JP2019065330A - Composite sintered body - Google Patents

Composite sintered body Download PDF

Info

Publication number
JP2019065330A
JP2019065330A JP2017190439A JP2017190439A JP2019065330A JP 2019065330 A JP2019065330 A JP 2019065330A JP 2017190439 A JP2017190439 A JP 2017190439A JP 2017190439 A JP2017190439 A JP 2017190439A JP 2019065330 A JP2019065330 A JP 2019065330A
Authority
JP
Japan
Prior art keywords
layer
cobalt
interface
strength
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017190439A
Other languages
Japanese (ja)
Other versions
JP7021493B2 (en
Inventor
征史 門馬
Masashi Momma
征史 門馬
雅大 矢野
Masahiro Yano
雅大 矢野
庸介 宮下
Yasusuke Miyashita
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017190439A priority Critical patent/JP7021493B2/en
Publication of JP2019065330A publication Critical patent/JP2019065330A/en
Application granted granted Critical
Publication of JP7021493B2 publication Critical patent/JP7021493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a composite sintered body comprising a cubic boron nitride based sintered body and a hard metal, which has high hardness, excellent chipping resistance, and sufficient tool characteristics in long-term use for a cutting tool or the like.SOLUTION: The composite sintered body used for a cutting tool or the like is obtained by disposing a green compact layer composed of a green compact prepared by only compacting green powder which has a cobalt concentration composition equal to or smaller than that in the hard metal between a cBN molded body layer and the hard metal layer to form a composite body having a three layer structure, and then performing high pressure and high temperature sintering.SELECTED DRAWING: Figure 1

Description

本発明は、立方晶窒化ほう素(以下、「cBN」ともいう。)基焼結体と超硬合金を有して成る複合焼結体に関し、特に、切削工具等に用いた場合に、高硬度であり、耐欠損性にすぐれ、長期使用においても十分な工具特性を有するcBN複合焼結体に関するものである。   The present invention relates to a composite sintered body comprising a cubic boron nitride (hereinafter also referred to as "cBN")-based sintered body and a cemented carbide, and in particular, when used for cutting tools etc. The present invention relates to a cBN composite sintered body having hardness, excellent fracture resistance, and sufficient tool characteristics even in long-term use.

従来、上層をcBN基焼結材料とし、下層を炭化タングステン基超硬合金とする2層複合焼結体からなる切刃部材を、炭化タングステン基超硬合金からなる支持部材のコーナー部に形成した段付き切り欠き部にろう付けしてなるインサートとして用いることにより、各種鋳鉄やスーパーアロイなどの連続切削において、すぐれた切削性能を発揮することが知られている。
しかしながら、前記インサートは、前記被切削材料についての断続切削においては、切刃の欠けやチッピングなどが発生し易く、比較的短時間にて、使用寿命に至るため、その改善に向けて種々の提案がなされている。
Conventionally, a cutting member made of a two-layer composite sintered body in which the upper layer is a cBN-based sintered material and the lower layer is a tungsten carbide-based cemented carbide is formed at the corner portion of a tungsten carbide-based cemented carbide support member. It is known to exhibit excellent cutting performance in continuous cutting of various cast irons and super alloys by using it as an insert obtained by brazing to a stepped notch.
However, since the insert is prone to chipping or chipping of the cutting edge during intermittent cutting of the material to be cut, and reaches the service life in a relatively short time, various proposals for improvement thereof are made. Is being done.

例えば、特許文献1では、cBNからなる上層と、結合相形成成分にコバルトを含有する炭化タングステン基超硬合金の下層の2層複合焼結体からなる切刃部材において、前記上層と前記下層との界面部において、焼結時に前記下層中のコバルトが前記上層と下層との界面から150μm以上の深さに亘って溶浸してなるコバルト溶浸層を形成することにより、鋳鉄やスーパーアロイの連続切削に加え、高靱性が要求される断続切削においても、欠けやチッピングなどを発生することなく、優れた切削性能を長期に亘って発揮するインサートが提案されている。   For example, in Patent Document 1, a cutting blade member comprising an upper layer made of cBN and a two-layer composite sintered body of a lower layer of tungsten carbide based cemented carbide containing cobalt as a binder phase forming component, the upper layer and the lower layer Forming a cobalt infiltrated layer in which cobalt in the lower layer is infiltrated at a depth of 150 μm or more from the interface between the upper layer and the lower layer at the time of sintering, thereby forming a continuous cast iron or super alloy In addition to cutting, also in intermittent cutting which requires high toughness, an insert which exhibits excellent cutting performance for a long time without generating chipping and chipping has been proposed.

また、特許文献2においては、cBN相を含むcBN焼結体と、WC等を主成分とする硬質相とコバルト等を主成分とする結合相とからなる硬質合金とを、セラミックス相と金属相から成る接合層を介して接合することにより、密着性に優れ、接合強度が高く、優れた切削性能を有する、切削工具用被覆複合体が提案されている。   Further, in Patent Document 2, a ceramic phase and a metal phase are a cBN sintered body containing a cBN phase, and a hard alloy consisting of a hard phase mainly containing WC and a binder phase mainly containing cobalt and the like. By bonding via a bonding layer comprising the above, a coated composite for a cutting tool has been proposed which has excellent adhesion, high bonding strength, and excellent cutting performance.

特開平9−323203号公報JP-A-9-323203 特開2014−131819号公報JP, 2014-131819, A

近年の切削加工における省力化および省エネ化への要求は強く、これに伴い、切削加工では一段と高速化、高効率化が求められており、cBN複合焼結体切削工具においては、連続切削に加え、さらに高負荷がかかる断続切削においても、長期にわたっての使用を可能とする十分な耐摩耗性に加え、その前提としてかかる耐摩耗性が十分に発揮できるよう、すぐれた耐欠損性、耐チッピング性を有することが求められている。
しかしながら、前記特許文献1に記載される従来のcBN複合焼結体インサートにおいては、炭化タングステン基超硬合金焼結体である下層とcBN仮焼体である上層との焼結時に、下層中のコバルトが、上層との境界面から150μm以上の深さに亘り上層に拡散するために、下層の界面部近傍ではコバルト量が減少する結果、炭化タングステン基超硬合金の硬さおよび強度が減少し、十分な耐欠損性が得られていない。また、下層から上層に拡散されたコバルトは、上層と下層との界面から上層内部にかけて負の濃度勾配を有し、特に、上層側の界面では、コバルト量が増加したコバルト濃縮層が出現し、硬さが減少した脆弱層となるために十分な工具寿命を達成することはできないという問題を有していた。
また、前記特許文献2では、硬質合金とcBN焼結体との間に金属箔を挟み、高温高圧下にて保持することにより、硬質合金とcBN焼結体との間に中間層を形成し、密着性および接合強度において、すぐれた切削性能を有する切削工具を得ようとするものであるが、金属箔より形成した中間層は金属相を有しているため、切削中の高温硬さや高温強度が低下し、さらにはcBN焼結体と硬質合金との接合は900kgf/cm未満の接合圧力下で1000℃以上に加熱保持して行われることから、cBN焼結体の高圧高温焼結時と異なりcBNが脆弱なhBN(六方晶窒化硼素)に相変態することで強度が低下し、十分な工具寿命が得られないという問題を有していた。
In recent years, the demand for labor saving and energy saving in cutting has been strong. Along with this, further speeding-up and higher efficiency are required in cutting, and in addition to continuous cutting, cBN composite sintered body cutting tool And excellent fracture resistance and chipping resistance so that such wear resistance can be sufficiently exhibited as well as sufficient wear resistance that enables long-term use even in interrupted cutting where even higher loads are applied. It is required to have
However, in the conventional cBN composite sintered body insert described in Patent Document 1, when the lower layer which is a tungsten carbide based cemented carbide sintered body and the upper layer which is a cBN calcined body are sintered, Cobalt diffuses in the upper layer over a depth of 150 μm or more from the interface with the upper layer, and as a result, the amount of cobalt decreases near the interface of the lower layer, resulting in a decrease in hardness and strength of the tungsten carbide base cemented carbide. And sufficient defect resistance is not obtained. The cobalt diffused from the lower layer to the upper layer has a negative concentration gradient from the interface between the upper layer and the lower layer to the inside of the upper layer, and in particular, a cobalt-enriched layer with an increased amount of cobalt appears at the interface on the upper layer side, There was a problem that sufficient tool life could not be achieved to become a weak layer with reduced hardness.
Further, in Patent Document 2, a metal foil is sandwiched between a hard alloy and a cBN sintered body, and held under high temperature and high pressure, thereby forming an intermediate layer between the hard alloy and the cBN sintered body. In order to obtain a cutting tool having excellent cutting performance in terms of adhesion and bonding strength, the intermediate layer formed of metal foil has a metal phase, so high temperature hardness and high temperature during cutting Since the strength is reduced and the bonding between the cBN sintered body and the hard alloy is performed by heating and holding at 1000 ° C. or higher under a bonding pressure of less than 900 kgf / cm 2 , high pressure high temperature sintering of the cBN sintered body Unlike time, cBN undergoes phase transformation to fragile hBN (hexagonal boron nitride), resulting in a reduction in strength and a problem that a sufficient tool life can not be obtained.

そこで、本発明者らは、例えば、従来の前記特許文献1に記載される、上層であるcBN焼結材料と下層である超硬合金基体の焼結体とからなる2層複合焼結体において、上層側の界面に、コバルト量が増加することで硬さが減少するコバルト濃縮層が生成する点に着目し、研究を行ったところ、高圧高温焼結時において、すでに高圧高温焼結前からWC等を主成分とする硬質相とコバルト等を主成分とする結合相との焼結が十分進行した状態であるため、コバルトのみが融液となり、cBNの焼結が進行する前に界面部に浸潤する結果、コバルト量が増加したコバルト濃縮層を形成し硬さが減少した脆弱層となるために、十分な工具寿命が得られていないことを知見した。
そして、かかる知見に基づいて、本発明者らは、前記複合焼結体において、cBN焼結体層と超硬合金層との境界面にコバルトが濃縮されることなく、cBN焼結体層と超硬合金層との間に、cBN焼結体層側から超硬合金層側に向かって、コバルトが緩やかな濃度勾配をもって増加する界面層を設けることにより、高温硬さや高温強度にすぐれた特性を有し、切削工具等に用いた際にきわめて有用な複合焼結体を得て、前記課題を解決したものである。
前記界面層を有する複合焼結体は、例えば、cBN成形体からなる層と、超硬合金基体である層との間に、前記超硬合金以下のコバルト濃度組成の原料粉について圧粉成形のみ行った圧粉体からなる圧粉体層を配置し、三層構造の複合体とした後、高圧高温焼結を行うことにより得ることができる。
ここで、立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層との間に形成される、前記界面層において、コバルトの濃縮が抑制された理由については明らかではないが、高圧高温焼結前に、前記圧粉体層を設けることにより、cBN成形体からなる層と超硬合金圧粉体層の焼結がそれぞれ進むと同時に、圧粉体層中のコバルトがcBN中に拡散したためと考えられる。
Therefore, in the two-layer composite sintered body according to the present invention, the two-layered composite sintered body is, for example, the cBN sintered material which is the upper layer and the sintered body of the cemented carbide substrate which is the lower layer. When focusing on the formation of a cobalt-enriched layer whose hardness decreases as the amount of cobalt increases at the interface on the upper layer side, research was conducted. Since sintering between the hard phase containing WC and the like as a main component and the binder phase containing cobalt and the like has progressed sufficiently, only cobalt becomes a melt and the interface part is advanced before sintering of cBN progresses. As a result, it was found that sufficient tool life can not be obtained in order to form a cobalt-enriched layer with an increased amount of cobalt and become a brittle layer with reduced hardness.
Then, based on such findings, the present inventors have found that, in the composite sintered body, the cobalt is not concentrated at the interface between the cBN sintered layer and the cemented carbide layer, and the cBN sintered layer is By providing an interface layer in which cobalt increases with a gradual concentration gradient from the cBN sintered body layer side to the cemented carbide layer side with the cemented carbide layer, characteristics excellent in high temperature hardness and high temperature strength The present invention solves the above problems by obtaining a composite sintered body that is extremely useful when used as a cutting tool or the like.
The composite sintered body having the interface layer is, for example, only compacting of the raw material powder having a cobalt concentration composition lower than that of the cemented carbide between the layer formed of the cBN compact and the layer which is a cemented carbide substrate. The obtained green compact can be obtained by disposing a green compact layer made of green compact and forming a composite having a three-layer structure and then performing high-pressure high-temperature sintering.
Here, in the interface layer, which is formed between the upper layer made of a cubic boron nitride based sintered body and the lower layer made of a tungsten carbide based cemented carbide containing cobalt as a binder phase, cobalt concentration is Although the reason for the suppression is not clear, by providing the green compact layer before high-pressure high-temperature sintering, the layer consisting of the cBN compact and the sintering of the cemented carbide green compact layer proceed simultaneously, respectively. It is believed that the cobalt in the compacted powder layer diffused into cBN.

なお、本発明にかかる複合焼結体では、前記立方晶窒化ほう素基焼結体からなる上層、前記界面層、および、前記結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層において、コバルトおよびタングステンを測定する手段として、エネルギー分散型X線分析を用い、焼結体断面におけるコバルトおよびタングステンの元素マッピングデータを取得し、画像解析により、相対強度として評価しているため、コバルト濃度およびタングステン濃度に対応する、コバルト強度およびタングステン強度として求めた。   In the composite sintered body according to the present invention, the upper layer made of the cubic boron nitride based sintered body, the interface layer, and the lower layer made of tungsten carbide based cemented carbide containing cobalt as the binder phase Since cobalt and tungsten elemental mapping data on the cross section of the sintered body are obtained using energy dispersive X-ray analysis as a means of measuring cobalt and tungsten, and evaluated as relative strength by image analysis, cobalt concentration It was determined as cobalt strength and tungsten strength, corresponding to and tungsten concentration.

本発明は、上記の知見に基づいてなされたものであって、
「(1)立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との少なくとも3層を有する複合焼結体において、
a)前記界面層は、前記上層と接しタングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、下層と接しタングステン強度が高く、かつコバルト強度が下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置しタングステン強度が急峻に変化する界面とを有し、
b)前記界面層における前記界面層Aの層厚は、10〜100μmであり、
前記界面層Bの層厚は、5〜20μmであり、
c)前記界面層における、平均コバルト強度をCb、
前記界面層Aにおける、平均コバルト強度をCb
前記界面層Bにおける平均コバルト強度をCb
前記下層における、平均コバルト強度をCcとした場合に、以下の(1)式および(2)式の関係を満足し、
d)前記界面におけるコバルト強度をCb1´とした場合、以下の(3)式の関係を満たすことを特徴とする複合焼結体。
0.02 < Cb/Cc <0.2 (1)式
Cb< 5Cb (2)式
Cb1´< Cb (3)式
」に特徴を有するものである。
The present invention has been made based on the above findings.
“(1) an upper layer made of a cubic boron nitride based sintered body, a lower layer made of a tungsten carbide based cemented carbide containing cobalt as a binder phase, and an interface layer located between the upper layer and the lower layer In a composite sintered body having at least three layers of
a) The interface layer is in contact with the upper layer and tungsten strength is not detected, and an interface layer A having cobalt strength, and an interface layer B in contact with the lower layer, having high tungsten strength and lower cobalt strength than the lower layer, It has an interface located between the interface layer A and the interface layer B and where the tungsten intensity changes sharply,
b) the thickness of the interface layer A in the interface layer is 10 to 100 μm,
The thickness of the interface layer B is 5 to 20 μm,
c) Cb, the average cobalt strength in the interface layer
In the interface layer A, the average cobalt strength is Cb 1 ,
The average cobalt strength in the interface layer B is Cb 2 ,
When the average cobalt strength in the lower layer is Cc, the relationship between the following equations (1) and (2) is satisfied,
d) A composite sintered body characterized by satisfying the relationship of the following formula (3), where the cobalt strength at the interface is Cb 1 ′.
0.02 <Cb 1 /Cc<0.2 (1)
Cb 2 <5Cb 1 (2)
Cb 1 ′ <Cb (3)

以下に、本発明の複合焼結体について、詳細に説明する。
本発明に係る複合焼結体は、段落0007にても述べたとおり、例えば、cBN成形体と、コバルトを結合相として含有する超硬合金基体である層との間に、前記超硬合金基体以下のコバルト濃度組成の原料粉について圧粉成形のみ行った圧粉体からなる圧粉体層を配置し、高圧高温焼結を行うことにより作製することができる。
そして、得られた複合焼結体の構造は、大きくは、三層からなり、高圧高温焼結前のcBN焼結体組成を有する上層と、同じく高圧高温焼結前のコバルトを結合相として含有する超硬合金焼結体組成を有する下層と、前記上層と前記下層の間に形成される界面層とからなり、さらに前記界面層は、コバルト濃縮層を有しておらず、界面層Aと界面層Bおよびその界面からなり、界面層Aは、前記上層と接し、タングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、下層と接しタングステン強度が高く、かつコバルト強度が下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置し、タングステン強度が急峻に変化する界面とを有するものである。
なお、ここで、コバルト濃縮層とは、複合焼結体断面のEDS分析によるコバルトおよびタングステンの元素マッピングの画像解析から得られた、各領域ごとのコバルトおよびタングステンの相対強度の内、界面または界面層Aの領域におけるコバルト強度最大値が界面層における平均強度値以上である領域をいう。
また、コバルトおよびタングステンの強度は、EDS分析を用い、焼結体断面におけるコバルトおよびタングステンの各元素マッピングデータを取得し、画像解析により各元素マッピングデータ上の評価範囲中に占める各元素の存在を示す点の面積割合を、コバルト濃度およびタングステン濃度に対応する相対強度として評価し、求めた。
Hereinafter, the composite sintered body of the present invention will be described in detail.
In the composite sintered body according to the present invention, as described in paragraph 0007, for example, the cemented carbide substrate is located between the cBN compact and a layer which is a cemented carbide substrate containing cobalt as a binder phase. It can produce by arrange | positioning the green compact layer which consists of green compact which performed only green compacting with respect to the raw material powder of the following cobalt concentration composition, and performing high pressure high temperature sintering.
The structure of the obtained composite sintered body is mainly composed of three layers, and an upper layer having a cBN sintered body composition before high-pressure high-temperature sintering, and cobalt as a binder phase similarly before high-pressure high-temperature sintering And an interface layer formed between the upper layer and the lower layer, and the interface layer does not have a cobalt-enriched layer, and the interface layer A The interface layer A and the interface thereof are in contact with the upper layer, tungsten strength is not detected, and the interface layer A having cobalt strength and the lower layer have high tungsten strength and cobalt strength is lower than that of the lower layer Also has an interface layer B which is low, and an interface which is located between the interface layer A and the interface layer B and whose tungsten strength changes sharply.
Here, the cobalt-enriched layer means an interface or an interface among the relative strengths of cobalt and tungsten for each region obtained from the image analysis of elemental mapping of cobalt and tungsten by EDS analysis of the cross section of the composite sintered body. The region where the cobalt intensity maximum value in the region of layer A is equal to or greater than the average intensity value in the interface layer is referred to.
Moreover, the strength of cobalt and tungsten acquires each element mapping data of cobalt and tungsten in the sintered compact cross section using EDS analysis, and the presence of each element in the evaluation range on each element mapping data is obtained by image analysis. The area ratio of the points indicated was evaluated as the relative strength corresponding to the cobalt concentration and the tungsten concentration.

上層;
上層は、高圧高温焼結前の立方晶窒化ほう素基焼結体において、高圧高温焼結後、コバルトの拡散が生じなかった領域をいい、切削時の刃先となる箇所である。
焼結体組成はcBN含有量50体積%以上70体積%以下とし、残部は、TiN、TiCおよびTiCNの内の一種以上と、Al、WC、および、TiまたはAlを含む反応生成物とすることが好ましい。cBN含有量が50体積%未満の場合には、コバルトの上層側への拡散が多すぎるため、超硬基体中の界面近傍でのコバルト強度減少が大きく、超硬基体の靭性が減少し、一方、70体積%以上の場合には上層へのコバルト拡散が不十分となり、界面にてコバルト濃縮層が生じ、硬さが減少した脆弱層となり十分な界面強度が得られないためである。
Upper layer;
The upper layer refers to a region where diffusion of cobalt does not occur after high-pressure high-temperature sintering in a cubic boron nitride-based sintered body before high-pressure high-temperature sintering, and is a portion that becomes a cutting edge during cutting.
The sintered body composition has a cBN content of 50% to 70% by volume, and the balance is a reaction product containing one or more of TiN, TiC and TiCN, Al 2 O 3 , WC, and Ti or Al. It is preferable to When the cBN content is less than 50% by volume, the diffusion of cobalt to the upper layer side is too large, so the cobalt strength reduction near the interface in the cemented carbide substrate is large and the toughness of the cemented carbide substrate is reduced, When the content is 70% by volume or more, the diffusion of cobalt to the upper layer is insufficient, a cobalt-rich layer is formed at the interface, and a brittle layer with reduced hardness is obtained, and sufficient interfacial strength can not be obtained.

下層;
下層は、高圧高温焼結前の、コバルトを結合相として含有する超硬合金焼結体および同組成の超硬合金圧粉体において、コバルトの拡散が生じなかった領域をいう。
下層のコバルトを結合相として含有する超硬合金焼結体および同組成の超硬合金圧粉体の組成は、コバルト15体積%以上40体積%未満であり、残部がWC粒子とからなるのが好ましい。コバルト15体積%未満では界面層Aの層厚が不十分で効果が十分得られず、40体積%以上では界面にコバルト濃縮層が生じ、硬さが減少した脆弱層となり十分な界面強度が得られない。
Underlayer;
The lower layer refers to a region where diffusion of cobalt did not occur in a sintered cemented carbide containing a cobalt as a binder phase and a cemented carbide green compact of the same composition before high-pressure high-temperature sintering.
The composition of the cemented carbide sintered body containing the lower layer cobalt as a binder phase and the cemented carbide powder compact of the same composition is 15 volume% or more of cobalt and less than 40 volume%, and the balance is composed of WC particles preferable. If the content of cobalt is less than 15% by volume, the layer thickness of the interface layer A is insufficient and the effect is not sufficiently obtained. I can not.

界面層;
界面層は、高圧高温焼結前の立方晶窒化ほう素基焼結体において、高圧高温焼結後、コバルトの拡散によりコバルトを含有することとなった領域(「界面層A」という。)と、高圧高温焼結前の、コバルトを結合相として含有する超硬合金焼結体および前記超硬合金焼結体以下のコバルト濃度組成を持つ超硬合金圧粉体において、コバルトが拡散された領域(「界面層B」という。)と、前記界面層Aと前記界面層Bとが接する界面との三領域からなる。
界面層Aの層厚は10μm〜100μm、界面層Bの層厚は5〜20μmが好ましい。界面層Aの層厚が10μm未満では界面層の層厚が不十分で効果が十分得られず、100μmを超えると、コバルトの拡散量が大きすぎるため超硬基体中の界面近傍でのコバルトが過度に減少し、超硬基体の界面近傍の強度が減少するためである。界面層Bの層厚が5μm未満では緩やかな強度勾配をもった拡散層が超硬基体側に十分な層厚で及ばず界面層Bの硬さが不十分であり、20μm以上では下層近傍でのコバルト強度値の減少領域の範囲が大き過ぎるために界面近傍の強度が不足する。
Interface layer;
The interface layer is a region (referred to as “interface layer A”) which contains cobalt by diffusion of cobalt after high-pressure high-temperature sintering in a cubic boron nitride-based sintered body before high-pressure high-temperature sintering. A region in which cobalt is diffused in a cemented carbide sintered body containing cobalt as a binder phase and a cemented carbide green compact having a cobalt concentration composition equal to or less than the cemented carbide sintered body before high-pressure high-temperature sintering It comprises three regions of (referred to as “interface layer B”) and an interface at which the interface layer A and the interface layer B are in contact with each other.
The thickness of the interface layer A is preferably 10 μm to 100 μm, and the thickness of the interface layer B is preferably 5 to 20 μm. If the layer thickness of the interface layer A is less than 10 μm, the layer thickness of the interface layer is insufficient and the effect can not be obtained sufficiently, and if it exceeds 100 μm, the cobalt diffusion amount is too large and cobalt in the vicinity of the interface in the cemented carbide substrate This is because the strength is reduced excessively and the strength near the interface of the cemented carbide substrate is reduced. When the layer thickness of the interface layer B is less than 5 μm, the diffusion layer having a moderate strength gradient does not reach the cemented carbide side with a sufficient layer thickness, and the hardness of the interface layer B is insufficient. Because the range of the reduction region of the cobalt strength value is too large, the strength near the interface is insufficient.

各層および各領域におけるコバルトおよびタングステン強度の測定;
各領域でのコバルト強度の評価と、界面位置を特定するためのタングステンの検出を、下記の方法にて実施した。高圧高温焼結後のcBN複合焼結体断面を研磨した後、エネルギー分散型X線分析(以下、EDS分析)を行い、cBN複合焼結体断面におけるコバルトおよびタングステンの元素マッピングを取得した。
図1に代表図として本発明品のコバルトおよびタングステンの元素マッピングを示す。各図中の白い点が各元素の存在を示す点である。
界面層Aの範囲は、上層と接し、前記元素マッピングにてタングステン強度が検出されず、かつコバルト強度を持つ範囲である。
界面層Bは下層と接しタングステン強度が高く、下層よりも低いコバルト強度を持つ範囲である。
前記界面層Aと前記界面層Bとの界面はタングステン強度が急峻に変化する位置であり、コバルトおよびタングステンの元素マッピングを比較し、タングステンの有無の位置を界面として、界面層Aと界面層Bの層厚を求めることができる。
界面層A、界面層Bおよび下層のコバルトの強度評価は、コバルトの元素マッピング像の二値化処理による画像解析にて、各領域でのコバルトの存在を示す点が、下記に示す大きさの各評価範囲に占める面積割合を、相対強度として求めた。
評価範囲の層厚方向長さは、界面層Aまたは界面層Bの内より小さい層厚と同じ長さとし、評価範囲の層厚と垂直な方向の長さを幅とし、前記層厚の5倍とした。
評価位置は評価範囲の層厚方向の長さの中間点が、界面層内の各領域における各層厚の中間点と合わさる位置とした。また、前記界面のコバルト強度の評価範囲の層厚方向長さは2μmとし、層厚と垂直な方向の長さは、前記界面層Aまたは界面層Bの評価範囲の幅と同等とした。
界面のコバルト強度の評価位置は、前記評価範囲の長手方向の界面層B側の辺が前記界面と合わさる位置とした。
なお、Cbは界面層A、界面、界面層Bでの各コバルト強度の平均値とした。
EDS分析による各元素のライン分析では、コバルトがWC粒子で分断され、不連続に存在しているため強度の振幅が大きく算出されることから、元素マッピングの画像解析が相対強度の評価に適している。
本発明品は、焼結時にコバルトが下層から上層側へ拡散することで、界面層は脆弱なコバルト濃縮層を持たず、かつコバルト強度は上層側から下層側にかけて緩やかな勾配をもって増加する。これにより、界面層Bは下層よりも比較的低いコバルト強度にて高圧高温により焼結され、下層よりもさらに大きな硬さを持つ層となる。これらの界面層の特徴を持つことで、本発明品は従来品より大きな界面強度を持つ。
界面層Aは下層から上層側へのコバルトの拡散により、上層よりもコバルト強度が増加することから(1)式0.02<Cb/Cc<0.2を満たすことが好ましい。
(1)式0.02<Cb/Ccを満たさない場合には、界面層Aへのコバルト拡散量が不足し、界面層としての接合強度を増す効果が十分得られない。
(1)式 Cb/Cc<0.2を満たさない場合には、界面層Aのコバルト強度が大きすぎるために界面層Aの強度が損なわれ、界面強度が十分得られない。
界面層はコバルト濃縮層を持たず、かつコバルト強度は上層側から下層側にかけて緩やかな勾配をもって増加し、(2)式Cb<5Cbを満たすことが好ましい。
(2)式 Cb<5Cbを満たさない場合には、界面層Bのコバルト強度が大きすぎるために界面層Bの硬さが十分得られない。
さらにコバルト濃縮層が抑制されていることから、Cb1´は(3)式 Cb1´ < Cbを満たすことが好ましい。
(3)式を満たさない場合には、コバルト濃縮層が発生していることから、界面層Aと下層との界面近傍の硬さが低下し、十分な界面強度が得られない。
Measurement of cobalt and tungsten strength in each layer and in each area;
Evaluation of cobalt strength in each region and detection of tungsten for specifying the interface position were performed by the following method. After polishing the cross section of the cBN composite sintered body after high pressure and high temperature sintering, energy dispersive X-ray analysis (hereinafter, EDS analysis) was performed to obtain elemental mapping of cobalt and tungsten in the cBN composite sintered body cross section.
FIG. 1 shows elemental mapping of cobalt and tungsten of the present invention as a representative figure. White dots in each figure indicate the presence of each element.
The range of the interface layer A is a range in contact with the upper layer, in which tungsten intensity is not detected in the element mapping, and which has cobalt intensity.
The interface layer B is in contact with the lower layer, has a high tungsten strength, and has a lower cobalt strength than the lower layer.
The interface between the interface layer A and the interface layer B is a position where the tungsten intensity changes sharply, and the elemental mapping of cobalt and tungsten is compared, and the interface layer A and the interface layer B with the position of presence or absence of tungsten as an interface. The layer thickness of can be determined.
The strength evaluation of the interface layer A, the interface layer B and the lower layer cobalt has a size shown below in that the point indicating the presence of cobalt in each region in the image analysis by the binary processing of the elemental mapping image of cobalt The area ratio occupied in each evaluation range was determined as relative strength.
The length in the layer thickness direction of the evaluation range is the same as the smaller layer thickness in the interface layer A or interface layer B, and the length in the direction perpendicular to the layer thickness in the evaluation range is 5 times the layer thickness. And
The evaluation position was a position where the middle point of the length in the layer thickness direction of the evaluation range was aligned with the middle point of each layer thickness in each region in the interface layer. The length in the layer thickness direction of the evaluation range of cobalt strength of the interface was 2 μm, and the length in the direction perpendicular to the layer thickness was equal to the width of the evaluation range of the interface layer A or interface layer B.
The evaluation position of the cobalt strength of the interface was a position where the side on the interface layer B side in the longitudinal direction of the evaluation range is combined with the interface.
In addition, Cb was made into the average value of each cobalt intensity in the interface layer A, the interface, and the interface layer B.
In the line analysis of each element by EDS analysis, the amplitude of the intensity is calculated large because cobalt is divided by WC particles and exists discontinuously, so image analysis of element mapping is suitable for evaluation of relative intensity There is.
In the product of the present invention, cobalt diffuses from the lower layer to the upper layer during sintering, so that the interface layer does not have a brittle cobalt-enriched layer, and the cobalt strength increases with a gentle gradient from the upper layer to the lower layer. As a result, the interface layer B is sintered by high pressure and high temperature at a cobalt strength relatively lower than that of the lower layer, and becomes a layer having a hardness greater than that of the lower layer. By having these features of the interface layer, the product of the present invention has higher interface strength than the conventional product.
In the interface layer A, the cobalt strength is increased compared to the upper layer by the diffusion of cobalt from the lower layer to the upper layer side, and it is preferable to satisfy (1) Formula 0.02 <Cb 1 /Cc<0.2.
(1) If the expression 0.02 <Cb 1 / Cc is not satisfied, the amount of cobalt diffusion to the interface layer A is insufficient, and the effect of increasing the bonding strength as the interface layer can not be obtained sufficiently.
(1) If the formula Cb 1 /Cc<0.2 is not satisfied, the strength of the interface layer A is impaired because the cobalt strength of the interface layer A is too large, and the interface strength can not be obtained sufficiently.
The interface layer does not have a cobalt-enriched layer, and the cobalt strength increases with a gentle gradient from the upper layer side to the lower layer side, and it is preferable to satisfy the equation (2) Cb 2 <5Cb 1 .
(2) If the formula Cb 2 <5Cb 1 is not satisfied, the hardness of the interface layer B can not be obtained sufficiently because the cobalt strength of the interface layer B is too high.
Since it was further cobalt enriched layer is suppressed, Cb 1 'is (3) Cb 1' <preferably satisfies the Cb.
If the expression (3) is not satisfied, the hardness in the vicinity of the interface between the interface layer A and the lower layer is reduced because a cobalt-rich layer is generated, and sufficient interface strength can not be obtained.

本発明に係る複合焼結体は、界面層の界面近傍において、コバルト強度の高い脆弱層の形成の抑制を図り、また、超硬合金層と界面層間では、コバルト強度の変化量を緩やかにすることにより、cBN複合焼結体切削工具として用いた場合に、耐欠損性にすぐれ、長寿命の切削工具を提供することができる。   The composite sintered body according to the present invention suppresses formation of a brittle layer having high cobalt strength in the vicinity of the interface of the interface layer, and moderates the amount of change in cobalt strength between the cemented carbide layer and the interface layer. As a result, when used as a cBN composite sintered body cutting tool, it is possible to provide a cutting tool having excellent fracture resistance and a long life.

本発明品の複合焼結体の研磨後断面のEDS分析より得られた(a)コバルトおよび(b)タングステンの元素マッピングElemental mapping of (a) cobalt and (b) tungsten obtained from EDS analysis of a cross section after polishing of a composite sintered body according to the present invention

本発明について、実施例を用いて、以下に詳細に説明する。   The invention is explained in more detail below with the aid of examples.

複合焼結体の作製:
表1に、実施例にて用いたcBN基成形体、WC基超硬合金およびWC基超硬合金原料粉末の組み合わせを示す。
a)cBN基成形体の作製
原料粉末として、cBN粉末と、Ti化合物粉末(例えば、TiN粉末、TiC粉末、TiCN粉末、TiAl粉末等)、ならびにAl粉末を用意し、これら原料粉末を配合し、メディアボールと共にボールミルにて湿式混合しスラリー溶液を得、これを乾燥させた後、プレス成形し、800−1200℃、1Pa以下にて真空焼結を行い、cBN基成形体とした。
b)複合焼結体の作製
次に、前記cBN成形体と、表1に示されるコバルトを結合相として含有するWC基超硬合金基体との間に、前記コバルトを結合相として含有するWC基超硬合金の原料粉からなる圧粉体を配置して構成される三層構造の複合体を得て、これを圧力:5GPa、温度:1300〜1500℃にて高圧高温焼結することにより、cBN基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との3層を有し、さらに、界面層は、前記圧粉体層から拡散されたコバルトを含有するcBN基焼結体からなる界面層Aと、界面層Aへのコバルト拡散後の圧粉体層が焼結したWC基超硬合金からなる界面層Bと、前記界面層Aと界面層Bの間に位置する界面とを有してなる、本発明に係る複合焼結体を作製することができた。
Preparation of composite sintered body:
Table 1 shows combinations of cBN-based compacts, WC-based cemented carbides and WC-based cemented carbide raw material powders used in the examples.
a) Preparation of cBN-based compact: Prepare cBN powder, Ti compound powder (for example, TiN powder, TiC powder, TiCN powder, TiAl powder etc.) and Al powder as raw material powders, and mix these raw material powders, A slurry solution is wet mixed with a media ball in a ball mill to obtain a slurry solution, which is dried and press molded, and vacuum sintering is performed at 800 to 1200 ° C. and 1 Pa or less to obtain a cBN base compact.
b) Preparation of a composite sintered body Next, a WC group containing cobalt as a bonding phase between the cBN compact and a WC base cemented carbide substrate containing cobalt shown in Table 1 as a bonding phase Obtain a composite of a three-layer structure configured by arranging a green compact consisting of raw material powder of cemented carbide, and sintering this at high pressure and high temperature at a pressure of 5 GPa and a temperature of 1300 to 1500 ° C. It has three layers of an upper layer made of a cBN based sintered body, a lower layer made of a tungsten carbide based cemented carbide containing cobalt as a binder phase, and an interface layer located between the upper layer and the lower layer, The interface layer is an interface layer A made of a cBN-based sintered body containing cobalt diffused from the green compact layer, and a WC base superconductive sintered compact after the cobalt diffusion to the interface layer A. The interface layer B made of hard alloy, the interface layer A and the interface layer It made and a surface located between, it is possible to manufacture a composite sintered body according to the present invention.

また、比較の目的で、高圧高温でのcBN焼結時に、cBN基焼結体からなる上層とcBN基焼結体からなる上層とを接合する手法である従来例として、cBN基成形体、WC基超硬合金を製造し、これらの間に、前記WC基超硬合金の原料粉からなる圧粉体を配置することなく、二層構造の複合体を得て、これを圧力:5GPa、温度:1300〜1500℃にて高圧高温焼結することにより、前記cBN成形体と、前記WC基超硬合金とからなる、2層の複合焼結体を作製した。   Further, for comparison purpose, cBN-based compact, WC as a conventional example which is a method of joining an upper layer composed of a cBN-based sintered body and an upper layer composed of a cBN-based sintered body during cBN sintering at high pressure and high temperature. Base cemented carbide is manufactured, and a composite having a two-layer structure is obtained without placing a green compact consisting of the raw material powder of the WC base cemented carbide between them, and the pressure is: 5 GPa, temperature By sintering at a high temperature and a high temperature at 1300 to 1500 ° C., a two-layered composite sintered body composed of the cBN compact and the WC-based cemented carbide was produced.

表2には、上記により作製した本発明複合焼結体1〜5、比較焼結体6〜10、および、従来焼結体11について、断面を研磨し、SEM−EDS法で分析し得た、図1に代表される元素マッピングの解析結果から、各層のコバルト強度、界面層Aおよび界面層Bの層厚を示すとともに、マイクロビッカース硬度計を用い硬度試験により測定した各複合焼結体の界面近傍部におけるマイクロビッカース硬さを示す。なお、界面層Aおよび界面層Bの層厚は、コバルトおよびタングステンの元素マッピングから上層と界面層Aと界面、および界面と界面層Bと下層の間の各境界を定め、元素マッピング像の幅方向の左端、中央、右端の3点における各境界間距離の平均値を各層厚とした。 Table 2 shows that the cross-sections of the present invention composite sintered bodies 1 to 5, the comparative sintered bodies 6 to 10, and the conventional sintered body 11 manufactured as described above were polished and analyzed by the SEM-EDS method. The analysis results of the element mapping represented in FIG. 1 show the cobalt strength of each layer, the thickness of the interface layer A and the layer thickness of the interface layer B, and each composite sintered body measured by a hardness test using a micro Vickers hardness tester. The micro Vickers hardness in the interface vicinity part is shown. The layer thicknesses of the interface layer A and the interface layer B define the boundaries between the upper layer and the interface layer A and the interface, and the interface and the interface layer B and the lower layer from elemental mapping of cobalt and tungsten, and the width of the element mapping image The average value of the distance between boundaries at three points at the left end, center, and right end of the direction was taken as each layer thickness.

表2に示される結果から、本発明の複合焼結体は、界面近傍部には、高コバルト強度の脆弱層は形成されておらず、上層および下層間にコバルト強度の変化量が緩やかな界面層を持つことで、界面近傍部におけるマイクロビッカース硬さは大きくなった。これに対し、比較焼結体では上層および下層間にコバルト強度の変化量が緩やかな界面層は形成されず、従来例の焼結体ではコバルト強度の高いコバルト濃縮層が形成し脆弱層となり、界面部でのマイクロビッカース硬さは小さくなった。   From the results shown in Table 2, in the composite sintered body of the present invention, a brittle layer of high cobalt strength is not formed in the vicinity of the interface, and an interface in which the amount of change in cobalt strength is gradual between the upper layer and the lower layer By having a layer, the micro Vickers hardness in the interface vicinity part became large. On the other hand, in the comparative sintered body, an interface layer in which the amount of change in cobalt strength is moderate is not formed between the upper layer and the lower layer, and in the sintered body of the conventional example, a cobalt concentrated layer having high cobalt strength is formed and becomes a fragile layer. The micro Vickers hardness at the interface decreased.



本発明の複合焼結体は、cBN基焼結体および超硬合金基体との界面において硬度にすぐれ、長寿命であるため、ミーリング加工やターニング加工用のcBN複合焼結体工具として用いることができる。
The composite sintered body of the present invention is excellent in hardness at the interface with the cBN-based sintered body and the cemented carbide substrate and has a long life, so it can be used as a cBN composite sintered body tool for milling and turning. it can.

Claims (1)

立方晶窒化ほう素基焼結体からなる上層と、結合相としてコバルトを含有する炭化タングステン基超硬合金からなる下層と、前記上層と前記下層との間に位置する界面層との少なくとも3層を有する複合焼結体において、
a)前記界面層は、前記上層と接しタングステン強度が検出されず、かつコバルト強度を持つ界面層Aと、下層と接しタングステン強度が高く、かつコバルト強度が下層よりも低い界面層Bと、前記界面層Aと前記界面層Bとの間に位置し、タングステン強度が急峻に変化する界面とを有し、
b)前記界面層における前記界面層Aの層厚は、10〜100μmであり、
前記界面層Bの層厚は、5〜20μmであり、
c)界面層における、平均コバルト強度をCb、
界面層Aにおける、平均コバルト強度をCb
界面層Bにおける、平均コバルト強度をCb
下層における、平均コバルト強度をCcとした場合に、
以下の(1)式および(2)式の関係を満足し、
d)前記界面におけるコバルト強度をCb1´とした場合、以下の(3)式の関係を満たすことを特徴とする複合焼結体。
0.02 < Cb/Cc <0.2 (1)式
Cb< 5Cb (2)式
Cb1´< Cb (3)式
At least three layers of an upper layer made of a cubic boron nitride based sintered body, a lower layer made of a tungsten carbide based cemented carbide containing cobalt as a binder phase, and an interface layer located between the upper layer and the lower layer In the composite sintered body having
a) The interface layer is in contact with the upper layer and tungsten strength is not detected, and an interface layer A having cobalt strength, and an interface layer B in contact with the lower layer, having high tungsten strength and lower cobalt strength than the lower layer, It is located between the interface layer A and the interface layer B, and has an interface at which the tungsten intensity changes sharply,
b) the thickness of the interface layer A in the interface layer is 10 to 100 μm,
The thickness of the interface layer B is 5 to 20 μm,
c) Cb, the average cobalt strength in the interface layer
In the interface layer A, the average cobalt strength is Cb 1 ,
In the interface layer B, the average cobalt strength Cb 2 ,
In the lower layer, when the average cobalt strength is Cc,
Satisfy the relationship between the following equations (1) and (2),
d) A composite sintered body characterized by satisfying the relationship of the following formula (3), where the cobalt strength at the interface is Cb 1 ′.
0.02 <Cb 1 /Cc<0.2 (1)
Cb 2 <5Cb 1 (2)
Cb 1 <<Cb (3)
JP2017190439A 2017-09-29 2017-09-29 Composite sintered body Active JP7021493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190439A JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190439A JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Publications (2)

Publication Number Publication Date
JP2019065330A true JP2019065330A (en) 2019-04-25
JP7021493B2 JP7021493B2 (en) 2022-02-17

Family

ID=66339044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190439A Active JP7021493B2 (en) 2017-09-29 2017-09-29 Composite sintered body

Country Status (1)

Country Link
JP (1) JP7021493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481240B1 (en) * 2012-12-27 2015-01-19 고려대학교 산학협력단 Apparatus and method for monitoring platelet function and drug response in a microfluidic-chip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56208A (en) * 1979-06-18 1981-01-06 Mitsubishi Metal Corp Composite sintered part for cutting tool and its manufacture
JPS59107060A (en) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd Composite sintered body and its production
JPS61270271A (en) * 1984-11-01 1986-11-29 住友電気工業株式会社 High hardness sintered body composite material having sandwich structure
JPS63274771A (en) * 1987-04-28 1988-11-11 Mitsubishi Metal Corp Surface-treated cemented carbide alloy member
JPH04160072A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Method for joining metallic material and ceramic material
JPH09194909A (en) * 1995-11-07 1997-07-29 Sumitomo Electric Ind Ltd Composite material and its production
JP2000129387A (en) * 1998-10-20 2000-05-09 Sumitomo Electric Ind Ltd Composite material for brazing containing cubic boron nitride, and its manufacture
JP2005281759A (en) * 2004-03-29 2005-10-13 Kyocera Corp Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP2012515846A (en) * 2009-01-22 2012-07-12 エレメント シックス アブラシヴェス エス.エー. Polishing insert

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56208A (en) * 1979-06-18 1981-01-06 Mitsubishi Metal Corp Composite sintered part for cutting tool and its manufacture
JPS59107060A (en) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd Composite sintered body and its production
JPS61270271A (en) * 1984-11-01 1986-11-29 住友電気工業株式会社 High hardness sintered body composite material having sandwich structure
JPS63274771A (en) * 1987-04-28 1988-11-11 Mitsubishi Metal Corp Surface-treated cemented carbide alloy member
JPH04160072A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Method for joining metallic material and ceramic material
JPH09194909A (en) * 1995-11-07 1997-07-29 Sumitomo Electric Ind Ltd Composite material and its production
JP2000129387A (en) * 1998-10-20 2000-05-09 Sumitomo Electric Ind Ltd Composite material for brazing containing cubic boron nitride, and its manufacture
JP2005281759A (en) * 2004-03-29 2005-10-13 Kyocera Corp Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP2012515846A (en) * 2009-01-22 2012-07-12 エレメント シックス アブラシヴェス エス.エー. Polishing insert

Also Published As

Publication number Publication date
JP7021493B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP5732663B2 (en) Cubic boron nitride sintered tool
JP2000054007A (en) Diamond-sintered body and its production
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JP5152667B2 (en) Cubic boron nitride sintered tool
JP7021493B2 (en) Composite sintered body
CN111266573B (en) Preparation method of polycrystalline cubic boron nitride composite sheet
JP4229750B2 (en) Cubic boron nitride sintered body
WO2017038855A1 (en) Composite member and cutting tool
JP6410210B2 (en) Cubic boron nitride composite sintered body insert
JP5656076B2 (en) cBN insert
JP2004510884A (en) Abrasive and wear-resistant materials
JPH07124804A (en) Cutting chip showing excellent wear resistance
JP4857506B2 (en) WC-based cemented carbide multilayer chip
JP2013014002A (en) Cubic boron nitride sintered body tool
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
KR20130015263A (en) Multilayer tools having poly-crystalline diamond/poly-crystalline cubic boron nitride and the manufacturing method thereof
JP2012045694A (en) Cutting tool
JP5743868B2 (en) Cutting tools
JPS6126511B2 (en)
JPS6146429B2 (en)
JP2010024103A (en) Method for producing high-purity boron nitride sintered compact having high hardness and high toughness
JP2018122313A (en) Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JP2019063901A (en) Composite member and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150