JP2005281759A - Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool - Google Patents

Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool Download PDF

Info

Publication number
JP2005281759A
JP2005281759A JP2004096813A JP2004096813A JP2005281759A JP 2005281759 A JP2005281759 A JP 2005281759A JP 2004096813 A JP2004096813 A JP 2004096813A JP 2004096813 A JP2004096813 A JP 2004096813A JP 2005281759 A JP2005281759 A JP 2005281759A
Authority
JP
Japan
Prior art keywords
ultra
cobalt
high pressure
backing support
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096813A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004096813A priority Critical patent/JP2005281759A/en
Publication of JP2005281759A publication Critical patent/JP2005281759A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superhigh pressure sintered compact having high joining strength with a backing support. <P>SOLUTION: The superhigh pressure sintered structure 1 is obtained by joining a superhigh pressure sintered compact 5 to the surface of a backing support 4 composed of cemented carbide at least comprising cobalt as a joining metal. Regarding the distribution in the concentration of cobalt in the boundary between the backing support 4 and the superhigh pressure sintered compact 5, rapidly changing points are not present, and also, the concentration c of cobalt in each part lies within the concentration ranges of the cobalt concentration C<SB>w</SB>at the inside of the backing support and the cobalt concentration C<SB>h</SB>at the inside of the superhigh pressure composite sintered compact. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超高圧焼結構造体または超高圧複合焼結構造体およびその製造方法に関し、特にこれを用いて強度および耐欠損性が改善された切削工具に関する。   The present invention relates to an ultrahigh-pressure sintered structure or an ultrahigh-pressure composite sintered structure and a method for producing the same, and more particularly to a cutting tool having improved strength and fracture resistance.

一般的にダイアモンドまたはcBN基の超高圧焼結構造体を作製する際、WC−Co系超硬合金製の裏打ち支持体上で0.5〜2.0mm程度の厚みを持つダイアモンドあるいはcBN基の原料を超高圧焼成技術により焼結結合する。こうして得られた工具素材(ブランク)を所定の形状に切り出し工具刃先部分として超硬合金製の台金にロウ付けして用いる。この際、従来の超高圧焼結体の製造方法では上記超高圧焼結体と裏打ち支持体との間でコバルトが欠乏して密着力が低下してしまうのを防止するためにコバルト粉末やコバルト箔を配置し、溶融含浸させると同時に超高圧原料(ダイアモンド粉末)を焼結させる方法などが知られる。   Generally, when producing a diamond or cBN-based ultra-high pressure sintered structure, a diamond or cBN-based structure having a thickness of about 0.5 to 2.0 mm on a backing support made of a WC-Co cemented carbide is used. The raw materials are sintered and bonded by ultra-high pressure firing technology. The tool material (blank) thus obtained is cut into a predetermined shape and brazed onto a cemented carbide base metal as a tool cutting edge portion. At this time, in the conventional method for producing an ultra-high pressure sintered body, cobalt powder or cobalt is used in order to prevent the adhesion between the ultra-high-pressure sintered body and the backing support from being deficient and a decrease in adhesion. A method is known in which a foil is placed, melted and impregnated, and at the same time, an ultra-high pressure raw material (diamond powder) is sintered.

また、特許文献1によれば、僅かにうねりを有する超硬合金からなる裏打ち支持体の表面にダイアモンド粉末のみを直接載置して超硬合金中から溶出するコバルトを結合材としてダイアモンド粒子を焼結させる方法が記載され、この方法によって、ダイアモンド層と裏打ち支持体との界面における内部残留応力を低減できて界面の密着強度を向上させ、両者間に生じるクラックの発生を防止できることが開示されている。   Further, according to Patent Document 1, only diamond powder is directly placed on the surface of a backing support made of a cemented carbide having a slight undulation, and diamond particles are sintered using cobalt eluted from the cemented carbide as a binder. It is disclosed that this method can reduce the internal residual stress at the interface between the diamond layer and the backing support, improve the adhesion strength of the interface, and prevent the occurrence of cracks between them. Yes.

一方、特許文献2のように、ダイアモンド焼結体等の超高圧焼結体からなる繊維状の芯材の外周を超硬合金等の硬質焼結体にて被覆して複数本集束した超高圧複合焼結体をドリルビットやカッター等の摩耗する刃先表面に貼り合わせて用いることが記載されている。
特開平12−54007号公報 米国特許6607835号明細書
On the other hand, as in Patent Document 2, an outer periphery of a fibrous core material made of an ultra-high pressure sintered body such as a diamond sintered body is covered with a hard sintered body such as a cemented carbide, and a plurality of ultra-high pressures are focused. It is described that the composite sintered body is used by being bonded to the surface of a cutting edge that is worn, such as a drill bit or a cutter.
JP-A-12-54007 US Pat. No. 6,607,835

しかしながら、上記特許文献1に記載されるようなコバルト粉末を直接超硬合金支持体表面に配して焼成する方法では、超硬合金中のコバルトの溶出が不十分であったり、逆に超硬合金の表面側のコバルトが超高圧焼結体側に溶出してしまって、界面においてコバルト濃度が低下したコバルト欠乏領域ができやすいものであった。   However, in the method in which the cobalt powder described in Patent Document 1 is directly disposed on the surface of the cemented carbide support and fired, cobalt in the cemented carbide is not sufficiently eluted, or conversely Cobalt on the surface side of the alloy was eluted to the ultra-high pressure sintered body side, and a cobalt-deficient region in which the cobalt concentration decreased at the interface was likely to be formed.

また、従来の超高圧焼結体と裏打ち支持体との間にコバルト粉末やコバルト箔を配置して焼成する場合、最適量のコバルト粉末やコバルト箔量に調整することは困難であるために、焼成後、コバルト粉末やコバルト箔を介挿した部分のコバルト量が欠乏したり、逆にコバルトが余剰となって偏析した状態で残存するものであった。   In addition, when placing and firing cobalt powder or cobalt foil between a conventional ultra-high pressure sintered body and a backing support, it is difficult to adjust the amount of cobalt powder or cobalt foil to an optimum amount. After firing, the amount of cobalt in the portion where the cobalt powder or cobalt foil was interposed was deficient, or conversely, cobalt remained in a segregated state due to surplus.

すなわち、いずれの場合でも、コバルト濃度分布が不均一となり、例えばドリルビットやフェイスミル等のように高い衝撃がかかる切削工具等に適用した際には必要とされる充分な耐欠損性が得られないことがあった。   That is, in any case, the cobalt concentration distribution is non-uniform, and sufficient fracture resistance required when applied to a cutting tool, such as a drill bit or a face mill, that is subjected to high impact can be obtained. There was nothing.

また、特許文献2には、超高圧複合焼結体をドリルビットやカッターの基体表面に接合する構成については記載されているものの、その具体的な接合方法については何ら記載されておらず、上記超高圧複合焼結体を掘削工具や切削工具に応用した場合に接合部分から不具合が発生する恐れがあった。   In addition, Patent Document 2 describes a configuration for bonding an ultra-high pressure composite sintered body to a base surface of a drill bit or a cutter, but does not describe any specific bonding method. When the ultra-high pressure composite sintered body is applied to an excavation tool or a cutting tool, there is a possibility that a defect may occur from the joint portion.

本発明は、上記従来技術の問題点を解消し、接合強度の高い超高圧焼結構造体および超高圧複合焼結構造体、並びにこれを用いた切削工具を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an ultra-high pressure sintered structure and an ultra-high pressure composite sintered structure with high bonding strength, and a cutting tool using the same.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、超高圧焼結体を超硬合金製裏打ち支持体表面に接合させるに際して、焼成前の超硬合金製裏打ち支持体として、表面にコバルト濃度が内部より高いコバルト富化領域を具備するものを用い、このコバルト富化領域の表面に超高圧焼結体原料を配して超高圧焼成することにより、裏打ち支持体中のコバルト富化領域に存在するコバルトが超高圧焼結体側に拡散することによって吸収される、すなわち前記超高圧焼結体と前記裏打ち支持体の結合に必要な結合金属を裏打ち支持体からの拡散で補うことが出来るため、超高圧焼結体と裏打ち支持体との境界部分でコバルト欠乏領域が生成することなく、かつ超高圧焼結体と裏打ち支持体との界面にコバルト粉末やコバルト箔を配して焼成する場合のように、局所的にコバルト濃度が急激に高くなるような異常部分が存在して強度が低下する等の接合強度低下の要因となるコバルト濃度の不均質部分の発生を極力防止できるとともに、コバルト濃度が緩やかに変化して前記超高圧焼結体と前記裏打ち支持体間に生じる熱膨張係数差が急激に変化することがないため残留応力の低減の効果が得られる結果、超高圧焼結体と裏打ち支持体との接合強度を安定して向上することができ、超高圧焼結体が接合不良によって脱落しにくくなることを見出した。   As a result of intensive studies to solve the above problems, the present inventor, when joining a super high pressure sintered body to a cemented carbide backing support surface, as a cemented carbide backing support before firing, By using a material having a cobalt-enriched region whose cobalt concentration is higher than that of the inside, and arranging an ultra-high pressure sintered material on the surface of the cobalt-enriched region and firing at an ultra-high pressure, cobalt rich in the backing support Cobalt existing in the activated region is absorbed by diffusing to the side of the ultra high pressure sintered body, that is, the bonding metal necessary for bonding the ultra high pressure sintered body and the backing support is supplemented by diffusion from the backing support. Cobalt powder or cobalt foil is arranged at the interface between the ultra-high pressure sintered body and the backing support without forming a cobalt-deficient region at the boundary between the ultra-high pressure sintered body and the backing support. Firing As in the case of, for example, the occurrence of an inhomogeneous portion of the cobalt concentration that causes a decrease in bonding strength, such as the presence of an abnormal portion where the cobalt concentration rapidly increases locally and the strength decreases, can be prevented as much as possible. As a result, since the difference in thermal expansion coefficient generated between the ultra-high pressure sintered body and the backing support does not change abruptly due to a gradual change in cobalt concentration, the effect of reducing residual stress can be obtained. It has been found that the bonding strength between the bonded body and the backing support can be stably improved, and the ultra-high pressure sintered body becomes difficult to fall off due to poor bonding.

すなわち、本発明の超高圧焼結構造体は、超高圧焼結体を、少なくともコバルトを結合金属として含有する超硬合金からなる裏打ち支持体の表面に接合したものであって、前記裏打ち支持体と前記超高圧焼結体との界面における前記コバルトの濃度分布において、各箇所におけるコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧焼結体内部のコバルトの濃度Cの濃度範囲内に存在するものである。 That is, the ultra-high pressure sintered structure of the present invention is obtained by joining an ultra-high pressure sintered body to the surface of a backing support made of a cemented carbide containing at least cobalt as a binding metal, the backing support In the cobalt concentration distribution at the interface between the super-high pressure sintered body and the cobalt concentration c at each location, the cobalt concentration C w inside the backing support and the cobalt concentration C inside the ultra-high pressure sintered body It exists within the concentration range of h .

また、本発明の超高圧複合焼結構造体は、超高圧焼結体からなる繊維状の芯材複数本の周囲を硬質焼結体にて結合した超高圧複合焼結体を、少なくともコバルトを結合金属として含有する超硬合金からなる裏打ち支持体の表面に接合したものであって、前記裏打ち支持体と前記超高圧複合焼結体との界面における前記コバルトの濃度分布において、各箇所におけるコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧複合焼結体内部のコバルトの濃度Cの濃度範囲内に存在するものである。 The ultra-high-pressure composite sintered structure of the present invention comprises an ultra-high-pressure composite sintered body obtained by bonding the periphery of a plurality of fibrous core materials made of an ultra-high-pressure sintered body with a hard sintered body. Bonded to the surface of a backing support made of a cemented carbide contained as a binding metal, and in the cobalt concentration distribution at the interface between the backing support and the ultra-high pressure composite sintered body, in which the concentration c is present in the concentration range of concentration C c of said backing support inside portion of the cobalt concentration C w and the ultra-high-pressure composite sintered body of the cobalt.

ここで、前記硬質焼結体が超硬合金からなる場合、超高圧複合焼結体と裏打ち支持体との密着性がさらに高い点で望ましい。   Here, when the said hard sintered compact consists of a cemented carbide, it is desirable at the point from which the adhesiveness of an ultra-high pressure compound sintered compact and a backing support body is still higher.

さらに、本発明の超高圧焼結構造体の製造方法は、少なくともコバルトを結合金属として含有するとともに、コバルト濃度が高いコバルト富化領域を表面に具備する超硬合金からなる裏打ち支持体の前記金属富化領域形成面に、超高圧焼結体原料を載置して、高温・超高圧下で焼成することを特徴とするものである。   Furthermore, the manufacturing method of the ultra high pressure sintered structure of the present invention includes the metal of the backing support comprising a cemented carbide containing at least cobalt as a binding metal and having a cobalt rich region having a high cobalt concentration on the surface. The ultra-high pressure sintered body material is placed on the enriched region forming surface and fired at a high temperature and an ultra-high pressure.

また、本発明の超高圧複合焼結構造体の製造方法は、少なくともコバルトを結合金属として含有するとともに、コバルト濃度が高いコバルト富化領域を表面に具備する超硬合金からなる裏打ち支持体の前記金属富化領域形成面に、超高圧焼結体原料からなる繊維状の芯材成形体複数本の周囲を、硬質焼結体原料成形体にて結合した超高圧複合成形体を載置して、高温・超高圧下で焼成することを特徴とするものである。   The method for producing an ultrahigh-pressure composite sintered structure according to the present invention includes the above-mentioned backing support comprising a cemented carbide containing at least cobalt as a binding metal and having a cobalt-rich region having a high cobalt concentration on the surface. An ultra-high pressure composite molded body in which the periphery of a plurality of fibrous core material molded bodies made of ultra-high pressure sintered body materials is bonded with a hard sintered body raw material molded body is placed on the metal-enriched region forming surface. It is characterized by firing at a high temperature and an ultrahigh pressure.

ここで、上記超高圧焼結構造体および超高圧複合焼結構造体の製造方法の際に、焼成前の前記裏打ち支持体について、該裏打ち支持体内部におけるコバルト濃度Dcと、前記裏打ち支持体表面におけるコバルト濃度Dsとの比率Ds/Dcが1.05以上であることが、超高圧焼結体または超高圧複合焼結体と裏打ち支持体との境界部分における界面密着結合に必要なコバルト量を十分にまかなうことが出来て焼結体におけるコバルト濃度の均一性を高める点で望ましい。   Here, in the manufacturing method of the ultra high pressure sintered structure and the ultra high pressure composite sintered structure, the cobalt support Dc inside the backing support and the surface of the backing support for the backing support before firing. The ratio Ds / Dc with respect to the cobalt concentration Ds in is that the amount of cobalt necessary for interfacial adhesive bonding at the boundary portion between the ultrahigh-pressure sintered body or ultrahigh-pressure composite sintered body and the backing support is This is desirable in that it can sufficiently cover the uniformity of cobalt concentration in the sintered body.

また、本発明の切削工具は、上記超高圧焼結構造体または超高圧複合焼結構造体の前記裏打ち支持体を工具基体の所定位置に接合して、前記超高圧焼結体または前記超高圧複合焼結体を工具切刃としたものであり、耐欠損性、耐摩耗性に優れた長寿命な切削工具を提供することが出来る。   Further, the cutting tool of the present invention is obtained by joining the backing support of the ultra-high pressure sintered structure or the ultra-high pressure composite sintered structure to a predetermined position of a tool base, and A composite sintered body is used as a tool cutting edge, and a long-life cutting tool having excellent fracture resistance and wear resistance can be provided.

本発明の超高圧焼結構造体および超高圧複合焼結構造体は、超高圧焼結体を超硬合金製裏打ち支持体表面に接合させるに際して、表面にコバルト濃度が内部より高いコバルト富化領域を具備するものを焼成前の裏打ち支持体として用い、この裏打ち支持体のコバルト富化領域の表面に超高圧焼結体原料を配して超高圧焼成することにより、裏打ち支持体中のコバルト富化領域に存在するコバルトが超高圧焼結体側に拡散して吸収される。すなわち、前記超高圧焼結体と前記裏打ち支持体の結合に必要なコバルト成分を裏打ち支持体からの拡散で補うことが出来るため、超高圧焼結体と裏打ち支持体との境界部分でコバルト欠乏領域が生成することなく、かつ超高圧焼結体と裏打ち支持体とのコバルト粉末やコバルト箔を配して焼成する場合のように、局所的にコバルト濃度が急変して強度が低下する等の接合強度低下の要因となるコバルト濃度の不均質部分を極力防止できるとともに、コバルト濃度が緩やかに変化して前記超高圧焼結体と前記裏打ち支持体間に熱膨張係数差が大きく変化することがないため残留応力の低減の効果をも得られる結果、超高圧焼結体と裏打ち支持体との接合強度を安定して向上することができる。   The super-high-pressure sintered structure and the ultra-high-pressure composite sintered structure of the present invention have a cobalt-enriched region in which the cobalt concentration is higher on the surface than the inside when the ultra-high-pressure sintered body is joined to the cemented carbide backing support surface. Is used as a backing support before firing, and an ultra-high pressure sintered raw material is disposed on the surface of the cobalt-enriched region of the backing support and fired at an ultra-high pressure to thereby enrich cobalt in the backing support. Cobalt present in the conversion region is diffused and absorbed by the ultra high pressure sintered body. That is, since the cobalt component necessary for the bonding of the ultra high pressure sintered body and the backing support can be supplemented by diffusion from the backing support, the cobalt deficiency is present at the boundary between the ultra high pressure sintered body and the backing support. Without the formation of the region, as in the case of firing with the cobalt powder and cobalt foil of the ultra-high pressure sintered body and the backing support, the cobalt concentration suddenly changes locally and the strength decreases. It is possible to prevent the inhomogeneous portion of the cobalt concentration that causes a decrease in the bonding strength as much as possible, and the cobalt concentration gradually changes to greatly change the difference in thermal expansion coefficient between the ultra-high pressure sintered body and the backing support. As a result, the effect of reducing the residual stress can also be obtained. As a result, the bonding strength between the ultra-high pressure sintered body and the backing support can be stably improved.

以下、本発明の超高圧焼結構造体および超高圧複合焼結構造体の一実施形態について、これを切削工具の切刃部に用いた図面を基に詳細に説明する。   Hereinafter, an embodiment of an ultrahigh-pressure sintered structure and an ultrahigh-pressure composite sintered structure of the present invention will be described in detail based on the drawings in which this is used for a cutting edge portion of a cutting tool.

図1、2はそれぞれ本発明の超高圧焼結構造体、超高圧複合焼結構造体を切刃部に用いた切削工具を示し、図1、2(a)は概略斜視図、図1、2(b)は部分断面図である。   1 and 2 show a cutting tool using the ultra-high pressure sintered structure and the ultra-high pressure composite sintered structure of the present invention for the cutting edge part, respectively, FIGS. 1 and 2 are schematic perspective views, FIG. 2 (b) is a partial sectional view.

図1、2の切削工具1、21は、平板状をなし、工具本体2、22の角部に形成された取付座3、23には、裏打ち支持体4、24と超高圧焼結体5、超高圧複合焼結体25とが一体化された超高圧焼結構造体6、超高圧複合焼結構造体26からなる切刃チップがロウ材7、27にて工具本体2、22にロウ付けされている。   The cutting tools 1 and 21 shown in FIGS. 1 and 2 have a flat plate shape. The mounting seats 3 and 23 formed at the corners of the tool bodies 2 and 22 are provided with backing supports 4 and 24 and an ultra-high pressure sintered body 5. A cutting blade tip comprising an ultra-high pressure sintered structure 6 integrated with the ultra-high-pressure composite sintered body 25 and an ultra-high pressure composite sintered structure 26 is brazed to the tool bodies 2 and 22 with brazing materials 7 and 27. It is attached.

また、この切削工具1、21によれば、すくい面8、28と横逃げ面9、29との交差稜線部に切刃10、30が構成されている。   Moreover, according to this cutting tool 1,21, the cutting blades 10 and 30 are comprised in the intersection ridgeline part of the rake surfaces 8 and 28 and the side flank surfaces 9 and 29. FIG.

さらに、切削工具1、21の中央部には、バイトなどの工具に取り付けるためのクランプねじ等が挿通される取付孔11、31が形成されている。   Furthermore, attachment holes 11 and 31 through which a clamp screw or the like for attaching to a tool such as a cutting tool is inserted are formed at the center of the cutting tools 1 and 21.

本発明によれば、図1の超高圧焼結構造体6は、超高圧焼結体5を、少なくともコバルトを結合金属として含有する超硬合金からなる裏打ち支持体4の表面に接合したものであり、図3(a)に示すように裏打ち支持体4と超高圧焼結体5との界面における前記コバルトの濃度分布において、急変点がなく、かつ各箇所におけるコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧複合焼結体内部のコバルトの濃度Cの濃度範囲内に存在するものである。 According to the present invention, the ultra-high pressure sintered structure 6 of FIG. 1 is obtained by joining the ultra-high pressure sintered body 5 to the surface of a backing support 4 made of a cemented carbide containing at least cobalt as a binding metal. Yes, as shown in FIG. 3 (a), the cobalt concentration distribution at the interface between the backing support 4 and the ultra-high pressure sintered body 5 has no sudden change point, and the cobalt concentration c at each location is the backing support. the concentration C w of cobalt in the body portion being present in a concentration range of concentration C h cobalt ultrahigh pressure sintered composite body portion.

これによって、裏打ち支持体中4のコバルト富化領域に存在するコバルトが焼成時に超高圧焼結体5側に拡散して吸収される。すなわち、超高圧焼結体5と裏打ち支持体4の結合に必要なコバルト成分を裏打ち支持体5からの拡散で補うことが出来るため、超高圧焼結体5と裏打ち支持体4との境界部分でコバルト欠乏領域が生成することなく、かつ超高圧焼結体5と裏打ち支持体4との界面にコバルト粉末やコバルト箔を配して焼成する場合のように、局所的にコバルト濃度が急増して強度が低下する等の接合強度低下の要因となるコバルト濃度の不均質部分の発生、特にコバルト濃度の急激な変化を極力防止できるとともに、コバルト濃度が緩やかに変化して超高圧焼結体5と裏打ち支持体4間に熱膨張係数差が急激に変化することがないため残留応力の集中を防止する効果をも得られる結果、超高圧焼結体5と裏打ち支持体4との接合強度を安定して向上することができる。   As a result, cobalt existing in the cobalt-enriched region 4 in the backing support is diffused and absorbed to the ultrahigh-pressure sintered body 5 side during firing. That is, since the cobalt component necessary for the bonding of the ultrahigh pressure sintered body 5 and the backing support 4 can be supplemented by diffusion from the backing support 5, the boundary portion between the ultrahigh pressure sintered body 5 and the backing support 4. In this case, the cobalt concentration is rapidly increased without the formation of a cobalt-deficient region, and in the case where cobalt powder or cobalt foil is disposed and fired at the interface between the ultrahigh-pressure sintered body 5 and the backing support 4. It is possible to prevent the occurrence of inhomogeneous portions of cobalt concentration, which causes a decrease in bonding strength such as a decrease in strength, in particular, a sudden change in cobalt concentration as much as possible. The difference in thermal expansion coefficient does not change abruptly between the backing support 4 and the backing support 4 so that the effect of preventing the concentration of residual stress can be obtained. As a result, the bonding strength between the ultra-high pressure sintered body 5 and the backing support 4 is increased. Stable improvement Can.

すなわち、裏打ち支持体4と超高圧焼結体5との界面におけるコバルトの硬度分布において図3(b)のコバルト粉末やコバルト箔を介挿して焼成した場合のようにコバルト濃度が急激に高い異常部分が存在すると強度低下の要因となるとともに熱応力が集中して剥離の原因となる。また、図3(b)や図3(c)の裏打ち支持体表面におけるコバルト濃度が一定の裏打ち支持体を用いて焼成した場合のように、コバルト濃度cが前記裏打ち支持体内部のコバルト濃度Cより高い濃度領域あるいは前記超高圧複合焼結体内部のコバルト濃度Cより低い濃度領域が存在すると、超高圧焼結体5と裏打ち支持体4との間に強度の脆化または軟化した領域が存在して、低強度の領域が存在し、かつ、超高圧焼結体2と裏打ち支持体3との間に大きな残留応力が残存することよって超高圧焼結体5が容易に脱落してしまう。 That is, in the hardness distribution of cobalt at the interface between the backing support 4 and the ultra-high pressure sintered body 5, the cobalt concentration is abruptly high as in the case of firing through the cobalt powder or cobalt foil of FIG. If there is a portion, it causes a decrease in strength, and thermal stress concentrates and causes peeling. Further, as shown in FIG. 3B or FIG. 3C, the cobalt concentration c is equal to the cobalt concentration C inside the backing support, as in the case of firing using the backing support having a constant cobalt concentration on the backing support surface. When lower density region than the cobalt concentration C h a high density area or the ultra-high-pressure sintered composite body section than w is present, embrittlement or softened area of the strength between the backing support 4 and ultra-high pressure sintered compact 5 , There is a low strength region, and a large residual stress remains between the ultra high pressure sintered body 2 and the backing support 3, so that the ultra high pressure sintered body 5 easily falls off. End up.

また、本発明の裏打ち支持体4は超高圧焼結体5との密着に必要なコバルトを裏打ち支持体4の金属富化領域により補っているため、裏打ち支持体4、24全体としての組成はコバルト含有量が低い超硬合金にて形成することができる。このため、工具本体2、22に裏打ち支持体4、24をロウ付けする際、工具本体の超硬合金中のコバルト含有量と裏打ち支持体中のコバルト含有量との差が小さくなって両者間に発生する熱膨張係数差を小さくできることから、熱応力によるロウ付け不良も起こしにくいという利点がある。   In addition, since the backing support 4 of the present invention supplements cobalt necessary for adhesion to the ultrahigh-pressure sintered body 5 with the metal-enriched region of the backing support 4, the composition of the backing supports 4 and 24 as a whole is It can be formed of a cemented carbide with a low cobalt content. For this reason, when the backing supports 4 and 24 are brazed to the tool bodies 2 and 22, the difference between the cobalt content in the cemented carbide of the tool body and the cobalt content in the backing support becomes small, Since the difference in thermal expansion coefficient that occurs in the case can be reduced, there is an advantage that brazing defects due to thermal stress are less likely to occur.

なお、本発明における裏打ち支持体4および超高圧焼結体5の内部とは、両者の界面からそれぞれ裏打ち支持体4について200μm以上、超高圧焼結体5について100μm以上離間した深さ部分を指し、その領域におけるコバルト濃度c、cは少なくとも10μm以上の幅の帯状領域における各コバルト濃度の平均値として定義する。また、各箇所におけるコバルトの濃度cについても、5μmごとの深さ領域の測定を行いその平均値として測定する。 The inside of the backing support 4 and the ultra high pressure sintered body 5 in the present invention refers to a depth portion separated from the interface between the backing support 4 by 200 μm or more and the ultra high pressure sintered body 5 by 100 μm or more. cobalt concentration c W in the region, c h is defined as the average value of the concentration of cobalt in the band-like region of at least 10μm or wider. The cobalt concentration c at each location is also measured as a mean value by measuring the depth region every 5 μm.

また、超高圧複合焼結体25は、図4(a)に示すような超高圧焼結体からなる繊維状の芯材51単芯の周囲を硬質焼結体からなる被覆層52にて結合した単芯繊維体53s、または図4(b)に示すような超高圧焼結体からなる繊維状の芯材51複数本の周囲を被覆層52にて結合した多芯繊維体53mを、例えば、図5(a)に示すように一方向に並べて整列させたものからなり、またそのシートを図5(b)、(c)に示すように複合繊維体53の軸方向をシート間で任意の角度(例えば0°、45°、90°等)に変化させて積層することも可能である。さらに、図5(d)のように、複合繊維体53を断面方向にスライスしたものであってもよい。   In addition, the ultra-high-pressure composite sintered body 25 is bonded around the single core of a fibrous core material 51 made of an ultra-high-pressure sintered body as shown in FIG. 4A with a coating layer 52 made of a hard sintered body. For example, a single-core fiber body 53s or a multi-core fiber body 53m in which a plurality of fibrous core materials 51 made of an ultrahigh-pressure sintered body as shown in FIG. 5 (a), the sheets are aligned in one direction and aligned, and the axial direction of the composite fibrous body 53 is arbitrarily set between the sheets as shown in FIGS. 5 (b) and 5 (c). It is also possible to stack by changing the angle (for example, 0 °, 45 °, 90 °, etc.). Further, as shown in FIG. 5D, the composite fiber body 53 may be sliced in the cross-sectional direction.

さらに、図5(a)に示すように単層のシート状であってもよいが、単層のシートを厚み方向に複数層積層した多層の複合シートであることが超高圧複合焼結体16中でより高い応力分散効果がある点で望ましい。また、本発明によれば、図5(c)に示すように、多層シート状については、シート同士の向きが隣接するシート内の複合繊維体53,53の向きが異なるように積層することが望ましく、これによって超高圧複合焼結体16の靭性をさらに高めることができる。   Further, as shown in FIG. 5 (a), it may be a single-layer sheet, but the ultrahigh-pressure composite sintered body 16 is a multilayer composite sheet in which a plurality of single-layer sheets are laminated in the thickness direction. Among them, it is desirable in that it has a higher stress dispersion effect. Further, according to the present invention, as shown in FIG. 5 (c), in the multilayer sheet shape, the laminates may be laminated so that the directions of the composite fiber bodies 53, 53 in the adjacent sheets are different. Desirably, this can further enhance the toughness of the ultra-high pressure composite sintered body 16.

本発明によれば、図2の超高圧複合焼結構造体26が、裏打ち支持体24と超高圧複合焼結体25との界面における前記コバルトの濃度分布において、各箇所におけるコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧複合焼結体内部のコバルトの濃度Cの濃度範囲内に存在する。 According to the present invention, the ultra-high pressure composite sintered structure 26 of FIG. 2 has a cobalt concentration c at each location in the cobalt concentration distribution at the interface between the backing support 24 and the ultra-high pressure composite sintered body 25. present in the concentration range of concentration C c of cobalt wherein the backing support inside portion of the cobalt concentration C w ultrahigh pressure sintered composite body portion.

これによって、上述した効果が発揮されて、超高圧複合焼結体25と裏打ち支持体24との接合強度を安定して向上することができる。   As a result, the above-described effects are exhibited, and the bonding strength between the ultra-high pressure composite sintered body 25 and the backing support 24 can be stably improved.

また、複合繊維体53のサイズは、裏打ち支持体24との密着性向上および工具21としての耐欠損性を高めるために、芯材51の直径が5〜300μm、被覆層52を含めた複合繊維体53の1本の直径が6〜500μmであることが望ましい。   The size of the composite fiber body 53 is such that the core material 51 has a diameter of 5 to 300 μm and includes the covering layer 52 in order to improve the adhesion to the backing support 24 and to improve the fracture resistance as the tool 21. It is desirable that one body 53 has a diameter of 6 to 500 μm.

さらに、芯材51の熱膨張係数αが3.5〜4.8×10−6/℃である場合でも、被覆層52の熱膨張係数αを5.0〜9×10−6/℃とすることにより芯材51と被覆層52との界面で剥離等の発生がない良好な複合構造体および切削工具を形成することができる。 Furthermore, even if the thermal expansion coefficient alpha 1 of the core 51 is 3.5~4.8 × 10 -6 / ℃, the thermal expansion coefficient alpha 2 of the coating layer 52 5.0~9 × 10 -6 / By setting the temperature to 0 ° C., it is possible to form a good composite structure and cutting tool in which no peeling or the like occurs at the interface between the core material 51 and the coating layer 52.

なお、工具21の超高圧複合焼結構造体26以外の構成は図1と同じである。   The configuration of the tool 21 other than the ultra-high pressure composite sintered structure 26 is the same as that shown in FIG.

本発明において、超高圧焼結体5または超高圧複合焼結体25をなす超高圧焼結体材料は、ダイアモンド、ダイアモンドライクカーボン(DLC)または立方晶窒化ホウ素(cBN)の群から選ばれる超硬質粒子を50体積%以上含有してなり、コバルト(Co)を必須として、所望によりニッケル(Ni)を含有せしめた結合金属にて結合させた超高圧材料からなる。なお、上記超高圧材料中には適宜周期律表4a、5aおよび6a族金属の炭化物、窒化物および炭窒化物の1種以上からなる硬質粒子を含有せしめることも可能である。   In the present invention, the ultrahigh-pressure sintered body material constituting the ultrahigh-pressure sintered body 5 or the ultrahigh-pressure composite sintered body 25 is an ultrahigh pressure selected from the group of diamond, diamond-like carbon (DLC), or cubic boron nitride (cBN). It consists of an ultra-high pressure material that contains 50% by volume or more of hard particles, is made of cobalt (Co) as an essential component, and is bonded with a bonding metal that contains nickel (Ni) if desired. The ultrahigh pressure material may appropriately contain hard particles composed of one or more of carbides, nitrides, and carbonitrides of the periodic table 4a, 5a, and 6a metals.

一方、芯材51の周囲に存在して芯材51を結合する被覆層52をなす硬質焼結体は、周期律表4a、5aおよび6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる硬質粒子を結合金属にて結合した硬質焼結体または周期律表4a、5aおよび6a族金属、Al、Si並びにZnの酸化物、炭化物、窒化物、炭窒化物および硼化物からなる群より選ばれるセラミック粒子を焼結助剤にて結合したセラミックスにて構成される。   On the other hand, the hard sintered body that forms the coating layer 52 that exists around the core material 51 and joins the core material 51 is a group consisting of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals. A hard sintered body in which hard particles selected from above are bonded with a bonding metal, or a periodic table 4a, 5a and 6a group metal, an oxide of Al, Si and Zn, carbide, nitride, carbonitride and boride. It is composed of ceramics obtained by bonding ceramic particles selected from the group with a sintering aid.

具体的には、被覆層52を構成する材質としては、周期律表4a、5aおよび6a族金属の炭化物、窒化物および炭窒化物の1種以上の硬質粒子として、特に炭化タングステン、炭化チタン、炭窒化チタン、窒化チタン、炭化タンタル、炭化ニオブ、炭化ジルコニウム、窒化ジルコニウム、炭化バナジウム、炭化クロムおよび炭化モリブデンの群から選ばれる少なくとも1種、さらには炭化タングステン、炭化チタンまたは炭窒化チタンの群から選ばれる少なくとも1種を50〜97体積%、特に炭化タングステン、炭化チタンまたは炭窒化チタンを、コバルトを必須として所望によりニッケルを含有せしめた結合金属3〜50体積%にて結合してなる硬質焼結体が好適に使用可能である。   Specifically, the material constituting the coating layer 52 is one or more hard particles of periodic table 4a, 5a and 6a group metal carbides, nitrides and carbonitrides, in particular tungsten carbide, titanium carbide, At least one selected from the group consisting of titanium carbonitride, titanium nitride, tantalum carbide, niobium carbide, zirconium carbide, zirconium nitride, vanadium carbide, chromium carbide and molybdenum carbide, and further from the group of tungsten carbide, titanium carbide or titanium carbonitride Hard firing formed by bonding at least one selected from 50 to 97% by volume, in particular tungsten carbide, titanium carbide or titanium carbonitride with cobalt as an essential component and 3 to 50% by volume of a binding metal containing nickel as required. A ligation can be suitably used.

ここで、被覆層52が超硬合金からなる場合、超高圧複合焼結体25と裏打ち支持体24との密着性がさらに高い点で望ましい。   Here, when the coating layer 52 is made of a cemented carbide, it is desirable in that the adhesion between the ultra-high pressure composite sintered body 25 and the backing support 24 is even higher.

他方、裏打ち支持体4、24は、炭化タングステン(WC)からなる硬質相を少なくともコバルトを必須として、所望によりニッケルを含有する結合金属によって結合させたWC基超硬合金からなる。   On the other hand, the backing supports 4 and 24 are made of a WC-based cemented carbide in which a hard phase made of tungsten carbide (WC) is made essential by at least cobalt and bonded by a bonding metal containing nickel if desired.

ここで、裏打ち支持体4、24は超高圧焼結前に表面にコバルト付加領域を有するものであり、かかる構成とするためには、超硬合金中に、W(タングステン)以外の周期律表4a,5a,6a族金属(いわゆるβ金属)の炭化物、窒化物、炭窒化物のいずれか1種以上を含有するものからなることが望ましい。   Here, the backing supports 4 and 24 have a cobalt-added region on the surface before ultra-high pressure sintering, and in order to obtain such a configuration, a periodic table other than W (tungsten) is included in the cemented carbide. It is desirable to comprise one or more of carbides, nitrides, and carbonitrides of group 4a, 5a, and 6a metals (so-called β metals).

なお、本発明によれば、切削工具としてはソリッドタイプの工具であっても良いが、低コスト、製造の容易さ等の点で図1、2のようにスローアウェイ式の工具1,21であることが望ましい。   According to the present invention, the cutting tool may be a solid type tool, but in terms of low cost and ease of manufacture, the throwaway type tools 1 and 21 as shown in FIGS. It is desirable to be.

また、図1〜2では切削工具について例示したが、本発明はこれに限定されるものではなく、掘削工具や刃物等の他の工具、摺動部品や金型等の耐摩部品等への応用も可能である。   1 and 2 exemplify the cutting tool, the present invention is not limited to this, and is applied to other tools such as excavation tools and cutting tools, wear-resistant parts such as sliding parts and dies. Is also possible.

(製造方法)
次に、本発明の切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the cutting tool of this invention is demonstrated.

まず、本発明の超硬合金製裏打ち支持体を作製するには、平均粒径0.1〜10μmのWC粉末と、平均粒径0.5〜10μmの少なくともコバルトを含有する鉄族金属粉末を5〜20体積%、さらに必要に応じてW以外の周期律表第4a,5a,6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物、炭窒化物を添加した混合粉末を調整する。ここで、β金属化合物原料としては、表面に金属富化領域を確実に形成できる点で窒化物または炭窒化物を用いることが望ましい。   First, in order to produce a cemented carbide backing support of the present invention, an WC powder having an average particle size of 0.1 to 10 μm and an iron group metal powder containing at least cobalt having an average particle size of 0.5 to 10 μm are used. 5 to 20% by volume, and if necessary, a mixed powder to which at least one kind of carbide, nitride, and carbonitride selected from the group of metals of Group 4a, 5a, and 6a other than W is added is prepared. . Here, as the β metal compound raw material, it is desirable to use a nitride or carbonitride in that a metal-enriched region can be reliably formed on the surface.

次に、この混合粉末を所定の裏打ち支持体形状に成形し、1350〜1600℃の温度域において0.5〜2h焼成することにより得られる。この際、添加される窒化物およびまたは炭窒化物の添加量および有無に応じて、焼成の雰囲気を制御する。具体的には上記窒化物およびまたは炭窒化物の添加量が極めて少ないか添加していない場合には上記焼成条件に加えて、1250〜1350℃の温度域において2〜101kPaのNガスにより0.2〜1h処理することで表層部にコバルト濃度が高い金属富化領域を形成した支持体を得ることができる。さらに、超硬合金中のコバルト量、β金属化合物原料中の窒化物およびまたは炭窒化物の添加量、および焼成中の雰囲気におけるNガス成分の混合比率を変化させることにより、金属富化領域の厚みおよび内部のコバルト濃度との比率D/Dを制御することができる。 Next, the mixed powder is formed into a predetermined backing support shape and fired in a temperature range of 1350 to 1600 ° C. for 0.5 to 2 hours. At this time, the firing atmosphere is controlled in accordance with the added amount and presence / absence of added nitride and / or carbonitride. Specifically, when the addition amount of the nitride and / or carbonitride is very small or not added, in addition to the firing conditions, 0 to 2101 kPa N 2 gas in the temperature range of 1250 to 1350 ° C. By performing the treatment for 2 to 1 h, it is possible to obtain a support in which a metal-enriched region having a high cobalt concentration is formed on the surface layer portion. Furthermore, by changing the amount of cobalt in the cemented carbide, the amount of nitride and / or carbonitride added in the β metal compound raw material, and the mixing ratio of the N 2 gas component in the atmosphere during firing, the metal-enriched region It is possible to control the ratio D s / D c with the thickness and the inner cobalt concentration.

ここで、裏打ち支持体4、24の内部におけるコバルト濃度Dに対する裏打ち支持体4、24の超高圧焼結体5、超高圧複合焼結体25載置面表面におけるコバルト濃度Dの比率D/Dが1.05以上、特に1.2以上であることが、超高圧焼結体5、超高圧複合焼結体25との界面密着結合に必要なコバルト量が十分にまかなうことが出来る点で望ましい。 Here, ultra-high pressure sintered body 5 of the backing support 4,24 to cobalt concentration D c in the interior of the lining support 4,24, the ratio D of the cobalt concentration D s the extra-high-pressure composite sintered body 25 mounting surface surface When s / Dc is 1.05 or more, particularly 1.2 or more, the amount of cobalt necessary for interfacial close-bonding with the ultrahigh-pressure sintered body 5 and the ultrahigh-pressure composite sintered body 25 may be sufficiently covered. This is desirable because it can be done.

さらに、金属富化領域の厚みが裏打ち支持体4の超高圧焼結体5との界面より5μm以上、特に20〜50μmであることにより、十分な超高圧焼結体5との結合力が得られるため望ましい。   Furthermore, when the thickness of the metal-enriched region is 5 μm or more, particularly 20 to 50 μm from the interface between the backing support 4 and the ultrahigh-pressure sintered body 5, sufficient bonding strength with the ultrahigh-pressure sintered body 5 is obtained. Is desirable.

上記超硬合金製裏打ち支持体4を所望の形状に加工し、超高圧成形体と共に超高圧焼成を行う。この際、超高圧焼結体との接合面には上記裏打ち支持体の金属富化領域が存在する焼き肌面を使用する。   The cemented carbide backing support 4 is processed into a desired shape, and ultrahigh pressure firing is performed together with the ultrahigh pressure molded body. At this time, the surface of the skin with the metal-enriched region of the backing support is used for the joint surface with the ultra-high pressure sintered body.

一方、超高圧焼結体を用いる場合には、超高圧焼結体を作製するための原料粉末を混合し成形した超高圧成形体40を作製する。   On the other hand, when using an ultra-high pressure sintered body, an ultra-high pressure molded body 40 is produced by mixing and molding raw material powders for producing the ultra-high pressure sintered body.

他方、超高圧複合焼結構造体を用いる際の製造方法について説明する。図6、図7は、図4の複合繊維体53の製造方法を説明するための工程図である。   On the other hand, a manufacturing method when using the ultra-high pressure composite sintered structure will be described. 6 and 7 are process diagrams for explaining a method of manufacturing the composite fiber body 53 of FIG.

複合繊維体53を作製するにあたり、まず、芯材用成形体51aを作製する。芯材用成形体51aを作製する方法は基本的には公知の粉末冶金法、つまり原料粉末と結合剤(バインダ)とを混合して成形する方法によって作製することができる。   In producing the composite fiber body 53, first, the core material molded body 51a is produced. The core material molded body 51a can be basically manufactured by a known powder metallurgy method, that is, a method in which raw material powder and a binder (binder) are mixed and molded.

具体的な方法として、上述した芯材51のうちダイアモンド質焼結体を選択した場合について説明すると、初めに、平均粒径0.01〜10μm、特に0.1〜3.5μmのダイアモンド粉末を50質量%以上、特に80質量%以上と、所望により、平均粒径0.01〜10μmの鉄族金属粉末を50質量%以下と、の割合で混合し、さらに有機バインダ、可塑剤、溶剤を添加して混錬し、プレス成形または鋳込み成形等の成形法により円柱形状に成形して芯材用成形体51aを作製する(図6(a)参照)。   As a specific method, the case where a diamond sintered body is selected from the above-described core material 51 will be described. First, a diamond powder having an average particle size of 0.01 to 10 μm, particularly 0.1 to 3.5 μm is prepared. 50% by mass or more, in particular 80% by mass or more, and if desired, an iron group metal powder having an average particle size of 0.01 to 10 μm is mixed in a proportion of 50% by mass or less, and further an organic binder, a plasticizer and a solvent are mixed. It is added and kneaded, and formed into a cylindrical shape by a molding method such as press molding or cast molding to produce a core material compact 51a (see FIG. 6A).

ここで、後述する共押出成形によって均質な複合成形体を得るためには、前記有機バインダの添加量を30〜70体積部、特に40〜60体積部とすることが望ましい。   Here, in order to obtain a homogeneous composite molded body by coextrusion molding to be described later, it is desirable that the amount of the organic binder added is 30 to 70 parts by volume, particularly 40 to 60 parts by volume.

有機バインダとしては、パラフィンワックス、ポリスチレン、ポリエチレン、エチレン‐エチルアクリレート、エチレン‐ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等を使用することができる。   As the organic binder, paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol, dibutyl phthalate, or the like can be used.

一方、芯材用成形体51aとは異なる組成の被覆層をなす材料を前述したバインダとともに混錬してプレス成形、押出成形または鋳込み成形等の成形方法により半割円筒形状の2本の被覆層用成形体52aを作製し、この被覆層用成形体52aを芯材用成形体51aの外周を覆うように配置した成形体53aを作製する(図6(b)および(c)参照)。   On the other hand, two half-cylindrical coating layers are formed by kneading a material having a coating layer having a composition different from that of the core molding 51a together with the above-described binder by a molding method such as press molding, extrusion molding or casting. A molded body 52a is prepared, and a molded body 53a in which the covering layer molded body 52a is arranged so as to cover the outer periphery of the core material molded body 51a is manufactured (see FIGS. 6B and 6C).

そして、押出機100を用いて芯材用成形体51aと被覆層用成形体52aとからなる上記成形体53aを共押出成形することにより、芯材用成形体51aの周囲に被覆層用成形体52aが被覆され、細い径に伸延された図4(a)のシングルタイプの単芯繊維体53sを作製することができる(図6(d)参照)。   Then, by using the extruder 100 to co-extrusion the molded body 53a composed of the core body molded body 51a and the coating layer molded body 52a, the coated body molded body is formed around the core material molded body 51a. The single-type single-core fiber body 53s of FIG. 4A covered with 52a and extended to a thin diameter can be produced (see FIG. 6D).

また、複合繊維体53の形成にあたり、図7に示すように、上記共押出した長尺状の単芯繊維体53sを複数本集束した集束体54を再度共押出成形することによって、図4(b)に示すような繊維密度の高いマルチタイプの多芯繊維体53mを作製することができる。なお、複合繊維体53s、53mの断面は、円形のみならず、四角形、三角形でもよい。   Further, in forming the composite fiber body 53, as shown in FIG. 7, by re-extruding the converging body 54 in which a plurality of the co-extruded long single-core fiber bodies 53s are bundled, FIG. A multi-type multi-core fiber body 53m having a high fiber density as shown in b) can be produced. The cross sections of the composite fiber bodies 53s and 53m may be not only a circle but also a square or a triangle.

そして、図5(a)〜(c)に示したように、この長尺状の複合繊維体53を2列〜100列に整列させて型内で加熱加圧して複合シート55を得て、所望によりさらにこの複合シート55の複数枚を、隣接する複合シート55、55の複合繊維体53同士の向きが異なる角度となるように複合シート55を厚み方向に複数枚積層して多層構造の複合構造成形体56を得る。   And as shown to Fig.5 (a)-(c), this long composite fiber body 53 is aligned in 2 rows-100 rows, and it heat-presses in a type | mold, and obtained the composite sheet 55, If desired, a plurality of the composite sheets 55 may be laminated in the thickness direction so that the directions of the composite fiber bodies 53 of the adjacent composite sheets 55 and 55 are different from each other. A structural molded body 56 is obtained.

また、この複合構造体を必要に応じ、図5(d)に示すように、複合繊維体53の断面方向に切断することもでき、あるいは、図8に示すように、一対のローラ60間に通して圧延処理し、さらに高密度の複合積層成形体61を作製することもできる。   In addition, the composite structure can be cut in the cross-sectional direction of the composite fiber body 53 as shown in FIG. 5 (d) as needed, or between the pair of rollers 60 as shown in FIG. It is also possible to produce a composite laminate molded body 61 having a higher density by rolling it through.

さらに、単層の複合シート55、多層の複合構造成形体56または複合積層成形体61を超硬合金製の裏打ち支持体24上に載置して、300〜700℃、10〜200時間で昇温または保持させて脱バインダ処理を行う。   Further, the single-layer composite sheet 55, the multilayer composite structure molded body 56 or the composite laminate molded body 61 is placed on the cemented carbide backing support 24 and heated at 300 to 700 ° C. for 10 to 200 hours. The binder removal treatment is performed while maintaining the temperature or holding.

そして、図9に示すように、上記超高圧成形体40または脱バインダ処理した超高圧複合焼結体用成形体(複合構造成形体56)を裏打ち支持体4、24の金属富化領域形成面に載置した状態で超高圧装置内にセットして加圧圧力4〜6GPa、温度1350〜1600℃、時間1〜60分で焼成して一体化することにより裏打ち支持体4、24と接合一体化された超高圧焼結構造体6または超高圧複合焼結構造体26を作製することができる。   Then, as shown in FIG. 9, the ultra-high pressure molded body 40 or the binder-treated ultra-high pressure composite sintered body molded body (composite structure molded body 56) is formed on the metal-enriched region forming surface of the backing supports 4 and 24. Is integrated into the backing supports 4 and 24 by being set in an ultra-high pressure apparatus in a state of being mounted on the substrate, and fired and integrated at a pressure of 4 to 6 GPa, a temperature of 1350 to 1600 ° C. for 1 to 60 minutes. The ultrahigh pressure sintered structure 6 or the ultrahigh pressure composite sintered structure 26 can be produced.

この構造体6、26は、ワイヤー放電加工機、切削、研磨等で切刃チップ形状に加工する。   The structures 6 and 26 are processed into a cutting edge chip shape by a wire electric discharge machine, cutting, polishing, or the like.

そして、裏打ち支持体4、24と上記超高圧焼結構造体6または超高圧複合焼結構造体26とが一体化された切刃チップを、工具本体2、22の角部に形成された取付座3、23に銀ろうなどを用いてロウ付け接合する。   A cutting edge chip in which the backing supports 4 and 24 and the ultrahigh-pressure sintered structure 6 or the ultrahigh-pressure composite sintered structure 26 are integrated is attached to the corners of the tool bodies 2 and 22. The seats 3 and 23 are brazed using silver solder or the like.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to a following example.

表1に示す組成に示す組成に調合された裏打ち支持体用超硬合金を成形し、表1に示す条件で焼成した。得られた超硬合金を切断し断面観察して、表面近傍から深さ方向にEPMA分析により濃度分析を行い、金属富化層でのコバルト(Co)濃度Dと内部のコバルト(Co)濃度Dとを比較してD/Dの値を求めたところ、表1に示すように超硬合金A,Bについては表面近傍に金属富化層が形成していた。 The cemented carbide for backing support prepared in the composition shown in Table 1 was molded and fired under the conditions shown in Table 1. The obtained cemented carbide was cut and cross-sectional observed, and concentration analysis was performed by EPMA analysis in the depth direction from the vicinity of the surface. The cobalt (Co) concentration D s in the metal-enriched layer and the internal cobalt (Co) concentration was by comparing the D c obtains the value of D s / D c, cemented carbide a as shown in Table 1, metal enriched layer near the surface for the B had been formed.

得られた超硬合金を片面のみ研削加工し、厚み3mmの裏打ち支持体とした。

Figure 2005281759
The obtained cemented carbide was ground on only one side to obtain a backing support having a thickness of 3 mm.
Figure 2005281759

次に、平均粒径1〜5μmのダイアモンド粒子とCo粉末を表2に示す組成に調整・混合し、成形して超高圧成形体を作製した。   Next, diamond particles having an average particle diameter of 1 to 5 μm and Co powder were adjusted and mixed to the composition shown in Table 2, and molded to produce an ultra-high pressure molded body.

また、以下の方法によって超高圧複合焼結体用の成形体を作製した。   Moreover, the molded object for ultra-high pressure compound sintered compacts was produced with the following method.

まず、平均粒径1〜5μmのダイアモンド粉末に、有機バインダとしてセルロース、ポリエチレングリコールを、溶剤としてポリビニルアルコールを総量で100体積部加えて混錬して、直径が20mmの円柱形状にプレス成形して芯材用成形体を作製した(試料No.1〜4)。

Figure 2005281759
First, a diamond powder having an average particle diameter of 1 to 5 μm is kneaded with cellulose and polyethylene glycol as organic binders and 100 parts by volume of polyvinyl alcohol as a solvent in a total amount, and press-molded into a cylindrical shape having a diameter of 20 mm. The molded object for core materials was produced (sample No. 1-4).
Figure 2005281759

一方、被覆層は平均粒径1μmのWC粉末および平均粒径3μmのCo粉末を表3の組成に混合粉砕し、上記芯材用と同じ有機バインダと溶剤を加えて混錬して半割円筒形状の厚さが1mmの被覆層用成形体をプレス成形にて2つ作製し、これらを前記芯材用成形体の外周を覆うように配置して複合繊維体を作製した。   On the other hand, the WC powder having an average particle diameter of 1 μm and Co powder having an average particle diameter of 3 μm are mixed and pulverized to the composition shown in Table 3, and the same organic binder and solvent as those for the core material are added and kneaded to form a coating layer. Two coating layer molded bodies having a shape thickness of 1 mm were produced by press molding, and these were arranged so as to cover the outer periphery of the core material molded body to produce a composite fiber body.

そして、上記複合繊維体を共押出して直径が1mmの伸延された単芯繊維成形体を作製した後、この伸延された複合成形体100本を集束して再度共押出成形し、直径が1mmのマルチフィラメント構造の多芯繊維成形体を作製した。   Then, the composite fiber body is coextruded to produce an elongated single core fiber molded body having a diameter of 1 mm, and then 100 of the stretched composite molded bodies are converged and coextruded again, and the diameter is 1 mm. A multifilament fiber molded body having a multifilament structure was produced.

次に、上記マルチフィラメント構造の複合繊維体を100mmの長さにカットし、並列に整列させてシート状とし、この複合シート3枚を積層して積層体を作製した。さらに、この積層体を300〜700℃まで100時間で昇温することによって脱バインダ処理を行い、超高圧複合成形体(複合構造成形体56)とした(試料No.5〜8)。   Next, the composite fiber body having the multifilament structure was cut to a length of 100 mm, aligned in parallel to form a sheet, and three composite sheets were laminated to produce a laminate. Further, the binder was subjected to binder removal treatment by raising the temperature of the laminate to 300 to 700 ° C. over 100 hours to obtain an ultra-high pressure composite molded body (composite structure molded body 56) (Sample Nos. 5 to 8).

得られた上記超高圧成形体および超高圧複合構造成形体について、上記超硬合金製裏打ち支持体の焼き肌面に直接載置して、超高圧焼結用の冶具であるカプセル中に挿入した。なお、試料No.4、8については裏打ち支持体と表2、3の組成からなる上記成形体との界面に約0.1gのCo粉末を充填した。   The obtained ultra-high pressure molded body and ultra-high pressure composite structure molded body were placed directly on the burned surface of the cemented carbide backing support and inserted into a capsule which was a jig for ultra-high pressure sintering. . Sample No. As for Nos. 4 and 8, about 0.1 g of Co powder was filled at the interface between the backing support and the above-mentioned molded product having the composition shown in Tables 2 and 3.

そして、このカプセルを超高圧焼成装置に配置し、5.5GPa、1400℃で15分焼成し、超高圧(複合)焼結体と裏打ち支持体が一体化された超高圧(複合)焼結構造体を作製した。   Then, this capsule is placed in an ultra-high pressure firing apparatus, fired at 5.5 GPa and 1400 ° C. for 15 minutes, and an ultra-high pressure (composite) sintered structure in which the ultra-high pressure (composite) sintered body and the backing support are integrated. The body was made.

その後、この構造体の上下面のカプセルを研削除去し、さらに裏打ち支持体を研削して厚み2mmの切刃チップ厚みとした。また、この焼結体断面を観察したところダイアモンド超高圧焼結体層の厚みは全試料について約0.4mmと一定であることを確認した。   Thereafter, the capsules on the upper and lower surfaces of this structure were removed by grinding, and the backing support was further ground to obtain a cutting edge tip thickness of 2 mm. Further, when the cross section of the sintered body was observed, it was confirmed that the thickness of the diamond ultrahigh pressure sintered body layer was constant at about 0.4 mm for all samples.

また、各試料の断面についてSEM観察するとともに、表面近傍から深さ方向にEPMA分析により濃度分析を行い、界面付近でのコバルト(Co)濃度分布を測定し濃度マッピングをとった。このマッピングについて、各箇所におけるコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧複合焼結体内部のコバルトの濃度Cの濃度範囲内であるものを○、範囲から外れる点があるものを×として評価した。さらに、図3のコバルトの濃度分布パターン(a)〜(c)に照らして各試料のマッピングが最も類似するパターンを特定し、表2、3に記載した。 In addition, SEM observation was performed on the cross section of each sample, concentration analysis was performed by EPMA analysis in the depth direction from the vicinity of the surface, cobalt (Co) concentration distribution near the interface was measured, and concentration mapping was taken. This mapping, those cobalt concentration c is in the concentration range of concentration C h of cobalt wherein the backing support inside portion of the cobalt concentration C w ultrahigh pressure sintered composite body section ○, the range in each location An evaluation was given as x where there was a point to be removed. Furthermore, the patterns with the most similar mapping of each sample in the light of the cobalt concentration distribution patterns (a) to (c) in FIG.

さらに、この焼結体について、超高圧(複合)焼結体表面を下側にして上部スパン3mm、下部スパン8mmの4点曲げ試験と同じ測定方法にて荷重をかけ、超高圧(複合)焼結体層が超硬合金裏打ち支持体から剥離し始める荷重を密着強度(剥離強度)として評価した。結果は表2、3に示した。

Figure 2005281759
Further, with respect to this sintered body, with the surface of the ultra-high pressure (composite) sintered body facing down, a load was applied by the same measuring method as the 4-point bending test with an upper span of 3 mm and a lower span of 8 mm, The load at which the bonded layer began to peel from the cemented carbide backing support was evaluated as adhesion strength (peel strength). The results are shown in Tables 2 and 3.
Figure 2005281759

表2から明らかなとおり、本発明にかかる試料No.1、2、5、6においては、超高圧(複合)焼結体と裏打ち支持体とが優れた密着強度を有していた。   As is clear from Table 2, the sample No. In 1, 2, 5, and 6, the ultra-high pressure (composite) sintered body and the backing support had excellent adhesion strength.

また、界面付近の表面近傍に金属富化領域を形成していない超硬合金製裏打ち支持体を用いコバルト濃度が範囲内から外れる点がある試料No.3、4、7、8では密着強度が十分ではなく、小さな荷重で剥離が発生した。さらに、超高圧(複合)成形体と裏打ち支持体との界面にコバルト粉末を充填してコバルト濃度が範囲内から外れる点がある試料No.4、8でも試料No.3、7よりは優れた密着強度を有していたが、やはり密着強度が十分ではなく、少ない荷重で剥離が発生した。   Sample No. 1 also has a point in which the cobalt concentration falls outside the range using a cemented carbide backing support that does not form a metal-enriched region in the vicinity of the interface. In 3, 4, 7, and 8, the adhesion strength was not sufficient, and peeling occurred with a small load. Furthermore, sample No. 1 has a point in which the cobalt concentration is out of the range by filling the interface between the ultra-high pressure (composite) molded body and the backing support with cobalt powder. 4 and 8 also sample No. Although the adhesion strength was superior to those of 3 and 7, the adhesion strength was still insufficient, and peeling occurred with a small load.

(切削工具)
さらに、作製した上記焼結体を用いて、図2に示されるようなTNMA160404の形状の工具本体に銀ロウにてロウ付けをおこない、切削工具を作製した。得られた切削工具にて下記断続切削性能が要求される条件にて切削試験を行い、欠損またはチッピングが発生するまでの被削材の加工数(最大4000個)を評価するとともに、4000個加工できた試料についてはその時点での摩耗量を測定した。結果は表4に示した。
(Cutting tools)
Furthermore, using the produced sintered body, a tool body having a shape of TNMA 160404 as shown in FIG. 2 was brazed with silver brazing to produce a cutting tool. A cutting test is performed on the obtained cutting tool under the condition that the following intermittent cutting performance is required, and the number of workpieces (up to 4000 pieces) before the occurrence of chipping or chipping is evaluated and 4000 pieces are processed. About the produced sample, the amount of wear at that time was measured. The results are shown in Table 4.

(切削条件)
<断続切削試験>
被削材:ハイシリコンアルミ(Al−12%Si)4本溝付き
切削速度:250m/min
送り:0.2mm/ref
切込み:2mm
切削状態:乾式

Figure 2005281759
(Cutting conditions)
<Intermittent cutting test>
Work Material: High Silicon Aluminum (Al-12% Si) 4 Groove Cutting Speed: 250m / min
Feed: 0.2mm / ref
Cutting depth: 2mm
Cutting state: dry
Figure 2005281759

表4より、裏打ち支持体に金属富化層を設けなかった試料No.3、7では、切削の途中で超高圧焼結体が脱落して試験続行不能となってしまった。また、超高圧焼結体と裏打ち支持体との間にコバルト粉末を挟んだ試料No.4、8では、超高圧焼結体の脱落こそなかったが、早期に欠損してしまった。   From Table 4, Sample No. in which the metal-enriched layer was not provided on the backing support. In Nos. 3 and 7, the ultra-high pressure sintered body dropped out during cutting, making it impossible to continue the test. In addition, sample No. 1 was obtained by sandwiching cobalt powder between the ultrahigh pressure sintered body and the backing support. In Nos. 4 and 8, the ultra-high pressure sintered body did not fall off, but was lost early.

これに対し、本発明に従って、表面に金属富化領域を有する裏打ち支持体を用いて作製された試料No.1、2、5、6では、超高圧焼結体の脱落もなく、優れた耐欠損性を示した。特に、超高圧複合焼結体を用いた試料No.5、6では特に優れた耐欠損性を示した。   On the other hand, according to the present invention, sample No. 1 produced using a backing support having a metal-enriched region on the surface. In 1, 2, 5, and 6, the high-pressure sintered body did not fall off and exhibited excellent fracture resistance. In particular, sample No. using an ultra-high pressure composite sintered body. Samples 5 and 6 showed particularly excellent fracture resistance.

本発明にかかる超高圧焼結構造体を切刃チップとして用いたスローアウェイチップの一実施形態を示す(a)斜視図、(b)切刃チップ付近の部分断面図である。It is (a) perspective view which shows one Embodiment of the throw away tip which used the ultrahigh pressure sintered structure concerning this invention as a cutting blade tip, (b) It is a fragmentary sectional view of cutting blade tip vicinity. 本発明にかかる超高圧焼結構造体を切刃チップとして用いたスローアウェイチップの一実施形態を示す(a)斜視図、(b)切刃チップ付近の部分断面図である。It is (a) perspective view which shows one Embodiment of the throw away tip which used the ultrahigh pressure sintered structure concerning this invention as a cutting blade tip, (b) It is a fragmentary sectional view of cutting blade tip vicinity. 本発明の超高圧(複合)焼結構造体について、超高圧焼結体と裏打ち支持体との界面付近におけるコバルトの分布状態を示す模式図である。It is a schematic diagram which shows the distribution state of cobalt in the interface vicinity of an ultrahigh pressure sintered compact and a backing support body about the ultrahigh pressure (composite) sintered structure of this invention. 本発明にかかる切削工具の複合繊維体の構造を示す斜視図である。It is a perspective view which shows the structure of the composite fiber body of the cutting tool concerning this invention.

(a)シングル構造の単芯繊維体の一例を示す概略斜視図である。   (A) It is a schematic perspective view which shows an example of the single core fiber body of a single structure.

(b)マルチフィラメント構造の多芯繊維体の一例を示す概略斜視図である。
(a)〜(d)は、本発明にかかる超高圧(複合)構造焼結体中の複合繊維体の配置方法を説明するための図である。 (a)〜(d)は、本発明にかかる超高圧複合焼結構造体について、シングルタイプの単芯繊維成形体の製造方法を示す工程図である。 本発明にかかる超高圧複合焼結構造体について、マルチタイプの多芯繊維成形体の製造方法を示す工程図である。 本発明にかかる超高圧複合焼結構造体の製造方法の変形例を説明するための図である。 本発明にかかる超高圧(複合)焼結構造体を焼成する際の成形体の配置状態を説明するための図である。
(B) It is a schematic perspective view which shows an example of the multifilament fiber body of a multifilament structure.
(A)-(d) is a figure for demonstrating the arrangement | positioning method of the composite fiber body in the ultra-high pressure (composite) structure sintered compact concerning this invention. (A)-(d) is process drawing which shows the manufacturing method of a single type single core fiber molded object about the ultra-high pressure compound sintered structure concerning this invention. It is process drawing which shows the manufacturing method of a multi-type multi-core fiber molded object about the ultra-high pressure compound sintered structure concerning this invention. It is a figure for demonstrating the modification of the manufacturing method of the ultra-high pressure compound sintered structure concerning this invention. It is a figure for demonstrating the arrangement | positioning state of the molded object at the time of baking the ultrahigh pressure (composite) sintered structure concerning this invention.

符号の説明Explanation of symbols

1、21 切削工具
2、22 工具本体
3、23 取り付け座
4、24 裏打ち支持体
5 超高圧焼結体
25 超高圧複合焼結体
6 超高圧焼結構造体
26 超高圧複合焼結構造体
7、27 ロウ材
8、28 すくい面
9、29 逃げ面
10、30 切刃
11、31 取付孔
40 超高圧成形体
51 芯材
51a 芯材用成形体
52 被覆層
52a 被覆層用成形体
53 複合繊維体
53a 成形体
53s シングル構造単芯繊維体
53m マルチフィラメント構造多芯繊維体
55 複合シート
56 複合構造成形体
60 ローラ
61 複合積層成形体
1, 21 Cutting tool 2, 22 Tool body 3, 23 Mounting base 4, 24 Backing support 5 Ultra high pressure sintered body 25 Ultra high pressure composite sintered body 6 Ultra high pressure sintered structure 26 Ultra high pressure composite sintered structure 7 27, brazing material 8, 28 rake face 9, 29 flank face 10, 30 cutting edge 11, 31 mounting hole 40 super high pressure molded body 51 core material 51a core material molded body 52 coating layer 52a coating layer molded body 53 composite fiber Body 53a Molded body 53s Single structure single core fiber body 53m Multifilament structure multicore fiber body 55 Composite sheet 56 Composite structure molded body 60 Roller 61 Composite laminated molded body

Claims (8)

超高圧焼結体を、少なくともコバルトを結合金属として含有する超硬合金からなる裏打ち支持体の表面に接合した超高圧焼結構造体であって、前記裏打ち支持体と前記超高圧焼結体との界面における前記コバルトの濃度分布において、界面近傍のコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧焼結体内部のコバルトの濃度Cの濃度範囲内に存在する超高圧焼結構造体。 An ultra-high pressure sintered structure in which an ultra-high pressure sintered body is bonded to the surface of a backing support made of a cemented carbide containing at least cobalt as a binding metal, the backing support, the ultra-high pressure sintered body, in the concentration distribution of the cobalt in the interface, the concentration c of the vicinity of the interface cobalt is present in the concentration range of concentration C h of cobalt wherein the backing support inside portion of the cobalt concentration C w ultrahigh pressure sintering body portion Ultra high pressure sintered structure. 超高圧焼結体からなる繊維状の芯材複数本の周囲を硬質焼結体にて結合した超高圧複合焼結体を、少なくともコバルトを結合金属として含有する超硬合金からなる裏打ち支持体の表面に接合した超高圧複合焼結構造体であって、前記裏打ち支持体と前記超高圧複合焼結体との界面における前記コバルトの濃度分布において、界面近傍のコバルトの濃度cが前記裏打ち支持体内部のコバルトの濃度Cと前記超高圧複合焼結体内部のコバルトの濃度Cの濃度範囲内に存在する超高圧複合焼結構造体。 An ultra-high-pressure composite sintered body in which a plurality of fibrous core materials made of an ultra-high-pressure sintered body are bonded with a hard sintered body, and a backing support made of a cemented carbide containing at least cobalt as a binding metal. An ultra-high pressure composite sintered structure bonded to a surface, wherein in the cobalt concentration distribution at the interface between the backing support and the ultra-high pressure composite sintered body, the cobalt concentration c in the vicinity of the interface is the backing support. ultrahigh pressure composite sintered structure wherein a concentration C w of the interior of the cobalt present in the concentration range of concentration C c of cobalt ultra high pressure sintered composite body portion. 前記硬質焼結体が超硬合金からなる請求項2記載の超高圧複合焼結構造体。 The ultra-high pressure composite sintered structure according to claim 2, wherein the hard sintered body is made of a cemented carbide. 少なくともコバルトを結合金属として含有するとともに、コバルト濃度が高いコバルト富化領域を表面に具備する超硬合金からなる裏打ち支持体の前記金属富化領域形成面に、超高圧焼結体原料を載置して、高温・超高圧下で焼成する超高圧焼結構造体の製造方法。 An ultra-high pressure sintered body material is placed on the metal-enriched region forming surface of a backing support made of a cemented carbide containing at least cobalt as a binding metal and having a cobalt-enriched region having a high cobalt concentration on the surface. And the manufacturing method of the super-high pressure sintered structure which bakes under high temperature and ultra-high pressure. 焼成前の前記裏打ち支持体について、該裏打ち支持体内部におけるコバルト濃度Dと、前記裏打ち支持体表面におけるコバルト濃度Dとの比率D/Dが1.05以上である請求項4記載の超高圧焼結構造体の製造方法。 The ratio D s / D c between the cobalt concentration D c inside the backing support and the cobalt concentration D s on the surface of the backing support is 1.05 or more for the backing support before firing. Manufacturing method of ultra-high pressure sintered structure. 少なくともコバルトを結合金属として含有するとともに、コバルト濃度が高いコバルト富化領域を表面に具備する超硬合金からなる裏打ち支持体の前記金属富化領域形成面に、超高圧焼結体原料からなる繊維状の芯材成形体複数本の周囲を、硬質焼結体原料成形体にて結合した超高圧複合成形体を載置して、高温・超高圧下で焼成する超高圧複合焼結構造体の製造方法。 A fiber made of a raw material of an ultra-high pressure sintered body on the metal-enriched region forming surface of a backing support comprising a cemented carbide containing at least cobalt as a binding metal and having a cobalt-enriched region having a high cobalt concentration on the surface. Of an ultra-high-pressure composite sintered structure in which an ultra-high-pressure composite molded body in which a plurality of core-shaped core molded bodies are bonded by a hard sintered body raw material molded body is placed and fired at high temperature and ultra-high pressure Production method. 焼成前の前記裏打ち支持体について、該裏打ち支持体内部におけるコバルト濃度Dと、前記裏打ち支持体表面におけるコバルト濃度Dとの比率D/Dが1.05以上である請求項6記載の超高圧複合焼結構造体の製造方法。 The ratio D s / D c between the cobalt concentration D c inside the backing support and the cobalt concentration D s on the surface of the backing support is 1.05 or more with respect to the backing support before firing. Manufacturing method of ultrahigh pressure composite sintered structure. 請求項1の超高圧焼結構造体、または請求項2または3記載の超高圧複合焼結構造体の前記裏打ち支持体を工具基体の所定位置に接合して、前記超高圧焼結体または前記超高圧複合焼結体を工具切刃とした切削工具。 The ultra-high pressure sintered structure according to claim 1 or the backing support of the ultra-high pressure composite sintered structure according to claim 2 or 3 is bonded to a predetermined position of a tool base, Cutting tool with ultra high pressure composite sintered body as tool cutting edge.
JP2004096813A 2004-03-29 2004-03-29 Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool Pending JP2005281759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096813A JP2005281759A (en) 2004-03-29 2004-03-29 Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096813A JP2005281759A (en) 2004-03-29 2004-03-29 Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool

Publications (1)

Publication Number Publication Date
JP2005281759A true JP2005281759A (en) 2005-10-13

Family

ID=35180479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096813A Pending JP2005281759A (en) 2004-03-29 2004-03-29 Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool

Country Status (1)

Country Link
JP (1) JP2005281759A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body
JP2012506493A (en) * 2008-10-21 2012-03-15 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond composite shaped element, tool incorporating the same, and method of making the same
JP2019065330A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Composite sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506493A (en) * 2008-10-21 2012-03-15 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond composite shaped element, tool incorporating the same, and method of making the same
WO2011126104A1 (en) * 2010-04-08 2011-10-13 株式会社タンガロイ Composite body
JP5678955B2 (en) * 2010-04-08 2015-03-04 株式会社タンガロイ Complex
JP2019065330A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Composite sintered body
JP7021493B2 (en) 2017-09-29 2022-02-17 三菱マテリアル株式会社 Composite sintered body

Similar Documents

Publication Publication Date Title
JP5913300B2 (en) CUTTER ELEMENT, ROTARY MACHINE TOOL WITH CUTTER ELEMENT, AND CUTTER ELEMENT MANUFACTURING METHOD
JP5953616B2 (en) Carbide tool tip, method for manufacturing the same, and tool including the same
JP5297381B2 (en) Cutting tool insert and coated cutting tool
CN104044308A (en) Coated cutting tool
JP4192037B2 (en) Cutting tool and manufacturing method thereof
JP2006255853A (en) Sintered tool
JP4796316B2 (en) Composite fiber body and cutting tool using the same
JP2005281759A (en) Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP4960126B2 (en) Brazing cBN tool
JP5656076B2 (en) cBN insert
JP4220814B2 (en) Cutting tool and manufacturing method thereof
JP4400850B2 (en) Composite member and cutting tool using the same
JP2004232001A (en) Composite hard sintered compact, and composite member and cutting tool using it
JP4484535B2 (en) Diamond sintered body and cutting tool
JP3954903B2 (en) Cutting tools
JP4195797B2 (en) Composite hard sintered body and cutting tool using the same
JP2004218048A (en) Composite hard sintered compact and composite member and cutting tool using the same
JP5743868B2 (en) Cutting tools
JP3954896B2 (en) Cutting tool with breaker
JP2004250735A (en) Composite structure
JP2004283949A (en) Cutting tool
KR20130015263A (en) Multilayer tools having poly-crystalline diamond/poly-crystalline cubic boron nitride and the manufacturing method thereof
JP2005076048A (en) Wear resistant member
JP2005014164A (en) Cutting tool
JP2004202597A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006