JP4229750B2 - Cubic boron nitride sintered body - Google Patents

Cubic boron nitride sintered body Download PDF

Info

Publication number
JP4229750B2
JP4229750B2 JP2003130020A JP2003130020A JP4229750B2 JP 4229750 B2 JP4229750 B2 JP 4229750B2 JP 2003130020 A JP2003130020 A JP 2003130020A JP 2003130020 A JP2003130020 A JP 2003130020A JP 4229750 B2 JP4229750 B2 JP 4229750B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
nitride sintered
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003130020A
Other languages
Japanese (ja)
Other versions
JP2004331456A (en
Inventor
和雄 羽藤
晴彦 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2003130020A priority Critical patent/JP4229750B2/en
Publication of JP2004331456A publication Critical patent/JP2004331456A/en
Application granted granted Critical
Publication of JP4229750B2 publication Critical patent/JP4229750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は立方晶窒化硼素含有量の多い立方晶窒化硼素焼結体に関する。その中でも主に切削加工に用いられる立方晶窒化硼素焼結体に関する。
【0002】
【従来の技術】
一般的に立方晶窒化硼素焼結体切削工具は、立方晶窒化硼素焼結体ブランクスからワイヤーカット放電加工により刃先形状の立方晶窒化硼素焼結体を切り出し、超硬合金台金にロウ付けする。ワイヤーカット放電加工ができない場合、レーザーカット加工を行うが、研削取りしろ幅が増えることで製造コストが増加する。
【0003】
立方晶窒化硼素焼結体に関する従来の技術として、立方晶窒化硼素を80〜95体積%の割合で含有し、残りが窒化硼素とアルミニウムと周期律表4a、5a、6a族金属の酸化物のうちの少なくとも1種との反応により生成される化合物を主体とする立方晶窒化硼素焼結体がある(例えば、特許文献1参照。)。しかしながら、立方晶窒化硼素含有量が88体積%以上になると比抵抗が高くなり、ワイヤーカット放電加工が困難になるという問題があった。
【0004】
また、立方晶窒化硼素を70〜95体積%の割合で含有し、残りがCo、コバルト合金、およびAlと、Ni、Mn、Fe、VおよびCrから選ばれた合金形成性金属の金属相からなる立方晶窒化硼素焼結体がある(例えば、特許文献2参照。)。しかしながら、立方晶窒化硼素含有量が88体積%以上になると、比抵抗が高くなり、ワイヤーカット放電加工が困難になるという問題があった。
【0005】
【特許文献1】
特開平6−1666号公報
【特許文献2】
特開昭53−114589号公報
【0006】
【発明が解決しようとする課題】
本発明者らは、立方晶窒化硼素含有量の多い立方晶窒化硼素焼結体を切削工具に応用することを試みている。しかしながら、立方晶窒化硼素含有量の多い立方晶窒化硼素焼結体は、比抵抗が高いため、ワイヤーカット放電加工が困難であるという問題があった。そこで、本発明は、比抵抗が低く、立方晶窒化硼素含有量の多い立方晶窒化硼素焼結体の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく立方晶窒化硼素焼結体に関する研究を重ねたところ、結合相としてB6Co212を含む立方晶窒化硼素焼結体において、立方晶窒化硼素(111)面のX線回折強度に対するB6Co212(420)面のX線回折強度の割合を示す強度比が、立方晶窒化硼素焼結体の比抵抗に影響を及ぼすという知見を得て本発明を完成した。
【0008】
すなわち、本発明立方晶窒化硼素焼結体は、立方晶窒化硼素:88〜97体積%と、W、Co、Alの炭化物、窒化物、硼化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる結合相と不可避不純物:残部とで構成された立方晶窒化硼素焼結体であって、該結合相はB6Co212を含有するとともに、B6Co212の(420)面のX線回折強度をIw、立方晶窒化硼素の(111)面のX線回折強度をIbと表したとき、Ibに対するIwの割合を示す強度比Iw/Ibが0.10〜0.40となることを特徴とする。
【0009】
本発明立方晶窒化硼素焼結体に含まれる立方晶窒化硼素量が88体積%未満であると耐摩耗性が低下し、97体積%を超えると相対的に結合相が減少し焼結性が低下する。そこで立方晶窒化硼素含有量を88〜97体積%とした。その中でも立方晶窒化硼素含有量は、93〜95体積%であると好ましい。
【0010】
本発明立方晶窒化硼素焼結体の結合相は、W、Co、Alの炭化物、窒化物、硼化物およびこれらの固溶体の中から選ばれた少なくとも1種であり、立方晶窒化硼素との親和性が高く耐熱性も高い。具体的には、AlB2、AlN、BCoW、B2CoW2、B3CoW3、B6Co212、B6CoW3、B10CoW9、WCなどが挙げられる。その中でも、B6Co212を主成分とすると特に好ましい。
【0011】
本発明立方晶窒化硼素焼結体についてCuターゲットのKα線によりX線回折測定を行い、B6Co212の(420)面のX線回折強度をIw、立方晶窒化硼素の(111)面のX線回折強度をIbと表したとき、Ibに対するIwの割合を示す強度比Iw/Ibが0.1未満であると比抵抗が増加しワイヤーカット放電加工が難しくなる。Iw/Ibが0.4を超えると立方晶窒化硼素焼結体の硬さが低下し、切削工具として用いた場合、耐摩耗性が低下する。したがって、Iw/Ibを0.1〜0.4と定めた。なお、立方晶窒化硼素、B6Co212のX線回折図形以外に、AlB2、AlN、BCoW、B2CoW2、B3CoW3、B6CoW3、B10CoW9、WCのX線回折図形が観察される場合がある。
【0012】
本発明立方晶窒化硼素焼結体の比抵抗が、5×10-6Ω・cm未満を示すことはなく、10Ω・cmを超えるとワイヤーカット放電加工能率の低下が顕著になる。したがって、比抵抗は5×10-6〜10Ω・cmであると好ましい。
【0013】
試験荷重:4.90N、荷重保持時間:15秒の試験条件で測定した本発明立方晶窒化硼素焼結体のヌープ硬さは、3900以上であると耐摩耗性が向上する。また、ヌープ硬さが4300を超えることは困難であるため、ヌープ硬さは、3900〜4300の範囲であると好ましい。
【0014】
本発明立方晶窒化硼素焼結体は、鋭角部の強度が高く耐欠損性に優れるため、切削工具として用いると好ましい。切削工具として用いた場合、加工材の面精度に優れる。本発明立方晶窒化硼素焼結体は、ワイヤーカット放電加工が可能であるため、レーザーカット加工しかできなかった従来の立方晶窒化硼素焼結体よりも複雑な工具形状にも加工できる。本発明立方晶窒化硼素焼結体を鉄系焼結金属、高硬度ハイスロールに代表されるHRC50以上の非常に硬い難削材を加工する切削工具として用いることは特に好ましく、その中でも鉄系焼結金属用切削工具として用いると、さらに好ましい。
【0015】
【実施例1】
市販の平均粒径2μmの立方晶窒化硼素粉末、平均粒径2μmのWC粉末、平均粒径1.5μmのCo粉末、平均粒径4μmのAl粉末を用意する。体積比でWC:Co:Al=2:7:5となるように配合した粉末Aと立方晶窒化硼素(cBN)粉末を表1に示すように配合した。配合した原料粉末をウレタン内張りボールミルで湿式混合し、乾燥させた混合粉末を金属カプセルに充填した後、超高圧高温発生装置の容器内に挿入し、圧力6GPa、温度1600℃、保持時間30分の焼結条件で焼結した。焼結体として得られた本発明立方晶窒化硼素焼結体1〜3、比較立方晶窒化硼素焼結体1を研磨し、X線回折測定を行った。B6Co212の(420)面のX線回折強度をIw、立方晶窒化硼素の(111)面のX線回折強度をIbと表したとき、強度比Iw/Ibを表2に示した。また、研磨面をエネルギー分散型X線分析器および波長分散型X線分析器付きの走査型電子顕微鏡で観察し、立方晶窒化硼素焼結体に含まれる立方晶窒化硼素(cBN)量を測定した。さらに、試験荷重:4.90N、荷重保持時間:15秒の試験条件でヌープ硬さ(Hk)と比抵抗を測定した。それらの結果を表2に示した。本発明立方晶窒化硼素焼結体1〜3、比較立方晶窒化硼素焼結体1を1辺5mm、厚み1mmの正三角形に切断し、チップ形状:TNGA160408の超硬合金台金にロウ付けして切削工具を作製し、鉄系焼結金属(HRC=62)の加工テストを行った。加工テスト条件は切削速度Vc=130m/min、送りf=0.1mm/rev、切り込みap=0.05mmである。その結果を表2に示す。
【0016】
【表1】

Figure 0004229750
【0017】
【表2】
Figure 0004229750
【0018】
表2に示すように立方晶窒化硼素97体積%以下の本発明立方晶窒化硼素焼結体1〜3、比較立方晶窒化硼素焼結体1は焼結可能であった。なお、配合組成よりも立方晶窒化硼素焼結体に含まれる立方晶窒化硼素量が減少している。これは焼結によって立方晶窒化硼素の一部が、結合相の原料粉末と反応したためである。本発明立方晶窒化硼素焼結体1〜3、比較立方晶窒化硼素焼結体1のX線回折図形において、立方晶窒化硼素以外に、B6Co212、WC、AlN、BCoWが観察されたことから、本発明立方晶窒化硼素焼結体1〜3、比較立方晶窒化硼素焼結体1は、立方晶窒化硼素と、B6Co212、WC、AlNおよびBCoWからなる結合相とで構成された立方晶窒化硼素焼結体であることが分かる。得られた立方晶窒化硼素焼結体の比抵抗は8〜10Ω・cmであり、ワイヤーカット放電加工することが可能であった。鉄系焼結金属加工テストにおいて、立方晶窒化硼素88〜95体積%の本発明立方晶窒化硼素焼結体1〜3は、立方晶窒化硼素83体積%の比較立方晶窒化硼素焼結体1に対して1.6〜2倍の性能が得られた。
【0019】
【実施例2】
市販の平均粒径2μmの立方晶窒化硼素粉末、平均粒径2μmのWC粉末、平均粒径1.5μmのCo粉末、平均粒径4μmのAl粉末を用意する。立方晶窒化硼素:95.4体積%、WC:0.7体積%、Co:2.5体積%、Al:1.4体積%と配合した原料粉末をウレタン内張りボールミルで湿式混合し、乾燥した混合粉末を金属カプセルに充填した後、超高圧高温発生装置の容器内に挿入し、表3に示す圧力と温度、保持時間:30分という条件で焼結した。焼結体として得られた本発明立方晶窒化硼素焼結体4〜6、比較立方晶窒化硼素焼結体4、5を研磨した後、X線回折測定および比抵抗測定を行った。各試料のX線回折強度比Iw/Ib、比抵抗を表3に示した。なお、本発明立方晶窒化硼素焼結体4〜6、比較立方晶窒化硼素焼結体4、5は、立方晶窒化硼素:92体積%と、B6Co212、WC、AlNおよびBCoWからなる結合相:8体積%とで構成された立方晶窒化硼素焼結体であった。試験荷重:4.90N、荷重保持時間:15秒の試験条件でヌープ硬さ(Hk)を測定し、その値を表3に示した。
【0020】
【表3】
Figure 0004229750
【0021】
X線回折強度比Iw/Ibが0.10〜0.20である発明立方晶窒化硼素焼結体4〜6は、ヌープ硬さ4100、比抵抗10Ω・cmであり、ワイヤーカット放電加工可能であった。Iw/Ibが0.05〜0.07である比較立方晶窒化硼素焼結体4、5は、比抵抗1000Ω・cmであり、ワイヤーカット放電加工できなかった。
【0022】
【発明の効果】
本発明立方晶窒化硼素焼結体は、立方晶窒化硼素を88〜97体積%含む焼結体でありながら比抵抗が低いという特徴を有する。本発明立方晶窒化硼素焼結体はワイヤーカット放電加工できるため、複雑形状の工具を作製することが可能となった。本発明立方晶窒化硼素焼結体を切削工具として用いると工具寿命が向上するため好ましく、その中でも、特に鉄系焼結金属用切削工具として用いると工具寿命を向上させる効果が高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cubic boron nitride sintered body having a high cubic boron nitride content. In particular, the present invention relates to a cubic boron nitride sintered body mainly used for cutting.
[0002]
[Prior art]
In general, a cubic boron nitride sintered body cutting tool cuts a blade-shaped cubic boron nitride sintered body from a cubic boron nitride sintered blank by wire-cut electric discharge machining and brazes it to a cemented carbide base metal. . When wire-cut electric discharge machining cannot be performed, laser-cut machining is performed, but the manufacturing cost increases due to an increase in the width of grinding.
[0003]
As a conventional technique related to a cubic boron nitride sintered body, cubic boron nitride is contained in an amount of 80 to 95% by volume, and the rest is boron nitride, aluminum, and oxides of Group 4a, 5a, and 6a group metal oxides. There is a cubic boron nitride sintered body mainly composed of a compound produced by reaction with at least one of them (see, for example, Patent Document 1). However, when the cubic boron nitride content is 88% by volume or more, there is a problem that the specific resistance increases and wire-cut electric discharge machining becomes difficult.
[0004]
Further, cubic boron nitride is contained in a proportion of 70 to 95% by volume, and the remainder is Co, a cobalt alloy, and Al, and a metal phase of an alloy-forming metal selected from Ni, Mn, Fe, V, and Cr. There is a cubic boron nitride sintered body (see, for example, Patent Document 2). However, when the cubic boron nitride content is 88% by volume or more, there is a problem that the specific resistance increases and wire-cut electric discharge machining becomes difficult.
[0005]
[Patent Document 1]
JP-A-6-1666 [Patent Document 2]
JP-A-53-114589 [0006]
[Problems to be solved by the invention]
The present inventors have attempted to apply a cubic boron nitride sintered body having a high cubic boron nitride content to a cutting tool. However, the cubic boron nitride sintered body having a large cubic boron nitride content has a problem that wire-cut electric discharge machining is difficult because of its high specific resistance. Therefore, an object of the present invention is to provide a cubic boron nitride sintered body having a low specific resistance and a high cubic boron nitride content.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made researches on a cubic boron nitride sintered body to solve the above-mentioned problems. As a result, in the cubic boron nitride sintered body containing B 6 Co 21 W 2 as a binder phase, cubic nitriding is performed. A finding that the intensity ratio indicating the ratio of the X-ray diffraction intensity of the B 6 Co 21 W 2 (420) plane to the X-ray diffraction intensity of the boron (111) plane affects the specific resistance of the cubic boron nitride sintered body To complete the present invention.
[0008]
That is, the cubic boron nitride sintered body of the present invention is cubic boron nitride: 88 to 97% by volume, and at least one selected from W, Co, Al carbides, nitrides, borides, and solid solutions thereof. binder phase and inevitable impurities consisting of seeds: a cubic boron nitride sintered body is composed of a balance, the binder phase with contains B 6 Co 21 W 2, of the B 6 Co 21 W 2 (420 ) Plane X-ray diffraction intensity is expressed as Iw, and cubic boron nitride (111) plane X-ray diffraction intensity is expressed as Ib. The intensity ratio Iw / Ib indicating the ratio of Iw to Ib is 0.10 to 0.00. 40.
[0009]
When the amount of cubic boron nitride contained in the cubic boron nitride sintered body of the present invention is less than 88% by volume, the wear resistance is lowered, and when it exceeds 97% by volume, the binder phase is relatively reduced and the sinterability is reduced. descend. Therefore, the cubic boron nitride content was set to 88 to 97% by volume. Among them, the cubic boron nitride content is preferably 93 to 95% by volume.
[0010]
The binder phase of the cubic boron nitride sintered body of the present invention is at least one selected from carbides, nitrides, borides, and solid solutions of W, Co, and Al, and has an affinity for cubic boron nitride. High heat resistance. Specific examples include AlB 2 , AlN, BCoW, B 2 CoW 2 , B 3 CoW 3 , B 6 Co 21 W 2 , B 6 CoW 3 , B 10 CoW 9 , and WC. Among these, it is particularly preferable that B 6 Co 21 W 2 is a main component.
[0011]
The cubic boron nitride sintered body of the present invention is subjected to X-ray diffraction measurement with Kα rays of a Cu target, the X-ray diffraction intensity of the (420) plane of B 6 Co 21 W 2 is Iw, and (111) of cubic boron nitride When the X-ray diffraction intensity of the surface is expressed as Ib, if the intensity ratio Iw / Ib indicating the ratio of Iw to Ib is less than 0.1, the specific resistance increases and wire-cut electric discharge machining becomes difficult. When Iw / Ib exceeds 0.4, the hardness of the cubic boron nitride sintered body decreases, and when used as a cutting tool, the wear resistance decreases. Therefore, Iw / Ib was set to 0.1 to 0.4. In addition to the X-ray diffraction pattern of cubic boron nitride and B 6 Co 21 W 2 , AlB 2 , AlN, BCoW, B 2 CoW 2 , B 3 CoW 3 , B 6 CoW 3 , B 10 CoW 9 , WC X-ray diffraction patterns may be observed.
[0012]
The specific resistance of the cubic boron nitride sintered body of the present invention is not less than 5 × 10 −6 Ω · cm, and when it exceeds 10 Ω · cm, the wire-cut electric discharge machining efficiency is significantly lowered. Therefore, the specific resistance is preferably 5 × 10 −6 to 10 Ω · cm.
[0013]
When the Knoop hardness of the cubic boron nitride sintered body of the present invention measured under the test conditions of test load: 4.90 N and load holding time: 15 seconds is 3900 or more, the wear resistance is improved. Moreover, since it is difficult for Knoop hardness to exceed 4300, Knoop hardness is preferable in the range of 3900-4300.
[0014]
The cubic boron nitride sintered body of the present invention is preferably used as a cutting tool because it has high sharp corner strength and excellent fracture resistance. When used as a cutting tool, the surface accuracy of the workpiece is excellent. Since the cubic boron nitride sintered body of the present invention can be subjected to wire-cut electric discharge machining, it can be machined into a more complicated tool shape than a conventional cubic boron nitride sintered body that can only be laser-cut. The cubic boron nitride sintered body of the present invention is particularly preferably used as a cutting tool for processing a very hard difficult-to-cut material having an HRC of 50 or more typified by an iron-based sintered metal and a high-hardness high-speed roll. More preferably, it is used as a cutting tool for bonded metal.
[0015]
[Example 1]
Commercially available cubic boron nitride powder having an average particle diameter of 2 μm, WC powder having an average particle diameter of 2 μm, Co powder having an average particle diameter of 1.5 μm, and Al powder having an average particle diameter of 4 μm are prepared. As shown in Table 1, powder A and cubic boron nitride (cBN) powder blended so as to have a volume ratio of WC: Co: Al = 2: 7: 5 were blended. The blended raw material powder is wet-mixed in a urethane-lined ball mill, and the dried mixed powder is filled into a metal capsule, and then inserted into a container of an ultra-high pressure and high temperature generator, pressure 6 GPa, temperature 1600 ° C., holding time 30 minutes. Sintered under sintering conditions. The inventive cubic boron nitride sintered bodies 1 to 3 and the comparative cubic boron nitride sintered body 1 obtained as the sintered bodies were polished and subjected to X-ray diffraction measurement. Table 2 shows the intensity ratio Iw / Ib when the X-ray diffraction intensity of the (420) plane of B 6 Co 21 W 2 is expressed as Iw and the X-ray diffraction intensity of the (111) plane of cubic boron nitride is expressed as Ib. It was. Also, the polished surface is observed with a scanning electron microscope equipped with an energy dispersive X-ray analyzer and a wavelength dispersive X-ray analyzer, and the amount of cubic boron nitride (cBN) contained in the cubic boron nitride sintered body is measured. did. Furthermore, Knoop hardness (Hk) and specific resistance were measured under test conditions of test load: 4.90 N and load holding time: 15 seconds. The results are shown in Table 2. The cubic boron nitride sintered bodies 1 to 3 of the present invention and the comparative cubic boron nitride sintered body 1 are cut into equilateral triangles having a side of 5 mm and a thickness of 1 mm, and brazed to a cemented carbide base metal having a chip shape of TNGA160408. A cutting tool was prepared, and a processing test of an iron-based sintered metal (HRC = 62) was performed. The machining test conditions are cutting speed Vc = 130 m / min, feed f = 0.1 mm / rev, and cutting ap = 0.05 mm. The results are shown in Table 2.
[0016]
[Table 1]
Figure 0004229750
[0017]
[Table 2]
Figure 0004229750
[0018]
As shown in Table 2, the cubic boron nitride sintered bodies 1 to 3 of the present invention and the comparative cubic boron nitride sintered body 1 having a volume of 97% by volume or less of cubic boron nitride could be sintered. Note that the amount of cubic boron nitride contained in the cubic boron nitride sintered body is smaller than the blend composition. This is because a part of cubic boron nitride reacted with the raw material powder of the binder phase by sintering. In addition to the cubic boron nitride, B 6 Co 21 W 2 , WC, AlN, and BCoW are observed in the X-ray diffraction patterns of the cubic boron nitride sintered bodies 1 to 3 and the comparative cubic boron nitride sintered body 1. Therefore, the cubic boron nitride sintered bodies 1 to 3 of the present invention and the comparative cubic boron nitride sintered body 1 are bonded with cubic boron nitride and B 6 Co 21 W 2 , WC, AlN and BCoW. It can be seen that this is a cubic boron nitride sintered body composed of phases. The resulting cubic boron nitride sintered body had a specific resistance of 8 to 10 Ω · cm, and could be wire cut electric discharge processed. In the iron-based sintered metal processing test, the cubic boron nitride sintered bodies 1 to 3 of the present invention having a cubic boron nitride of 88 to 95% by volume were compared with the comparative cubic boron nitride sintered body 1 of 83% by volume of cubic boron nitride. 1.6 to 2 times the performance was obtained.
[0019]
[Example 2]
Commercially available cubic boron nitride powder having an average particle diameter of 2 μm, WC powder having an average particle diameter of 2 μm, Co powder having an average particle diameter of 1.5 μm, and Al powder having an average particle diameter of 4 μm are prepared. Raw material powder blended with cubic boron nitride: 95.4% by volume, WC: 0.7% by volume, Co: 2.5% by volume, Al: 1.4% by volume was wet mixed in a urethane-lined ball mill and dried. After the mixed powder was filled in the metal capsule, it was inserted into a container of an ultrahigh pressure and high temperature generator, and sintered under the conditions of pressure and temperature shown in Table 3 and holding time: 30 minutes. After grinding the cubic boron nitride sintered bodies 4 to 6 of the present invention and the comparative cubic boron nitride sintered bodies 4 and 5 obtained as sintered bodies, X-ray diffraction measurement and specific resistance measurement were performed. Table 3 shows the X-ray diffraction intensity ratio Iw / Ib and the specific resistance of each sample. The cubic boron nitride sintered bodies 4 to 6 of the present invention and the comparative cubic boron nitride sintered bodies 4 and 5 are cubic boron nitride: 92% by volume, B 6 Co 21 W 2 , WC, AlN and BCoW. It was a cubic boron nitride sintered body composed of a binder phase consisting of 8 vol%. The Knoop hardness (Hk) was measured under the test conditions of test load: 4.90 N, load holding time: 15 seconds, and the values are shown in Table 3.
[0020]
[Table 3]
Figure 0004229750
[0021]
Inventive cubic boron nitride sintered bodies 4 to 6 having an X-ray diffraction intensity ratio Iw / Ib of 0.10 to 0.20 have a Knoop hardness of 4100 and a specific resistance of 10 Ω · cm, and are capable of wire-cut electric discharge machining. there were. Comparative cubic boron nitride sintered bodies 4 and 5 having Iw / Ib of 0.05 to 0.07 had a specific resistance of 1000 Ω · cm, and could not be wire cut electric discharge machined.
[0022]
【The invention's effect】
The cubic boron nitride sintered body of the present invention is characterized by having a low specific resistance despite being a sintered body containing 88 to 97% by volume of cubic boron nitride. Since the cubic boron nitride sintered body of the present invention can be wire-cut electric discharge machined, it becomes possible to produce a tool having a complicated shape. The cubic boron nitride sintered body of the present invention is preferably used as a cutting tool because the tool life is improved, and among them, the effect of improving the tool life is particularly high when used as a cutting tool for iron-based sintered metal.

Claims (3)

立方晶窒化硼素:88〜97体積%と、W、Co、Alの炭化物、窒化物、硼化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる結合相と不可避不純物:残部とで構成された立方晶窒化硼素焼結体であって、該結合相はB6Co212を含有するとともに、B6Co212の(420)面のX線回折強度をIw、立方晶窒化硼素の(111)面のX線回折強度をIbと表したとき、Ibに対するIwの割合を示す強度比Iw/Ibが0.10〜0.40となる立方晶窒化硼素焼結体。Cubic boron nitride: composed of 88 to 97% by volume, a binder phase consisting of at least one selected from carbides, nitrides, borides and solid solutions of W, Co, Al, and inevitable impurities: the balance A cubic boron nitride sintered body, in which the binder phase contains B 6 Co 21 W 2 , the X-ray diffraction intensity of the (420) plane of B 6 Co 21 W 2 is Iw, and cubic nitride A cubic boron nitride sintered body in which the intensity ratio Iw / Ib indicating the ratio of Iw to Ib is 0.10 to 0.40 when the X-ray diffraction intensity of the (111) plane of boron is expressed as Ib. 前記立方晶窒化硼素焼結体の比抵抗が5×10-6〜10Ω・cmである請求項1に記載の立方晶窒化硼素焼結体。2. The cubic boron nitride sintered body according to claim 1, wherein a specific resistance of the cubic boron nitride sintered body is 5 × 10 −6 to 10 Ω · cm. 前記立方晶窒化硼素焼結体は、切削工具として用いられる請求項1または2に記載の立方晶窒化硼素焼結体。The cubic boron nitride sintered body according to claim 1 or 2, wherein the cubic boron nitride sintered body is used as a cutting tool.
JP2003130020A 2003-05-08 2003-05-08 Cubic boron nitride sintered body Expired - Fee Related JP4229750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130020A JP4229750B2 (en) 2003-05-08 2003-05-08 Cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130020A JP4229750B2 (en) 2003-05-08 2003-05-08 Cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JP2004331456A JP2004331456A (en) 2004-11-25
JP4229750B2 true JP4229750B2 (en) 2009-02-25

Family

ID=33505662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130020A Expired - Fee Related JP4229750B2 (en) 2003-05-08 2003-05-08 Cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP4229750B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032369A1 (en) * 2005-08-03 2007-02-08 Franzen Jan M High content CBN materials, compact incorporating the same and methods of making the same
JP5664795B2 (en) 2011-11-07 2015-02-04 株式会社タンガロイ Cubic boron nitride sintered body
JP6095162B2 (en) 2013-03-29 2017-03-15 住友電工ハードメタル株式会社 Cubic boron nitride sintered body
CN106414371B (en) * 2014-06-27 2019-07-19 京瓷株式会社 Cubic boron nitride sintered compact and cutting element
WO2016084738A1 (en) * 2014-11-25 2016-06-02 京セラ株式会社 cBN SINTERED COMPACT AND CUTTING TOOL
EP3854899A4 (en) 2018-09-19 2022-06-15 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and cutting tool containing this
KR102124566B1 (en) * 2018-11-07 2020-06-18 일진다이아몬드(주) Manufacturing Methods of cBN Sintered Tool With High Hardness
JP6900590B1 (en) 2020-03-24 2021-07-07 昭和電工株式会社 Cubic boron nitride sintered body, its manufacturing method, and tools
WO2022091257A1 (en) * 2020-10-28 2022-05-05 住友電工ハードメタル株式会社 Cubic boron nitride sintered body, tool including cubic boron nitride sintered body, and method for manufacturing cubic boron nitride sintered body
DE112021006652T5 (en) * 2020-12-25 2023-10-12 Kyocera Corporation Insert and a cutting tool

Also Published As

Publication number Publication date
JP2004331456A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
EP2108632B1 (en) Sintered composite material
JP5499718B2 (en) Sintered body and cutting tool using the sintered body
JP2006315898A (en) Cubic boron nitride sintered compact
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP4229750B2 (en) Cubic boron nitride sintered body
JPH0694580B2 (en) Sintered body for high precision machining tools
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JP6048522B2 (en) Sintered body and cutting tool
KR20170122103A (en) Sintered body and cutting tool
JP2007145667A (en) Cubic boron nitride sintered compact
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP6491232B2 (en) cBN sintered body and cutting tool
CN106795060B (en) Sintered material, cutting tool using sintered material, and method for producing sintered material
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP5023448B2 (en) cBN tool
JPH07328814A (en) Solid crystalline boron nitride radical ultra high pressure sintered material cutting tool superior in abrasion resistance
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
WO2009116616A1 (en) Tungsten carbide-based sintered object
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JP2000052085A (en) High performance super high pressure cutting tool of brazing type composed of diamond group super high pressure sintered compact and substrate hard metal
JPS58113349A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for wear resistant cutting tool
JP4526645B2 (en) Cemented carbide end mill with excellent heat resistance plastic deformation with excellent cutting edge surface and outer peripheral edge in high speed cutting
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Ref document number: 4229750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees