JP7021493B2 - Composite sintered body - Google Patents

Composite sintered body Download PDF

Info

Publication number
JP7021493B2
JP7021493B2 JP2017190439A JP2017190439A JP7021493B2 JP 7021493 B2 JP7021493 B2 JP 7021493B2 JP 2017190439 A JP2017190439 A JP 2017190439A JP 2017190439 A JP2017190439 A JP 2017190439A JP 7021493 B2 JP7021493 B2 JP 7021493B2
Authority
JP
Japan
Prior art keywords
layer
cobalt
interface
strength
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017190439A
Other languages
Japanese (ja)
Other versions
JP2019065330A (en
Inventor
征史 門馬
雅大 矢野
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017190439A priority Critical patent/JP7021493B2/en
Publication of JP2019065330A publication Critical patent/JP2019065330A/en
Application granted granted Critical
Publication of JP7021493B2 publication Critical patent/JP7021493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、立方晶窒化ほう素(以下、「cBN」ともいう。)基焼結体と超硬合金を有して成る複合焼結体に関し、特に、切削工具等に用いた場合に、高硬度であり、耐欠損性にすぐれ、長期使用においても十分な工具特性を有するcBN複合焼結体に関するものである。 The present invention relates to a composite sintered body having a cubic boron nitride (hereinafter, also referred to as “cBN”)-based sintered body and a cemented carbide, and is particularly high when used in a cutting tool or the like. It relates to a cBN composite sintered body having hardness, excellent fracture resistance, and sufficient tool properties even in long-term use.

従来、上層をcBN基焼結材料とし、下層を炭化タングステン基超硬合金とする2層複合焼結体からなる切刃部材を、炭化タングステン基超硬合金からなる支持部材のコーナー部に形成した段付き切り欠き部にろう付けしてなるインサートとして用いることにより、各種鋳鉄やスーパーアロイなどの連続切削において、すぐれた切削性能を発揮することが知られている。
しかしながら、前記インサートは、前記被切削材料についての断続切削においては、切刃の欠けやチッピングなどが発生し易く、比較的短時間にて、使用寿命に至るため、その改善に向けて種々の提案がなされている。
Conventionally, a cutting edge member made of a two-layer composite sintered body in which the upper layer is a cBN-based sintered material and the lower layer is a tungsten carbide-based cemented carbide is formed at a corner of a support member made of a tungsten carbide-based cemented carbide. It is known that when used as an insert formed by brazing to a stepped notch, it exhibits excellent cutting performance in continuous cutting of various cast irons and super alloys.
However, the insert is prone to chipping and chipping of the cutting edge in intermittent cutting of the material to be cut, and reaches the service life in a relatively short time. Has been made.

例えば、特許文献1では、cBNからなる上層と、結合相形成成分にコバルトを含有する炭化タングステン基超硬合金の下層の2層複合焼結体からなる切刃部材において、前記上層と前記下層との界面部において、焼結時に前記下層中のコバルトが前記上層と下層との界面から150μm以上の深さに亘って溶浸してなるコバルト溶浸層を形成することにより、鋳鉄やスーパーアロイの連続切削に加え、高靱性が要求される断続切削においても、欠けやチッピングなどを発生することなく、優れた切削性能を長期に亘って発揮するインサートが提案されている。 For example, in Patent Document 1, in a cutting edge member composed of a two-layer composite sintered body consisting of an upper layer made of cBN and a lower layer of a tungsten carbide-based cemented carbide containing cobalt as a bonded phase forming component, the upper layer and the lower layer are used. By forming a cobalt infiltrated layer in which cobalt in the lower layer is infiltrated from the interface between the upper layer and the lower layer over a depth of 150 μm or more at the time of sintering, a continuous cast iron or cemented carbide is formed. In addition to cutting, inserts have been proposed that exhibit excellent cutting performance for a long period of time without causing chipping or chipping even in intermittent cutting that requires high toughness.

また、特許文献2においては、cBN相を含むcBN焼結体と、WC等を主成分とする硬質相とコバルト等を主成分とする結合相とからなる硬質合金とを、セラミックス相と金属相から成る接合層を介して接合することにより、密着性に優れ、接合強度が高く、優れた切削性能を有する、切削工具用被覆複合体が提案されている。 Further, in Patent Document 2, a cBN sintered body containing a cBN phase and a hard alloy composed of a hard phase containing WC or the like as a main component and a bonded phase containing cobalt or the like as a main component are referred to as a ceramic phase and a metal phase. A covering composite for a cutting tool has been proposed, which has excellent adhesion, high bonding strength, and excellent cutting performance by joining through a bonding layer made of.

特開平9-323203号公報Japanese Unexamined Patent Publication No. 9-323203 特開2014-131819号公報Japanese Unexamined Patent Publication No. 2014-131819

近年の切削加工における省力化および省エネ化への要求は強く、これに伴い、切削加工では一段と高速化、高効率化が求められており、cBN複合焼結体切削工具においては、連続切削に加え、さらに高負荷がかかる断続切削においても、長期にわたっての使用を可能とする十分な耐摩耗性に加え、その前提としてかかる耐摩耗性が十分に発揮できるよう、すぐれた耐欠損性、耐チッピング性を有することが求められている。
しかしながら、前記特許文献1に記載される従来のcBN複合焼結体インサートにおいては、炭化タングステン基超硬合金焼結体である下層とcBN仮焼体である上層との焼結時に、下層中のコバルトが、上層との境界面から150μm以上の深さに亘り上層に拡散するために、下層の界面部近傍ではコバルト量が減少する結果、炭化タングステン基超硬合金の硬さおよび強度が減少し、十分な耐欠損性が得られていない。また、下層から上層に拡散されたコバルトは、上層と下層との界面から上層内部にかけて負の濃度勾配を有し、特に、上層側の界面では、コバルト量が増加したコバルト濃縮層が出現し、硬さが減少した脆弱層となるために十分な工具寿命を達成することはできないという問題を有していた。
また、前記特許文献2では、硬質合金とcBN焼結体との間に金属箔を挟み、高温高圧下にて保持することにより、硬質合金とcBN焼結体との間に中間層を形成し、密着性および接合強度において、すぐれた切削性能を有する切削工具を得ようとするものであるが、金属箔より形成した中間層は金属相を有しているため、切削中の高温硬さや高温強度が低下し、さらにはcBN焼結体と硬質合金との接合は900kgf/cm未満の接合圧力下で1000℃以上に加熱保持して行われることから、cBN焼結体の高圧高温焼結時と異なりcBNが脆弱なhBN(六方晶窒化硼素)に相変態することで強度が低下し、十分な工具寿命が得られないという問題を有していた。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, there is a demand for higher speed and higher efficiency in cutting. In cBN composite sintered body cutting tools, in addition to continuous cutting, In addition to sufficient wear resistance that enables long-term use even in intermittent cutting where a higher load is applied, excellent chipping resistance and chipping resistance are provided so that the wear resistance can be fully exhibited as a prerequisite. Is required to have.
However, in the conventional cBN composite cemented carbide insert described in Patent Document 1, when the lower layer of the tungsten carbide-based cemented carbide sintered body and the upper layer of the cBN calcined body are sintered, the lower layer is contained. Since cobalt diffuses into the upper layer over a depth of 150 μm or more from the interface with the upper layer, the amount of cobalt decreases near the interface of the lower layer, and as a result, the hardness and strength of the tungsten carbide-based cemented carbide decrease. , Sufficient fracture resistance has not been obtained. In addition, the cobalt diffused from the lower layer to the upper layer has a negative concentration gradient from the interface between the upper layer and the lower layer to the inside of the upper layer. There was a problem that sufficient tool life could not be achieved in order to form a fragile layer with reduced hardness.
Further, in Patent Document 2, a metal foil is sandwiched between the cemented carbide and the cBN sintered body and held under high temperature and high pressure to form an intermediate layer between the cemented carbide and the cBN sintered body. In order to obtain a cutting tool with excellent cutting performance in terms of adhesion and joining strength, the intermediate layer formed from metal foil has a metal phase, so that it has high temperature hardness and high temperature during cutting. Since the strength is lowered and the cBN sintered body and the cemented carbide are bonded by heating and holding at 1000 ° C. or higher under a bonding pressure of less than 900 kgf / cm 2 , the cBN sintered body is sintered at high pressure and high temperature. Unlike the time, cBN undergoes phase transformation to fragile hBN (hexagonal carbide boron nitride), which reduces the strength and has a problem that a sufficient tool life cannot be obtained.

そこで、本発明者らは、例えば、従来の前記特許文献1に記載される、上層であるcBN焼結材料と下層である超硬合金基体の焼結体とからなる2層複合焼結体において、上層側の界面に、コバルト量が増加することで硬さが減少するコバルト濃縮層が生成する点に着目し、研究を行ったところ、高圧高温焼結時において、すでに高圧高温焼結前からWC等を主成分とする硬質相とコバルト等を主成分とする結合相との焼結が十分進行した状態であるため、コバルトのみが融液となり、cBNの焼結が進行する前に界面部に浸潤する結果、コバルト量が増加したコバルト濃縮層を形成し硬さが減少した脆弱層となるために、十分な工具寿命が得られていないことを知見した。
そして、かかる知見に基づいて、本発明者らは、前記複合焼結体において、cBN焼結体層と超硬合金層との境界面にコバルトが濃縮されることなく、cBN焼結体層と超硬合金層との間に、cBN焼結体層側から超硬合金層側に向かって、コバルトが緩やかな濃度勾配をもって増加する界面層を設けることにより、高温硬さや高温強度にすぐれた特性を有し、切削工具等に用いた際にきわめて有用な複合焼結体を得て、前記課題を解決したものである。
前記界面層を有する複合焼結体は、例えば、cBN成形体からなる層と、超硬合金基体である層との間に、前記超硬合金以下のコバルト濃度組成の原料粉について圧粉成形のみ行った圧粉体からなる圧粉体層を配置し、三層構造の複合体とした後、高圧高温焼結を行うことにより得ることができる。
ここで、立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層との間に形成される、前記界面層において、コバルトの濃縮が抑制された理由については明らかではないが、高圧高温焼結前に、前記圧粉体層を設けることにより、cBN成形体からなる層と超硬合金圧粉体層の焼結がそれぞれ進むと同時に、圧粉体層中のコバルトがcBN中に拡散したためと考えられる。
Therefore, the present inventors have, for example, in a two-layer composite sintered body composed of a cBN sintered material as an upper layer and a sintered body of a cemented carbide substrate as a lower layer described in the conventional Patent Document 1. Focusing on the fact that a cobalt-concentrated layer whose hardness decreases as the amount of cobalt increases is formed at the interface on the upper layer side, research was conducted. Since the sintering of the hard phase containing WC or the like as a main component and the bonded phase containing cobalt or the like as a main component has sufficiently progressed, only cobalt becomes a melt, and the interface portion before the sintering of cBN proceeds. As a result of infiltration into the sinter, it was found that a sufficient tool life was not obtained because a cobalt-enriched layer with an increased amount of cobalt was formed and a fragile layer with a decreased hardness was formed.
Then, based on such findings, the present inventors have combined the cBN sintered body layer with the cBN sintered body layer without concentrating cobalt on the interface between the cBN sintered body layer and the cemented carbide layer in the composite sintered body. By providing an interface layer in which cobalt increases with a gentle concentration gradient from the cBN sintered body layer side to the cemented carbide layer side between the cemented carbide layer, the characteristics are excellent in high temperature hardness and high temperature strength. This is a solution to the above-mentioned problem by obtaining a composite sintered body which is extremely useful when used in a cutting tool or the like.
The composite sintered body having the interface layer is, for example, only compacted with respect to the raw material powder having a cobalt concentration composition equal to or lower than that of the cemented carbide between the layer made of the cBN molded body and the layer which is the cemented carbide substrate. It can be obtained by arranging a green compact layer made of the green compact, forming a composite having a three-layer structure, and then performing high-pressure high-temperature sintering.
Here, the concentration of cobalt is concentrated in the interface layer formed between the upper layer made of a cubic boron nitride-based sintered body and the lower layer made of a tungsten carbide-based cemented carbide containing cobalt as a bonding phase. Although the reason for the suppression is not clear, by providing the green compact layer before the high-pressure high-temperature sintering, the layer made of the cBN molded body and the cemented carbide green compact layer are sintered at the same time. It is considered that the cobalt in the green compact layer was diffused into the cBN.

なお、本発明にかかる複合焼結体では、前記立方晶窒化ほう素基焼結体からなる上層、前記界面層、および、前記結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層において、コバルトおよびタングステンを測定する手段として、エネルギー分散型X線分析を用い、焼結体断面におけるコバルトおよびタングステンの元素マッピングデータを取得し、画像解析により、相対強度として評価しているため、コバルト濃度およびタングステン濃度に対応する、コバルト強度およびタングステン強度として求めた。 In the composite sintered body according to the present invention, in the upper layer made of the cubic boron nitride-based sintered body, the interface layer, and the lower layer made of a tungsten carbide-based cemented carbide containing cobalt as the bonding phase. , Cobalt concentration because energy dispersion type X-ray analysis is used as a means to measure cobalt and tungsten, and elemental mapping data of cobalt and tungsten in the cross section of the sintered body is acquired and evaluated as relative strength by image analysis. And the cobalt strength and the tungsten strength corresponding to the tungsten concentration were obtained.

本発明は、上記の知見に基づいてなされたものであって、
「 立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との少なくとも3層を有する複合焼結体において、
a)前記界面層は、前記上層と接しタングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、前記下層と接しタングステン強度が検出され、かつコバルト強度が前記下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置し、タングステン強度が急峻に変化する界面とを有し、
b)前記界面層における前記界面層Aの層厚は、10~100μmであり、
前記界面層Bの層厚は、5~20μmであり、
c)前記界面層はコバルト濃縮層を持たず、かつコバルト強度は前記上層の側から前記下層の側にかけて、コバルトの拡散による濃度勾配によるものであって、コバルト濃縮層に起因するコバルト強度を有しない緩やかな勾配をもって増加し、
d)前記界面層における、平均コバルト強度をCb、
前記界面層Aにおける、平均コバルト強度をCb
前記界面層Bにおける、平均コバルト強度をCb
前記下層における、平均コバルト強度をCcとした場合に、
以下の(1)式、および(2)式の関係を満足し、
e)前記界面におけるコバルト強度をCb1´とした場合、以下の(3)式の関係を満たすことを特徴とする複合焼結体。
0.02 < Cb/Cc <0.2 (1)式
Cb< 5Cb (2)式
Cb1´< Cb (3)式」に特徴を有するものである。
The present invention has been made based on the above findings.
"At least 3 of an upper layer made of a cubic boron nitride-based sintered body, a lower layer made of a tungsten carbide-based cemented carbide containing cobalt as a bonding phase, and an interface layer located between the upper layer and the lower layer. In a composite sintered body having a layer,
a) The interface layer is in contact with the upper layer and the tungsten strength is not detected, and the interface layer A has a cobalt strength, and the interface layer B is in contact with the lower layer and the tungsten strength is detected and the cobalt strength is lower than that of the lower layer. And an interface located between the interface layer A and the interface layer B, where the tungsten strength changes sharply.
b) The layer thickness of the interface layer A in the interface layer is 10 to 100 μm.
The interface layer B has a layer thickness of 5 to 20 μm, and has a thickness of 5 to 20 μm.
c) The interface layer does not have a cobalt-enriched layer, and the cobalt strength is due to the concentration gradient due to the diffusion of cobalt from the upper layer side to the lower layer side, and has the cobalt strength due to the cobalt-enriched layer. Does not increase with a gentle gradient,
d) The average cobalt strength in the interface layer is Cb,
The average cobalt strength in the interface layer A is Cb 1 ,
The average cobalt strength in the interface layer B is Cb 2 ,
When the average cobalt strength in the lower layer is Cc,
Satisfying the relationship between equations (1) and (2) below,
e) A composite sintered body characterized in that the relationship of the following equation (3) is satisfied when the cobalt strength at the interface is Cb 1 ′.
0.02 <Cb 1 / Cc <0.2 Equation (1)
Cb 2 <5Cb 1 equation (2)
It is characterized by "Cb 1 '<Cb (3) equation".

以下に、本発明の複合焼結体について、詳細に説明する。
本発明に係る複合焼結体は、段落0007にても述べたとおり、例えば、cBN成形体と、コバルトを結合相として含有する超硬合金基体である層との間に、前記超硬合金基体以下のコバルト濃度組成の原料粉について圧粉成形のみ行った圧粉体からなる圧粉体層を配置し、高圧高温焼結を行うことにより作製することができる。
そして、得られた複合焼結体の構造は、大きくは、三層からなり、高圧高温焼結前のcBN焼結体組成を有する上層と、同じく高圧高温焼結前のコバルトを結合相として含有する超硬合金焼結体組成を有する下層と、前記上層と前記下層の間に形成される界面層とからなり、さらに前記界面層は、コバルト濃縮層を有しておらず、界面層Aと界面層Bおよびその界面からなり、界面層Aは、前記上層と接し、タングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、下層と接しタングステン強度が高く、かつコバルト強度が下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置し、タングステン強度が急峻に変化する界面とを有するものである。
なお、ここで、コバルト濃縮層とは、複合焼結体断面のEDS分析によるコバルトおよびタングステンの元素マッピングの画像解析から得られた、各領域ごとのコバルトおよびタングステンの相対強度の内、界面または界面層Aの領域におけるコバルト強度最大値が界面層における平均強度値以上である領域をいう。
また、コバルトおよびタングステンの強度は、EDS分析を用い、焼結体断面におけるコバルトおよびタングステンの各元素マッピングデータを取得し、画像解析により各元素マッピングデータ上の評価範囲中に占める各元素の存在を示す点の面積割合を、コバルト濃度およびタングステン濃度に対応する相対強度として評価し、求め
Hereinafter, the composite sintered body of the present invention will be described in detail.
As described in paragraph 0007, the composite sintered body according to the present invention is, for example, between a cBN molded product and a layer which is a cemented carbide substrate containing cobalt as a bonding phase. It can be produced by arranging a green compact layer made of a green compact obtained only by compact molding for the raw material powder having the following cobalt concentration composition and performing high-pressure high-temperature sintering.
The structure of the obtained composite sintered body is largely composed of three layers, and contains an upper layer having a cBN sintered body composition before high-pressure high-temperature sintering and cobalt also before high-pressure high-temperature sintering as a bonding phase. It is composed of a lower layer having a composition of a super hard alloy sintered body, and an interface layer formed between the upper layer and the lower layer. The interface layer B is composed of the interface layer B and its interface, and the interface layer A is in contact with the upper layer and has no tungsten strength detected and has a cobalt strength. It has a low interface layer B and an interface located between the interface layer A and the interface layer B and in which the tungsten strength changes sharply.
Here, the cobalt concentrated layer is an interface or an interface among the relative strengths of cobalt and tungsten obtained from the image analysis of the elemental mapping of cobalt and tungsten by EDS analysis of the cross section of the composite sintered body. A region in which the maximum cobalt strength value in the region of layer A is equal to or higher than the average strength value in the interface layer.
For the strength of cobalt and tungsten, EDS analysis is used to acquire the mapping data of each element of cobalt and tungsten in the cross section of the sintered body, and the presence of each element in the evaluation range on each element mapping data is determined by image analysis. The area ratio of the indicated points is evaluated and obtained as the relative strength corresponding to the cobalt concentration and the tungsten concentration.

上層;
上層は、高圧高温焼結前の立方晶窒化ほう素基焼結体において、高圧高温焼結後、コバルトの拡散が生じなかった領域をいい、切削時の刃先となる箇所である。
焼結体組成はcBN含有量50体積%以上70体積%以下とし、残部は、TiN、TiCおよびTiCNの内の一種以上と、Al、WC、および、TiまたはAlを含む反応生成物とすることが好ましい。cBN含有量が50体積%未満の場合には、コバルトの上層側への拡散が多すぎるため、超硬基体中の界面近傍でのコバルト強度減少が大きく、超硬基体の靭性が減少し、一方、70体積%超えの場合には上層へのコバルト拡散が不十分となり、界面にてコバルト濃縮層が生じ、硬さが減少した脆弱層となり十分な界面強度が得られないためである。
Upper layer;
The upper layer is a region in the cubic boron nitride base sintered body before high-pressure high-temperature sintering where cobalt diffusion does not occur after high-pressure high-temperature sintering, and is a portion to be a cutting edge during cutting.
The composition of the sintered body is 50% by volume or more and 70% by volume or less of cBN content, and the balance is a reaction product containing one or more of TiN, TiC and TiCN, Al 2 O 3 , WC, and Ti or Al. Is preferable. When the cBN content is less than 50% by volume, the cobalt diffuses too much to the upper layer side, so that the cobalt strength in the vicinity of the interface in the cemented carbide decreases significantly, and the toughness of the cemented carbide decreases. If it exceeds 70% by volume, the cobalt diffusion to the upper layer becomes insufficient, a cobalt-concentrated layer is formed at the interface, the hardness is reduced, and a fragile layer is formed, and sufficient interface strength cannot be obtained.

下層;
下層は、高圧高温焼結前の、コバルトを結合相として含有する超硬合金焼結体および同組成の超硬合金圧粉体において、コバルトの拡散が生じなかった領域をいう。
下層のコバルトを結合相として含有する超硬合金焼結体および同組成の超硬合金圧粉体の組成は、コバルト15体積%以上40体積%未満であり、残部がWC粒子とからなるのが好ましい。コバルト15体積%未満では界面層Aの層厚が不十分で効果が十分得られず、40体積%以上では界面にコバルト濃縮層が生じ、硬さが減少した脆弱層となり十分な界面強度が得られない。
Underlayer;
The lower layer refers to a region where cobalt does not diffuse in the cemented carbide sintered body containing cobalt as a bonded phase and the cemented carbide powder having the same composition before high-pressure high-temperature sintering.
The composition of the cemented carbide sintered body containing the lower layer cobalt as a bonding phase and the cemented carbide green compact having the same composition is 15% by volume or more and less than 40% by volume of cobalt, and the balance is composed of WC particles. preferable. If the amount of cobalt is less than 15% by volume, the layer thickness of the interface layer A is insufficient and the effect cannot be sufficiently obtained. I can't.

界面層;
界面層は、高圧高温焼結前の立方晶窒化ほう素基焼結体において、高圧高温焼結後、コバルトの拡散によりコバルトを含有することとなった領域(「界面層A」という。)と、高圧高温焼結前の、コバルトを結合相として含有する超硬合金焼結体および前記超硬合金焼結体以下のコバルト濃度組成を持つ超硬合金圧粉体において、コバルトが拡散された領域(「界面層B」という。)と、前記界面層Aと前記界面層Bとが接する界面との三領域からなる。
界面層Aの層厚は10μm~100μm、界面層Bの層厚は5~20μmが好ましい。界面層Aの層厚が10μm未満では界面層の層厚が不十分で効果が十分得られず、100μmを超えると、コバルトの拡散量が大きすぎるため超硬基体中の界面近傍でのコバルトが過度に減少し、超硬基体の界面近傍の強度が減少するためである。界面層Bの層厚が5μm未満では緩やかな強度勾配をもった拡散層が超硬基体側に十分な層厚で及ばず界面層Bの硬さが不十分であり、20μm超えでは下層近傍でのコバルト強度値の減少領域の範囲が大き過ぎるために界面近傍の強度が不足する。
Interface layer;
The interface layer is a region (referred to as "interface layer A") containing cobalt due to the diffusion of cobalt after high-pressure high-temperature sintering in a cubic boron nitride-based sintered body before high-pressure high-temperature sintering. In the super hard alloy sintered body containing cobalt as a bonding phase and the super hard alloy green compact having a cobalt concentration composition equal to or lower than that of the super hard alloy sintered body before high-pressure high-temperature sintering, the region where cobalt is diffused. It is composed of three regions (referred to as "interface layer B") and an interface in which the interface layer A and the interface layer B are in contact with each other.
The layer thickness of the interface layer A is preferably 10 μm to 100 μm, and the layer thickness of the interface layer B is preferably 5 to 20 μm. If the layer thickness of the interface layer A is less than 10 μm, the layer thickness of the interface layer is insufficient and the effect cannot be sufficiently obtained. This is because it decreases excessively and the strength near the interface of the cemented carbide substrate decreases. If the layer thickness of the interface layer B is less than 5 μm, the diffusion layer having a gentle strength gradient does not reach the super hard substrate side with a sufficient layer thickness, and the hardness of the interface layer B is insufficient. Since the range of the decrease region of the cobalt strength value of is too large, the strength near the interface is insufficient.

各層および各領域におけるコバルトおよびタングステン強度の測定;
各領域でのコバルト強度の評価と、界面位置を特定するためのタングステンの検出を、下記の方法にて実施した。高圧高温焼結後のcBN複合焼結体断面を研磨した後、エネルギー分散型X線分析(EDS分析)を行い、cBN複合焼結体断面におけるコバルトおよびタングステンの元素マッピングを取得した。
図1に代表図として本発明品のコバルトおよびタングステンの元素マッピングを示す。各図中の白い点が各元素の存在を示す点である。
界面層Aの範囲は、上層と接し、前記元素マッピングにてタングステン強度が検出されず、かつコバルト強度を持つ範囲である。
界面層Bは下層と接しタングステン強度が高く、下層よりも低いコバルト強度を持つ範囲である。
前記界面層Aと前記界面層Bとの界面はタングステン強度が急峻に変化する位置であり、コバルトおよびタングステンの元素マッピングを比較し、タングステンの有無の位置を界面として、界面層Aと界面層Bの層厚を求めることができる。
界面層A、界面層Bおよび下層のコバルトの強度評価は、コバルトの元素マッピング像の二値化処理による画像解析にて、各領域でのコバルトの存在を示す点が、下記に示す大きさの各評価範囲に占める面積割合を、相対強度として求めた。
評価範囲の層厚方向長さは、界面層Aまたは界面層Bの内より小さい層厚と同じ長さとし、評価範囲の層厚と垂直な方向の長さを幅とし、前記層厚の5倍とした。
評価位置は評価範囲の層厚方向の長さの中間点が、界面層内の各領域における各層厚の中間点と合わさる位置とした。また、前記界面のコバルト強度の評価範囲の層厚方向長さは2μmとし、層厚と垂直な方向の長さは、前記界面層Aまたは界面層Bの評価範囲の幅と同等とした。
界面のコバルト強度の評価位置は、前記評価範囲の長手方向の界面層B側の辺が前記界面と合わさる位置とした。
なお、Cbは界面層A、界面、界面層Bでの各コバルト強度の平均値とした。
EDS分析による各元素のライン分析では、コバルトがWC粒子で分断され、不連続に存在しているため強度の振幅が大きく算出されることから、元素マッピングの画像解析が相対強度の評価に適している。
本発明品は、焼結時にコバルトが下層から上層側へ拡散することで、界面層は脆弱なコバルト濃縮層を持たず、かつコバルト強度は上層側から下層側にかけて緩やかな勾配をもって増加する。これにより、界面層Bは下層よりも比較的低いコバルト強度にて高圧高温により焼結され、下層よりもさらに大きな硬さを持つ層となる。これらの界面層の特徴を持つことで、本発明品は従来品より大きな界面強度を持つ。
界面層Aは下層から上層側へのコバルトの拡散により、上層よりもコバルト強度が増加することから(1)式0.02<Cb/Cc<0.2を満たすことが好ましい。
(1)式0.02<Cb/Ccを満たさない場合には、界面層Aへのコバルト拡散量が不足し、界面層としての接合強度を増す効果が十分得られない。
(1)式 Cb/Cc<0.2を満たさない場合には、界面層Aのコバルト強度が大きすぎるために界面層Aの強度が損なわれ、界面強度が十分得られない。
界面層はコバルト濃縮層を持たず、かつコバルト強度は上層側から下層側にかけて緩やかな勾配をもって増加し、(2)式Cb<5Cbを満たすことが好ましい。
(2)式 Cb<5Cbを満たさない場合には、界面層Bのコバルト強度が大きすぎるために界面層Bの硬さが十分得られない。
さらにコバルト濃縮層が抑制されていることから、Cb1´は(3)式 Cb1´ < Cbを満たすことが好ましい。
(3)式を満たさない場合には、コバルト濃縮層が発生していることから、界面層Aと下層との界面近傍の硬さが低下し、十分な界面強度が得られない。
Measurement of cobalt and tungsten strength in each layer and region;
The evaluation of the cobalt strength in each region and the detection of tungsten for specifying the interface position were carried out by the following methods. After polishing the cross section of the cBN composite sintered body after high-pressure high-temperature sintering, energy dispersive X-ray analysis (EDS analysis) was performed to obtain elemental mapping of cobalt and tungsten in the cross section of the cBN composite sintered body.
FIG. 1 shows elemental mapping of cobalt and tungsten of the present invention as a representative figure. The white dots in each figure indicate the presence of each element.
The range of the interface layer A is a range in which it is in contact with the upper layer, the tungsten strength is not detected by the element mapping, and the cobalt strength is obtained.
The interface layer B is in a range in which the tungsten strength is high in contact with the lower layer and the cobalt strength is lower than that of the lower layer.
The interface between the interface layer A and the interface layer B is a position where the tungsten strength changes sharply, and the elemental mappings of cobalt and tungsten are compared, and the position of the presence or absence of tungsten is used as the interface, and the interface layer A and the interface layer B are used. The layer thickness of can be obtained.
In the strength evaluation of cobalt in the interface layer A, the interface layer B, and the lower layer, the point showing the presence of cobalt in each region by the image analysis by the binarization process of the element mapping image of cobalt has the size shown below. The area ratio in each evaluation range was calculated as the relative strength.
The length in the layer thickness direction of the evaluation range is the same as the smaller layer thickness in the interface layer A or the interface layer B, and the length in the direction perpendicular to the layer thickness of the evaluation range is the width, which is 5 times the thickness of the layer. And said.
The evaluation position was set so that the midpoint of the length in the layer thickness direction of the evaluation range coincides with the midpoint of each layer thickness in each region in the interface layer. The length of the cobalt strength evaluation range of the interface in the layer thickness direction was set to 2 μm, and the length in the direction perpendicular to the layer thickness was set to be equivalent to the width of the evaluation range of the interface layer A or the interface layer B.
The evaluation position of the cobalt strength at the interface was set to the position where the side of the interface layer B side in the longitudinal direction of the evaluation range meets the interface.
Cb was taken as the average value of each cobalt strength in the interface layer A, the interface, and the interface layer B.
In the line analysis of each element by EDS analysis, since cobalt is divided by WC particles and exists discontinuously, the amplitude of intensity is calculated to be large, so image analysis of element mapping is suitable for evaluation of relative intensity. There is.
In the product of the present invention, cobalt diffuses from the lower layer to the upper layer side during sintering, so that the interface layer does not have a fragile cobalt concentrated layer, and the cobalt strength increases with a gentle gradient from the upper layer side to the lower layer side. As a result, the interface layer B is sintered by high pressure and high temperature at a cobalt strength relatively lower than that of the lower layer, and becomes a layer having a higher hardness than the lower layer. By having the characteristics of these interfacial layers, the product of the present invention has a higher interfacial strength than the conventional product.
Since the interface layer A has a higher cobalt strength than the upper layer due to the diffusion of cobalt from the lower layer to the upper layer side, it is preferable to satisfy the formula (1) 0.02 <Cb 1 / Cc <0.2.
(1) When the formula 0.02 <Cb 1 / Cc is not satisfied, the amount of cobalt diffused into the interface layer A is insufficient, and the effect of increasing the bonding strength as the interface layer cannot be sufficiently obtained.
(1) When the formula Cb 1 / Cc <0.2 is not satisfied, the cobalt strength of the interface layer A is too large, so that the strength of the interface layer A is impaired and the interface strength cannot be sufficiently obtained.
It is preferable that the interface layer does not have a cobalt concentrated layer, and the cobalt strength increases with a gentle gradient from the upper layer side to the lower layer side, satisfying equation (2) Cb 2 <5Cb 1 .
(2) When the formula Cb 2 <5Cb 1 is not satisfied, the hardness of the interface layer B cannot be sufficiently obtained because the cobalt strength of the interface layer B is too large.
Further, since the cobalt concentrated layer is suppressed, it is preferable that Cb 1 ′ satisfies Eq. (3) Cb 1 ′ <Cb.
When the formula (3) is not satisfied, since the cobalt concentrated layer is generated, the hardness in the vicinity of the interface between the interface layer A and the lower layer is lowered, and sufficient interface strength cannot be obtained.

本発明に係る複合焼結体は、界面層の界面近傍において、コバルト強度の高い脆弱層の形成の抑制を図り、また、超硬合金層と界面層間では、コバルト強度の変化量を緩やかにすることにより、cBN複合焼結体切削工具として用いた場合に、耐欠損性にすぐれ、長寿命の切削工具を提供することができる。 The composite sintered body according to the present invention suppresses the formation of a fragile layer having a high cobalt strength in the vicinity of the interface of the interface layer, and moderates the amount of change in the cobalt strength between the cemented carbide layer and the interface layer. This makes it possible to provide a cutting tool having excellent fracture resistance and a long life when used as a cBN composite sintered body cutting tool.

本発明品の複合焼結体の研磨後断面のEDS分析より得られた(a)コバルトおよび(b)タングステンの元素マッピングElemental mapping of (a) cobalt and (b) tungsten obtained by EDS analysis of the cross section of the composite sintered body of the present invention after polishing.

本発明について、実施例を用いて、以下に詳細に説明する。 The present invention will be described in detail below with reference to examples.

複合焼結体の作製:
表1に、実施例にて用いたcBN基成形体、WC基超硬合金およびWC基超硬合金原料粉末の組み合わせを示す。
a)cBN基成形体の作製
原料粉末として、cBN粉末と、Ti化合物粉末(TiN粉末、TiC粉末、TiCN粉末、TiAl粉末)、ならびにAl粉末を用意し、これら原料粉末を配合し、メディアボールと共にボールミルにて湿式混合しスラリー溶液を得、これを乾燥させた後、プレス成形し、800-1200℃、1Pa以下にて真空焼結を行い、cBN基成形体とした。
b)複合焼結体の作製
次に、前記cBN成形体と、表1に示されるコバルトを結合相として含有するWC基超硬合金基体との間に、前記コバルトを結合相として含有するWC基超硬合金の原料粉からなる圧粉体を配置して構成される三層構造の複合体を得て、これを圧力:5GPa、温度:1300~1500℃にて高圧高温焼結することにより、cBN基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との3層を有し、さらに、界面層は、前記圧粉体層から拡散されたコバルトを含有するcBN基焼結体からなる界面層Aと、界面層Aへのコバルト拡散後の圧粉体層が焼結したWC基超硬合金からなる界面層Bと、前記界面層Aと界面層Bの間に位置する界面とを有してなる、本発明に係る複合焼結体を作製することができた。
Fabrication of composite sintered body:
Table 1 shows the combinations of the cBN-based molded product, the WC-based cemented carbide, and the WC-based cemented carbide raw material powder used in the examples.
a) Preparation of cBN-based molded body As raw material powder, cBN powder, Ti compound powder (TiN powder, TiC powder, TiCN powder, TiAl powder) and Al powder are prepared, and these raw material powders are mixed together with a media ball. Wet mixing was performed with a ball mill to obtain a slurry solution, which was dried, press-molded, and vacuum sintered at 800-1200 ° C. and 1 Pa or less to obtain a cBN-based molded body.
b) Preparation of composite sintered body Next, the WC group containing the cobalt as the bonding phase between the cBN molded body and the WC group super hard alloy substrate containing the cobalt shown in Table 1 as the bonding phase. A composite having a three-layer structure is obtained by arranging a green compact made of a raw material powder of a super hard alloy, and this is sintered at high pressure and high temperature at a pressure of 5 GPa and a temperature of 1300 to 1500 ° C. It has three layers: an upper layer made of a cBN-based sintered body, a lower layer made of a tungsten carbide-based superhard alloy containing cobalt as a bonding phase, and an interface layer located between the upper layer and the lower layer. The interface layer is a WC-based layer in which an interface layer A made of a cBN-based sintered body containing cobalt diffused from the green compact layer and a green compact layer after cobalt diffusion into the interface layer A are sintered. A composite sintered body according to the present invention having an interface layer B made of a hard alloy and an interface located between the interface layer A and the interface layer B could be produced.

また、比較の目的で、高圧高温でのcBN焼結時に、cBN基焼結体からなる上層とcBN基焼結体からなる上層とを接合する手法である従来例として、cBN基成形体、WC基超硬合金を製造し、これらの間に、前記WC基超硬合金の原料粉からなる圧粉体を配置することなく、二層構造の複合体を得て、これを圧力:5GPa、温度:1300~1500℃にて高圧高温焼結することにより、前記cBN成形体と、前記WC基超硬合金とからなる、2層の複合焼結体を作製した。 Further, for the purpose of comparison, as a conventional method of joining an upper layer made of a cBN-based sintered body and an upper layer made of a cBN-based sintered body at the time of cBN sintering at high pressure and high temperature, a cBN-based molded body, WC A two-layer structure composite was obtained without arranging a green compact made of the raw material powder of the WC-based cemented carbide between them, and the pressure: 5 GPa, temperature was applied. By high-pressure high-temperature sintering at 1300 to 1500 ° C., a two-layer composite sintered body composed of the cBN molded body and the WC-based cemented carbide was produced.

表2には、上記により作製した本発明複合焼結体1~5、比較焼結体6~10、および、従来焼結体11について、断面を研磨し、SEM-EDS法で分析し得た、図1に代表される元素マッピングの解析結果から、各層のコバルト強度、界面層Aおよび界面層Bの層厚を示すとともに、マイクロビッカース硬度計を用い硬度試験により測定した各複合焼結体の界面近傍部におけるマイクロビッカース硬さを示す。なお、界面層Aおよび界面層Bの層厚は、コバルトおよびタングステンの元素マッピングから上層と界面層Aと界面、および界面と界面層Bと下層の間の各境界を定め、元素マッピング像の幅方向の左端、中央、右端の3点における各境界間距離の平均値を各層厚とした。 In Table 2, the cross sections of the composite sintered bodies 1 to 5, the comparative sintered bodies 6 to 10, and the conventional sintered body 11 produced as described above could be polished and analyzed by the SEM-EDS method. From the analysis results of the element mapping represented by FIG. 1, the cobalt strength of each layer, the layer thicknesses of the interface layer A and the interface layer B are shown, and each composite sintered body measured by a hardness test using a Micro Vickers hardness tester. Shows the micro Vickers hardness near the interface. The layer thickness of the interface layer A and the interface layer B defines the boundaries between the upper layer and the interface layer A and the interface, and the interface and the interface layer B and the lower layer from the elemental mapping of cobalt and tungsten, and the width of the element mapping image. The average value of the distances between the boundaries at the three points at the left end, the center, and the right end in the direction was taken as the thickness of each layer.

表2に示される結果から、本発明の複合焼結体は、界面近傍部には、高コバルト強度の脆弱層は形成されておらず、上層および下層間にコバルト強度の変化量が緩やかな界面層を持つことで、界面近傍部におけるマイクロビッカース硬さは大きくなった。これに対し、比較焼結体では上層および下層間にコバルト強度の変化量が緩やかな界面層は形成されず、従来例の焼結体ではコバルト強度の高いコバルト濃縮層が形成し脆弱層となり、界面部でのマイクロビッカース硬さは小さくなった。 From the results shown in Table 2, in the composite sintered body of the present invention, a fragile layer having a high cobalt strength is not formed in the vicinity of the interface, and the interface in which the amount of change in cobalt strength is gradual between the upper layer and the lower layer. By having a layer, the micro Vickers hardness near the interface was increased. On the other hand, in the comparative sintered body, an interface layer in which the amount of change in cobalt strength is gradual is not formed between the upper layer and the lower layer, and in the conventional sintered body, a cobalt concentrated layer having high cobalt strength is formed and becomes a fragile layer. The micro Vickers hardness at the interface became smaller.

Figure 0007021493000001
Figure 0007021493000001

Figure 0007021493000002
Figure 0007021493000002

本発明の複合焼結体は、cBN基焼結体および超硬合金基体との界面において硬度にすぐれ、長寿命であるため、ミーリング加工やターニング加工用のcBN複合焼結体工具として用いることができる。
Since the composite sintered body of the present invention has excellent hardness at the interface with the cBN-based sintered body and the cemented carbide substrate and has a long life, it can be used as a cBN composite sintered body tool for milling and turning. can.

Claims (1)

立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との少なくとも3層を有する複合焼結体において、
a)前記界面層は、前記上層と接しタングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、前記下層と接しタングステン強度が検出され、かつコバルト強度が前記下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置し、タングステン強度が急峻に変化する界面とを有し、
b)前記界面層における前記界面層Aの層厚は、10~100μmであり、
前記界面層Bの層厚は、5~20μmであり、
c)前記界面層はコバルト濃縮層を持たず、かつコバルト強度は前記上層の側から前記下層の側にかけて、コバルトの拡散による濃度勾配によるものであって、コバルト濃縮層に起因するコバルト強度を有しない緩やかな勾配をもって増加し、
d)前記界面層における、平均コバルト強度をCb、
前記界面層Aにおける、平均コバルト強度をCb
前記界面層Bにおける、平均コバルト強度をCb
前記下層における、平均コバルト強度をCcとした場合に、
以下の(1)式、および(2)式の関係を満足し、
e)前記界面におけるコバルト強度をCb1´とした場合、以下の(3)式の関係を満たすことを特徴とする複合焼結体。
0.02 < Cb/Cc <0.2 (1)式
Cb< 5Cb (2)式
Cb1´< Cb (3)式
At least three layers: an upper layer made of a cubic boron nitride-based sintered body, a lower layer made of a tungsten carbide-based cemented carbide containing cobalt as a bonding phase, and an interface layer located between the upper layer and the lower layer. In a composite sintered body having
a) The interface layer is in contact with the upper layer and the tungsten strength is not detected, and the interface layer A has a cobalt strength, and the interface layer B is in contact with the lower layer and the tungsten strength is detected and the cobalt strength is lower than that of the lower layer. And an interface located between the interface layer A and the interface layer B, where the tungsten strength changes sharply.
b) The layer thickness of the interface layer A in the interface layer is 10 to 100 μm.
The interface layer B has a layer thickness of 5 to 20 μm, and has a thickness of 5 to 20 μm.
c) The interface layer does not have a cobalt-enriched layer, and the cobalt strength is due to the concentration gradient due to the diffusion of cobalt from the upper layer side to the lower layer side, and has the cobalt strength due to the cobalt-enriched layer. Does not increase with a gentle gradient,
d) The average cobalt strength in the interface layer is Cb,
The average cobalt strength in the interface layer A is Cb 1 ,
The average cobalt strength in the interface layer B is Cb 2 ,
When the average cobalt strength in the lower layer is Cc,
Satisfying the relationship between equations (1) and (2) below,
e) A composite sintered body characterized in that the relationship of the following equation (3) is satisfied when the cobalt strength at the interface is Cb 1 ′.
0.02 <Cb 1 / Cc <0.2 Equation (1)
Cb 2 <5Cb 1 equation (2)
Cb 1 '<Cb (3) equation
JP2017190439A 2017-09-29 2017-09-29 Composite sintered body Active JP7021493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190439A JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190439A JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Publications (2)

Publication Number Publication Date
JP2019065330A JP2019065330A (en) 2019-04-25
JP7021493B2 true JP7021493B2 (en) 2022-02-17

Family

ID=66339044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190439A Active JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Country Status (1)

Country Link
JP (1) JP7021493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481240B1 (en) * 2012-12-27 2015-01-19 고려대학교 산학협력단 Apparatus and method for monitoring platelet function and drug response in a microfluidic-chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129387A (en) 1998-10-20 2000-05-09 Sumitomo Electric Ind Ltd Composite material for brazing containing cubic boron nitride, and its manufacture
JP2005281759A (en) 2004-03-29 2005-10-13 Kyocera Corp Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP2012515846A (en) 2009-01-22 2012-07-12 エレメント シックス アブラシヴェス エス.エー. Polishing insert

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053721B2 (en) * 1979-06-18 1985-11-27 三菱マテリアル株式会社 Composite sintered parts for cutting tools
JPS59107060A (en) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd Composite sintered body and its production
JPH06669B2 (en) * 1984-11-01 1994-01-05 住友電気工業株式会社 High hardness sintered compact composite material with sandwich structure
JPH07122138B2 (en) * 1987-04-28 1995-12-25 三菱マテリアル株式会社 Surface coated cemented carbide member
JPH04160072A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Method for joining metallic material and ceramic material
JPH09194909A (en) * 1995-11-07 1997-07-29 Sumitomo Electric Ind Ltd Composite material and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129387A (en) 1998-10-20 2000-05-09 Sumitomo Electric Ind Ltd Composite material for brazing containing cubic boron nitride, and its manufacture
JP2005281759A (en) 2004-03-29 2005-10-13 Kyocera Corp Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP2012515846A (en) 2009-01-22 2012-07-12 エレメント シックス アブラシヴェス エス.エー. Polishing insert

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481240B1 (en) * 2012-12-27 2015-01-19 고려대학교 산학협력단 Apparatus and method for monitoring platelet function and drug response in a microfluidic-chip

Also Published As

Publication number Publication date
JP2019065330A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US20050050801A1 (en) Doubled-sided and multi-layered PCD and PCBN abrasive articles
JP5732663B2 (en) Cubic boron nitride sintered tool
US9427806B2 (en) Method and apparatus for forming a gold metal matrix composite
US6287489B1 (en) Method for making a sintered composite body
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
KR20090007761A (en) Cbn composite material and tool
JP7021493B2 (en) Composite sintered body
KR20040005011A (en) Sintering body having high hardness for cutting cast iron and The producing method the same
JP6410210B2 (en) Cubic boron nitride composite sintered body insert
JP4480912B2 (en) Cutting blade for semiconductor product processing and manufacturing method thereof
JP5656076B2 (en) cBN insert
JP3803694B2 (en) Nitrogen-containing sintered hard alloy
JP7185844B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP4857506B2 (en) WC-based cemented carbide multilayer chip
KR101456913B1 (en) Multilayer tools having poly-crystalline diamond/poly-crystalline cubic boron nitride and the manufacturing method thereof
KR102124566B1 (en) Manufacturing Methods of cBN Sintered Tool With High Hardness
JP2003113438A (en) Die made from sintered hard metal alloy
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JP2012045694A (en) Cutting tool
JP4951958B2 (en) Cermet for cutting tools
JPH07316840A (en) Cubic boron nitride polycrystalline combined member having high wear resistance
JPS6146429B2 (en)
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JPH08197305A (en) Cutting tool made of high-strength and highly tough cubic system boron nitride base superhigh pressure sintered material
JPS6143306B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150