭焼入鋼(硬さRO:60) 切削速度:100m/Min 送りニ0.10m/Rev.、 切込み:1.2顛、 の条件で切削試験を行ない、逃げ面摩耗が0.21mに
至るまでの時間を測定し、工具寿命とした。
Regarding the above-mentioned cutting tools 1 to 3 of the present invention and comparison cutting tools 1 to 3, workpiece material: carburized and hardened steel (hardness RO: 60) cutting speed: 100 m/Min feed rate 0.10 m/Rev. A cutting test was conducted under the conditions of , depth of cut: 1.2 mm, and the time required for flank wear to reach 0.21 m was measured, and the tool life was determined.

この測定結果を第1表に示した。第1表に示されるよう
に、中間層の層厚がそれぞれこの発明の範囲内にある本
発明複合部材1〜3を使用した本発明切削工具1〜3は
、いずれも・きわめて長い工具寿命を示すのに対して、
中間層の形成がない比較複合部材1を使用した比較切削
工具1は本発明切削工具の約25〜40%の工具寿命し
か示さず、また中間層の層厚がこの発明の範囲から外れ
た比較複合部材2,3をそれぞれ使用し)た比較切削工
具2,3は比較切削工具1より長い工具寿命を示すもの
の満足な工具寿命を示さないことが明らかである。
The measurement results are shown in Table 1. As shown in Table 1, cutting tools 1 to 3 of the present invention using composite members 1 to 3 of the present invention each having an intermediate layer thickness within the range of the present invention, all have an extremely long tool life. In contrast to showing
Comparative cutting tool 1 using comparative composite member 1 without the formation of an intermediate layer showed only about 25 to 40% of the tool life of the cutting tool of the present invention, and the comparative cutting tool 1 in which the layer thickness of the intermediate layer was outside the scope of the present invention. It is clear that Comparative Cutting Tools 2 and 3 (using Composite Members 2 and 3, respectively) exhibit longer tool life than Comparative Cutting Tool 1, but do not exhibit satisfactory tool life.

実施例2 焼結基材としてJIS−KlOのWC基超硬合金を用意
し、この基材を化学蒸着反応炉に装入し、前記反応炉内
の温度を950℃に加熱保持するとともに、前記反応炉
内にTiCl4:10cc/Min,BCl3:20c
c/Min,Ar′2:1970cc/Nllnの割合
(全ガス流量2e/Min)で反応ガスを流入させなが
ら、1時間保持することによつて、前記基材の接合表面
にTiB2の組成をもつた層厚10μm(0.017m
)の硼化チタンからなる中間層を被覆形成した。
Example 2 A JIS-KlO WC-based cemented carbide was prepared as a sintering base material, and this base material was charged into a chemical vapor deposition reactor, and the temperature inside the reactor was heated and maintained at 950°C, and the TiCl4: 10cc/Min, BCl3: 20c in the reactor
c/Min, Ar'2: By keeping the reaction gas flowing at a ratio of 1970 cc/Nlln (total gas flow rate 2e/Min) for 1 hour, the bonding surface of the base material has a composition of TiB2. layer thickness 10μm (0.017m
) was coated with an intermediate layer made of titanium boride.

つぎに、上記中間層被覆のWC基超硬合金焼結基材をZ
r製円筒型薄肉容器内に装入した後、前記中間層上に、
平均粒径0.5μmを有するC−BN粉末:97容量%
と、粒度275メッシュ以下のTi粉末:3容量%から
なるC−BN基混合粉末:100m9を充填し、ついで
、これら全体を通常の超高圧超高温発生装置内に装入し
、圧力ニ50Kb1温度:1300℃の条件で3紛間保
持して焼結することによつて、それぞれの厚さが、WC
基超硬合金焼結基材:1707!,中間層:0.01T
fr!!I,C−BN基焼結材料:0.6TIrI1L
からなる本発明複合部材4を製造した。
Next, the WC-based cemented carbide sintered base material covered with the intermediate layer is Z
After charging into a cylindrical thin-walled container made of R, on the intermediate layer,
C-BN powder with average particle size 0.5 μm: 97% by volume
and 100 m9 of a C-BN based mixed powder consisting of 3% by volume of Ti powder with a particle size of 275 mesh or less, and then the whole was charged into a normal ultra-high pressure and ultra-high temperature generator, and the pressure was 50 Kb1. : By holding and sintering the three powders at 1300℃, the thickness of each powder becomes WC.
Base cemented carbide sintered base material: 1707! , Middle layer: 0.01T
fr! ! I, C-BN based sintered material: 0.6TIrI1L
A composite member 4 of the present invention consisting of the following was manufactured.

また、比較の目的で、中間層を形成しない以外は、上記
本発明複合部材4の製造条件と同一の条件で比較複合部
材4を製造した。
Moreover, for the purpose of comparison, a comparative composite member 4 was manufactured under the same manufacturing conditions as the composite member 4 of the present invention, except that no intermediate layer was formed.

つぎに、上記実施例1におけると同一の条件で上記本発
明複合部材4および比較複合部材4より,本発明切削工
具4および比較切削工具4を製造し、被削材;ハステイ
ロ×、 切削速度:70n1/Minl 送りニ0.1WR/Rev.、 切込み:0.5Tn1 の条件で切削試験を行ない、逃げ面摩耗が0.1mに達
する迄の切削時間を測定し、工具寿命とした。
Next, the cutting tool 4 of the present invention and the comparative cutting tool 4 were manufactured from the composite member 4 of the present invention and the comparative composite member 4 under the same conditions as in Example 1, and the following conditions were used: Work material: Hasteiro × Cutting speed: 70n1/Minl Feed 0.1WR/Rev. A cutting test was conducted under the conditions of , depth of cut: 0.5Tn1, and the cutting time until flank wear reached 0.1 m was measured, and the tool life was determined.

この結果、中間層の形成がない比較複合部材4″を使用
した比較切削工具4は6紛で寿命に達したのに対して、
本発明複合部材4を使用した本発明切削工具4は、その
2倍の工具寿命を示した。
As a result, the comparative cutting tool 4 using the comparative composite member 4'' without the formation of an intermediate layer reached the end of its life after 6 pieces.
The cutting tool 4 of the present invention using the composite member 4 of the present invention exhibited twice the tool life.

Claims (1)

【特許請求の範囲】 1 炭化タングステン基超硬合金焼結基材に、チタンの
炭化物、窒化物、および硼化物、並びにこれらの2種以
上の複合化合物からなる群のうちの1種または2種以上
からなる層厚0.001〜0.05mmの中間層を介し
て、立方晶窒化硼素基焼結材料を複合してなる切削工具
用複合焼結部材。 2 炭化タングステン基超硬合金焼結基材の表面を、チ
タンの炭化物、窒化物、および硼化物、並びにこれらの
2種以上の複合化合物からなる群のうちの1種または2
種以上からなる層厚0.001〜0.05mmの中間層
で被覆した後、前記中間層を介して立方晶窒化硼素基混
合粉末あるいはその圧粉体を隣接配置し、ついでこれら
全体を、40Kb以上の高圧下で温度1200℃以上に
加熱保持して焼結することを特徴とする切削工具用複合
焼結部材の製造法。
[Scope of Claims] 1. One or two of the group consisting of titanium carbides, nitrides, and borides, and composite compounds of two or more of these, on a tungsten carbide-based cemented carbide sintered base material. A composite sintered member for a cutting tool, which is made of a cubic boron nitride-based sintered material via an intermediate layer having a thickness of 0.001 to 0.05 mm. 2. The surface of the tungsten carbide-based cemented carbide sintered base material is coated with one or two of the group consisting of titanium carbides, nitrides, and borides, and composite compounds of two or more of these.
After coating with an intermediate layer having a layer thickness of 0.001 to 0.05 mm consisting of at least 100% of nitride, a cubic boron nitride-based mixed powder or a green compact thereof is placed adjacently through the intermediate layer, and then the whole is coated with a 40Kb A method for manufacturing a composite sintered member for a cutting tool, characterized in that sintering is carried out by heating and holding at a temperature of 1200° C. or higher under the above-mentioned high pressure.
JP54076641A 1979-06-18 1979-06-18 Composite sintered parts for cutting tools Expired JPS6053721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076641A JPS6053721B2 (en) 1979-06-18 1979-06-18 Composite sintered parts for cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076641A JPS6053721B2 (en) 1979-06-18 1979-06-18 Composite sintered parts for cutting tools

Publications (2)

Publication Number Publication Date
JPS56208A JPS56208A (en) 1981-01-06
JPS6053721B2 true JPS6053721B2 (en) 1985-11-27

Family

ID=13611000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076641A Expired JPS6053721B2 (en) 1979-06-18 1979-06-18 Composite sintered parts for cutting tools

Country Status (1)

Country Link
JP (1) JPS6053721B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647111U (en) * 1987-07-01 1989-01-17
JPH0374512U (en) * 1989-11-21 1991-07-26
JPH041125Y2 (en) * 1987-04-08 1992-01-16
JPH0712325U (en) * 1993-08-05 1995-02-28 株式会社明電舎 Conveyor equipment
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3408901A1 (en) * 1984-03-10 1985-09-19 Optima-Maschinenfabrik Dr. Bühler GmbH & Co, 7170 Schwäbisch Hall DEVICE FOR WELDING FILMS
JPS6148568A (en) * 1984-08-09 1986-03-10 Sumitomo Electric Ind Ltd Tool coated with multilayered hard film
JPS629808A (en) * 1985-07-04 1987-01-17 Mitsubishi Metal Corp Composite machining tip
US4766040A (en) * 1987-06-26 1988-08-23 Sandvik Aktiebolag Temperature resistant abrasive polycrystalline diamond bodies
US4764434A (en) * 1987-06-26 1988-08-16 Sandvik Aktiebolag Diamond tools for rock drilling and machining
IT1241922B (en) * 1990-03-09 1994-02-01 Eniricerche Spa PROCEDURE FOR MAKING SILICON CARBIDE COATINGS
JP4875129B2 (en) * 2009-10-15 2012-02-15 株式会社東芝 Solid-liquid separation system
JP7021493B2 (en) * 2017-09-29 2022-02-17 三菱マテリアル株式会社 Composite sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164693A (en) * 1974-09-18 1976-06-04 De Beers Ind Diamond Kenmaatsushukutai oyobi sonoseizohoho
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5445313A (en) * 1977-09-19 1979-04-10 Sumitomo Electric Industries Sintered composite body for tool and method of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164693A (en) * 1974-09-18 1976-06-04 De Beers Ind Diamond Kenmaatsushukutai oyobi sonoseizohoho
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5445313A (en) * 1977-09-19 1979-04-10 Sumitomo Electric Industries Sintered composite body for tool and method of making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041125Y2 (en) * 1987-04-08 1992-01-16
JPS647111U (en) * 1987-07-01 1989-01-17
JPH0374512U (en) * 1989-11-21 1991-07-26
JPH0712325U (en) * 1993-08-05 1995-02-28 株式会社明電舎 Conveyor equipment
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body
JP5678955B2 (en) * 2010-04-08 2015-03-04 株式会社タンガロイ Complex

Also Published As

Publication number Publication date
JPS56208A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
GB2112415A (en) Coated cermet blade
JPS6053721B2 (en) Composite sintered parts for cutting tools
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JP2775955B2 (en) Manufacturing method of coating cermet with excellent wear resistance
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JPS6043461A (en) Boron nitride-base sintered body having high-density phase and its manufacture
JPS6225631B2 (en)
JPS6119367B2 (en)
JP6162484B2 (en) Surface covering member
JPH0230406A (en) Cutting tool made of surface-coated tungsten carbide radical cemented carbide
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH058153B2 (en)
JPS5861254A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS6059085B2 (en) coated ceramic tools
JP2001040446A (en) Diamond-containing hard member and its production
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS5861253A (en) High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JP2020132971A (en) Cemented carbide and cutting tool
JP2835255B2 (en) Cemented carbide
JP2974285B2 (en) Manufacturing method of coated carbide tool
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3215493B2 (en) Coated sintered alloy with crystal orientation
JPS6141873B2 (en)
JPS6353268A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy