KR102124566B1 - Manufacturing Methods of cBN Sintered Tool With High Hardness - Google Patents

Manufacturing Methods of cBN Sintered Tool With High Hardness Download PDF

Info

Publication number
KR102124566B1
KR102124566B1 KR1020180135819A KR20180135819A KR102124566B1 KR 102124566 B1 KR102124566 B1 KR 102124566B1 KR 1020180135819 A KR1020180135819 A KR 1020180135819A KR 20180135819 A KR20180135819 A KR 20180135819A KR 102124566 B1 KR102124566 B1 KR 102124566B1
Authority
KR
South Korea
Prior art keywords
cbn
sintered body
tool
cbn sintered
phase
Prior art date
Application number
KR1020180135819A
Other languages
Korean (ko)
Other versions
KR20200052632A (en
Inventor
우종수
이현우
이경록
Original Assignee
일진다이아몬드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진다이아몬드(주) filed Critical 일진다이아몬드(주)
Priority to KR1020180135819A priority Critical patent/KR102124566B1/en
Publication of KR20200052632A publication Critical patent/KR20200052632A/en
Application granted granted Critical
Publication of KR102124566B1 publication Critical patent/KR102124566B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

고경도 cBN 소결체 공구의 제조 방법이 개시된다. 본 발명은 cBN 입자상 및 상기 cBN 입자 사이의 결합상을 포함하는 cBN 소결체를 제조하는 방법에 있어서, 초경합금제 기판 상에 cBN 분말과 Al, Co 및 W 소스 분말로 구성되는 원료 조성물 분말을 충전하는 단계; 및 상기 원료 조성물 분말을 고온 가압하여 소결하는 단계를 포함하는 cBN 소결체 공구의 제조 방법을 제공한다. 본 발명에 따르면, Ni계 내열 합금 피삭재를 가공하기에 적합한 입자상 및 결합상 구조를 갖는 cBN 소결체 공구를 제공할 수 있게 된다.A method of manufacturing a high hardness cBN sintered body tool is disclosed. The present invention is a method for manufacturing a cBN sintered body comprising a cBN particle phase and a binding phase between the cBN particles, filling a raw material composition powder comprising cBN powder and Al, Co, and W source powder on a cemented carbide substrate ; And it provides a method for producing a cBN sintered compact tool comprising the step of sintering the raw material powder by hot pressing. According to the present invention, it is possible to provide a cBN sintered body tool having a particulate and bonded phase structure suitable for processing a Ni-based heat-resistant alloy workpiece.

Description

고경도 cBN 소결체의 제조방법{Manufacturing Methods of cBN Sintered Tool With High Hardness}Manufacturing method of high hardness cBN sintered body {Manufacturing Methods of cBN Sintered Tool With High Hardness}

본 발명은 고경도 cBN 소결체 공구의 제조 방법 및 그에 의해 제조된 cBN 소결체 공구에 관한 것이다.The present invention relates to a method for manufacturing a high hardness cBN sintered body tool and a cBN sintered body tool produced thereby.

입방정 질화붕소(cubic boron nitride; cBN)는 다이아몬드 다음으로 높은 경도와 우수한 열전도성을 가지며, 다이아몬드에 비해 철과의 반응성이 낮다. 이로 인해, 입방정 질화붕소를 함유하는 공구가 주철의 마무리 절삭 가공이나, 소결합금 및 난삭재를 고속으로 정삭 가공하는 데 사용되어 왔다. Cubic boron nitride (cBN) has the highest hardness and excellent thermal conductivity after diamond, and has lower reactivity with iron than diamond. For this reason, a tool containing cubic boron nitride has been used for finishing cutting of cast iron or finishing sintered alloys and difficult-to-cut materials at high speed.

cBN 소결 공구의 재료는 2가지로 분류할 수 있는데, 첫번째는 cBN 함유율이 높아 cBN끼리 결합하고 잔부가 결합재로 이루어지는 것, 두번째는 cBN 함유율이 비교적 낮아 cBN끼리의 접촉율이 낮으며 철과의 반응성이 낮은 Ti의 질화물(TiN)이나 탄화물(TiC)로 이루어지는 세라믹스를 통해 결합되어 있는 소결체이다. The materials of the cBN sintering tool can be classified into two types, the first being that the cBN content is high, so that the cBN is bound to each other and the remainder is made of the bonding material, the second is the cBN content is relatively low, the contact ratio between cBN is low, and the reactivity with iron This is a sintered body that is bonded through ceramics made of low Ti nitride (TiN) or carbide (TiC).

높은 cBN 함유율을 갖는 cBN 소결체 공구를 낮은 연성을 갖는 난삭 재료의 절삭 가공에 적용하는 경우에는 cBN 입자가 고열전도성을 갖기 때문에 절삭 가공 시에 가공부에서 생기는 마찰열이 cBN 소결체측으로 확산하고 이로 인해 절삭 가공 시 피삭재를 고온으로 유지할 수 없어 절삭 효율이 현저하게 떨어지게 된다. 즉, cBN 소결체 성분이 80 체적% 이상인 고cBN 함유 소결체는 높은 열전도율을 갖기 때문에 가공에 의해 생기는 마찰열이 cBN 소결체로부터 빠져나가 버린다. 그로 인해 가공에서 발생하는 열이 피삭재에 충분히 전도되지 않고 피삭재가 연화되지 않으므로 공구에 부하가 걸리게 된다. When a cBN sintered body tool having a high cBN content is applied to the cutting of a difficult-to-cut material having low ductility, friction heat generated in the processing part during the cutting process spreads to the cBN sintered body due to the high thermal conductivity of the cBN particles, thereby cutting. When the workpiece is not maintained at a high temperature, the cutting efficiency is significantly reduced. That is, a high cBN-containing sintered body having a cBN sintered body component of 80% by volume or more has a high thermal conductivity, and friction heat generated by processing escapes from the cBN sintered body. As a result, the heat generated in the machining is not sufficiently conducted to the work piece and the work piece is not softened, so the tool is loaded.

이러한 문제로 철계 소결 합금의 절삭에서는 피삭재의 온도가 불충분하여 가공면이 뜯겨지고 가공면의 조도가 높아지는 문제점이 발생한다. 또한, 조도를 향상시키기 위해 절삭 속도를 빠르게 하면 마모가 급속하게 진전되어 원하는 공구 수명을 얻을 수 없다. 특히, 고온 경도가 높은 Ni계 내열 합금을 절삭 가공하는 경우에는 피삭재가 연화되기 어렵기 때문에 cBN 소결체에 결손이 생기기 쉽게 된다.Due to such a problem, in the cutting of the iron-based sintered alloy, a problem arises in that the temperature of the workpiece is insufficient and the machining surface is torn and the roughness of the machining surface increases. In addition, if the cutting speed is increased to improve the roughness, the wear progresses rapidly and the desired tool life cannot be obtained. Particularly, in the case of cutting a Ni-based heat-resistant alloy having a high temperature and hardness, the work piece is hard to soften, and thus the cBN sintered body is liable to be defective.

한편, cBN 함유율을 80 체적% 미만으로 하면, 열전도율이 비교적 낮아지므로 가공열이 cBN 소결체 공구로 유입되기 어려워지고 가공물의 급랭을 억제할 수 있다. 그러나, cBN 입자보다 강도 및 인성이 떨어지는 결합상이 상대적으로 많아지기 때문에 cBN 소결체 공구가 조기에 결손되는 문제가 있다. On the other hand, when the content of cBN is less than 80% by volume, the thermal conductivity is relatively low, so that the heat of processing is difficult to flow into the cBN sintered body tool, and rapid quenching of the workpiece can be suppressed. However, there is a problem in that the cBN sintered body tool is deteriorated early because the number of bonding phases having lower strength and toughness is higher than that of cBN particles.

이와 같이 cBN 입자의 함유율을 증가시키게 되면, 공구의 경도 증가와 열전도도의 감소가 트레이드오프의 관계에 있어 양자를 동시에 만족시키는 것은 어렵다는 문제점이 있다. When the content of cBN particles is increased as described above, there is a problem in that it is difficult to satisfy both at the same time because the increase in hardness of the tool and the decrease in thermal conductivity are related to trade-offs.

(1) 한국등록특허 제1270840호(1) Korean Registered Patent No. 1270840

상기 종래 기술의 분제점을 해결하기 위하여 본 발명은 인코넬과 같은 Ni계 내열 합금의 절삭에 적합하도록 공구의 경도를 향상시키는 동시에 cBN 소결체의 결손을 억제하는 cBN 소결체 공구를 제공하는 것을 목적으로 한다. The present invention aims to provide a cBN sintered body tool that improves the hardness of a tool suitable for cutting Ni-based heat-resistant alloys such as Inconel and suppresses defects in the cBN sintered body in order to solve the above-mentioned prior art powdering point.

또한, 본 발명은 연속 가공 시 겪게 되는 고열을 견딜 수 있는 결합상을 갖는 cBN 소결체 공구를 제조하는 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a cBN sintered body tool having a bonding phase capable of withstanding the high heat experienced during continuous processing.

또한, 본 발명은 Ni계 내열 합금 피삭재를 가공하기에 적합한 입자상 및 결합상 구조를 갖는 cBN 소결체 공구를 제조하는 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a cBN sintered body tool having a particulate and bonded phase structure suitable for processing a Ni-based heat-resistant alloy workpiece.

또한, 본 발명은 전술한 cBN 소결체 공구를 제조하는 제조 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a manufacturing method for manufacturing the above-mentioned cBN sintered body tool.

상기 기술적 과제를 달성하기 위하여 본 발명은, cBN 입자상 및 상기 cBN 입자 사이의 결합상을 포함하는 cBN 소결체를 제조하는 방법에 있어서, 초경합금제 기판 상에 cBN 분말과 Al, Co 및 W 소스 분말로 구성되는 원료 조성물 분말을 충전하는 단계; 및 상기 원료 조성물 분말을 고온 가압하여 소결하는 단계를 포함하는 cBN 소결체 공구의 제조 방법을 제공한다. In order to achieve the above technical problem, the present invention is a method of manufacturing a cBN sintered body comprising a cBN particle phase and a binding phase between the cBN particles, comprising cBN powder and Al, Co, and W source powder on a cemented carbide substrate. Filling the raw material composition powder; And it provides a method for producing a cBN sintered compact tool comprising the step of sintering the raw material powder by hot pressing.

본 발명에서 상기 cBN 분말은 평균입경이 1~2 ㎛일 수 있다. 또한, 상기 초경합금제 기판은 WC-Co를 포함하는 것이 바람직하다. In the present invention, the cBN powder may have an average particle diameter of 1 to 2 μm. In addition, it is preferable that the substrate made of cemented carbide includes WC-Co.

본 발명에서 상기 소결 단계는 1400~1500K의 온도에서 4.0 GPa 이상, 바람직하게는 5.0 GPa 이상의 압력으로 수행되는 것이 좋다. In the present invention, the sintering step is preferably carried out at a pressure of 4.0 GPa or more, preferably 5.0 GPa or more at a temperature of 1400-1500K.

본 발명에서 상기 Al 소스는 Al2O3이고, W소스는 WC일 수 있다. In the present invention, the Al source is Al 2 O 3 , and the W source may be WC.

상기 다른 기술적 과제를 달성하기 위하여 본 발명은, cBN 입자상 및 상기 cBN 입자 사이의 결합상을 포함하는 cBN 소결체를 포함하는 공구에 있어서, 상기 cBN 입자상은 상기 소결체 내의 체적 분율이 89~96%이고, 비커스 경도값이 3900~4100 Hv인 것을 특징으로 하는 cBN 소결체 공구를 제공한다. In order to achieve the other technical problem, the present invention, in a tool comprising a cBN sintered body comprising a cBN particulate phase and a binding phase between the cBN particles, the cBN particulate phase has a volume fraction in the sintered body of 89-96%, Provided is a cBN sintered compact tool, characterized in that the Vickers hardness value is 3900 to 4100 Hv.

본 발명에서 상기 cBN 입자상은 상기 소결체 내의 체적 분율이 90~92%인 것이 바람직하다. 이 때, 상기 cBN 입자상의 평균 입경은 2 ㎛ 미만 바람직하게는 1~1.5 ㎛인 것이 좋다. In the present invention, the cBN particulate phase preferably has a volume fraction of 90 to 92% in the sintered body. At this time, the average particle diameter of the cBN particles is less than 2 μm, preferably 1 to 1.5 μm.

본 발명에서 상기 결합상 성분의 금속 원소는 Al, Co 및 W로 구성되는 것 바람직하다. In the present invention, it is preferable that the metal element of the binding phase component is composed of Al, Co and W.

본 발명에 따르면, 인코넬과 같은 Ni계 내열 합금의 절삭에 적합하도록 공구의 경도를 향상시키는 동시에 cBN 소결체의 결손을 억제하는 cBN 소결체 공구를 제공할 수 있게 된다. According to the present invention, it is possible to provide a cBN sintered body tool that improves the hardness of the tool to suppress the defect of the cBN sintered body so as to be suitable for cutting Ni-based heat-resistant alloys such as Inconel.

또한, 본 발명에 따르면 연속 가공 시 겪게 되는 고열을 견딜 수 있는 결합상을 갖는 cBN 소결체 공구를 제공할 수 있게 된다. In addition, according to the present invention, it is possible to provide a cBN sintered body tool having a bonding phase capable of withstanding the high heat experienced during continuous processing.

또, 본 발명에 따르면, Ni계 내열 합금 피삭재를 가공하기에 적합한 입자상 및 결합상 구조를 갖는 cBN 소결체 공구를 제공할 수 있게 된다.Further, according to the present invention, it is possible to provide a cBN sintered body tool having a particulate and bonded phase structure suitable for processing a Ni-based heat-resistant alloy workpiece.

도 1은 본 발명의 일실시예에 따른 절삭 성능 평가 결과를 촬영한 사진이다.
도 2는 BN7000 샘플과 본 발명의 3-9 시편의 단면을 촬영한 사진이다.
1 is a photograph of a cutting performance evaluation result according to an embodiment of the present invention.
Figure 2 is a photograph taken in cross section of the BN7000 sample and the 3-9 specimen of the present invention.

이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술한다.Hereinafter, the present invention will be described by describing preferred embodiments of the present invention with reference to the drawings.

본 발명의 명세서에서 cBN 입자상이란 cBN 소결체 공구에서 cBN 입자 부분을 지칭한다. 또한, 결합상이란 cBN 입자 사이에서 cBN 입자 간을 연결하는 cBN 이외의 성분으로 이루어진 상을 지칭한다. 본 발명의 cBN 소결체에서 cBN 입자는 cBN 입자끼리 결합하거나 결합상을 개재하여 결합할 수 있다. In the context of the present invention, the cBN particulate phase refers to the cBN particle portion in the cBN sintered body tool. In addition, the binding phase refers to a phase composed of components other than cBN connecting cBN particles between cBN particles. In the cBN sintered body of the present invention, cBN particles may be bonded to each other or cBN particles may be bonded through a bonding phase.

본 발명에서 cBN 소결체 공구는 cBN 입자상 및 cBN 입자를 결합하는 바인더로서의 결합상을 포함한다. 본 발명의 소결체 공구는 cBN 입자보다 강도 및 인성이 떨어지는 결합상의 체적 분율을 최소한으로 유지한다. In the present invention, the cBN sintered body tool includes a cBN particle phase and a binding phase as a binder for binding cBN particles. The sintered body tool of the present invention keeps the volume fraction of the bonding phase which is lower in strength and toughness than cBN particles to a minimum.

바람직하게는 본 발명의 cBN 소결체에서 결합상의 체적 분율은 약 11 체적% 미만, 약 10% 미만, 약 8% 미만, 약 4% 미만일 수 있다. 바람직하게는 상기 결합상 체적 분율은 8~10%인 것이 좋다. Preferably, in the cBN sintered body of the present invention, the volume fraction of the binding phase may be less than about 11% by volume, less than about 10%, less than about 8%, and less than about 4%. Preferably, the binding phase volume fraction is preferably 8-10%.

또한, 본 발명의 cBN 소결체의 cBN 입자 상에서 cBN 입자의 평균 입경은 약 1~2 ㎛, 바람직하게는 약 1~1.5 ㎛인 것이 좋다. 전술한 바와 같이, 본 발명은 높은 cBN 입자상 분율을 가지면서 cBN 입자는 낮은 평균 입경을 갖는다. 이러한 미세구조 상의 특징은 다음과 같은 이점을 가져다 줄 수 있다. 먼저, 본 발명의 cBN 소결체는 높은 경도를 갖는다. 또한, cBN 소결체의 cBN 입자상이 낮은 입경을 가짐으로써 보다 많은 cBN 입자-cBN 입자 계면, cBN 입자-결합상 계면을 제공하며, 이 계면들은 열을 산란시켜 열전도의 저항으로 작용한다. 따라서, 높은 cBN 입자상 분율에도 불구하고 피삭재를 고온 상태로 유지할 수 있게 된다. 이에 따라, 인코넬과 같은 내열 합금을 고속으로 장시간 가공할 수 있게 된다. In addition, the average particle diameter of the cBN particles on the cBN particles of the cBN sintered body of the present invention is preferably about 1 to 2 μm, preferably about 1 to 1.5 μm. As described above, the present invention has a high cBN particulate fraction while the cBN particles have a low average particle diameter. The characteristics of the microstructure can bring the following advantages. First, the cBN sintered body of the present invention has a high hardness. In addition, the cBN sintered body has a lower cBN particle size, thereby providing more cBN particle-cBN particle interfaces and cBN particle-bonded phase interfaces, which act as a heat conduction resistance by scattering heat. Therefore, it is possible to maintain the workpiece at a high temperature despite the high cBN particulate fraction. Accordingly, a heat-resistant alloy such as Inconel can be processed at high speed for a long time.

본 발명에서 상기 cBN 소결체는 비커스 경도값이 3900~4100 Hv일 수 있다. 여기서, 비커스 경도는 FUTURE TECH FV-7 경도 시험기에서 다이아몬드 압자로 5kg 하중으로 5초 간 유지 측정한 값이다. In the present invention, the cBN sintered body may have a Vickers hardness value of 3900 to 4100 Hv. Here, the Vickers hardness is a value measured for 5 seconds under a 5 kg load with a diamond indenter in the FUTURE TECH FV-7 hardness tester.

본 발명에서 상기 결합상의 금속 원소는 Al, Co 및 W로 구성된다. 바꾸어 말하면 본 발명의 cBN 소결체의 결합상에는 Ti과 같은 금속 원소의 사용은 배제된다. 또한, 본 발명에서 금속 원소의 소스는 다양한 형태로 제공될 수 있다. 예컨대, 상기 금속 원소는 금속 형태로 제공되거나, 금속 수산화물, 금속 산화물 또는 금속 탄화물과 같은 금속 화합물 형태로 제공될 수 있다. 예컨대, Al은 Al2O3, W는 WC 형태로 제공될 수 있다. In the present invention, the metal element of the bonding phase is composed of Al, Co and W. In other words, the use of a metal element such as Ti is excluded from the bonding phase of the cBN sintered body of the present invention. Further, in the present invention, the source of the metal element may be provided in various forms. For example, the metal element may be provided in a metal form, or may be provided in the form of a metal compound such as metal hydroxide, metal oxide or metal carbide. For example, Al may be provided in the form of Al 2 O 3 , W WC.

본 발명에서 결합상을 구성하는 금속 원소 중 Al 함량은 0.1 중량%에서 1.0 중량%인 것이 바람직하다. In the present invention, the Al content of the metal elements constituting the bonding phase is preferably 0.1% by weight to 1.0% by weight.

이하 본 발명의 바람직한 실시예를 설명한다. Hereinafter, preferred embodiments of the present invention will be described.

<실시예 1><Example 1>

원료 분말로서 평균입경 2μm인 cBN 분말과 Al, W, Co 전구체를 결합제로 하여 적정 비율로 혼합하여 원료 조성물 분말을 제조하였다. 이 때, 소결체 내의 cBN의 체적분율이 표 1과 같이 되도록 배합비를 조절하였다.As a raw material powder, a cBN powder having an average particle diameter of 2 μm and an Al, W, and Co precursor as a binder were mixed at an appropriate ratio to prepare a raw material composition powder. At this time, the blending ratio was adjusted so that the volume fraction of cBN in the sintered body was as shown in Table 1.

직육면체형 용기의 바닥부에 초경합금제 기판을 장입하고 원료 조성물 분말을 충전한 후 Ar 분위기에서 고압 고온 소결(ELWOOD사 5,000TON Press)하였다. 이 때, 소결 압력은 내부 CELL기준 단위면적당 4.2 GPa, 소결 온도는 1400K로 하였다. The substrate of the rectangular parallelepiped container was charged with a cemented carbide substrate, and the raw material composition powder was charged, followed by high pressure high temperature sintering in an Ar atmosphere (5,000 tons of ELWOOD Press). At this time, the sintering pressure was 4.2 GPa per unit area based on the internal cell, and the sintering temperature was 1400K.

제조된 소결체의 경도를 측정하였다. 경도는 Vicker 경도계(FUTURE TECH; FV-7) 5kgf로 측정하였다. The hardness of the prepared sintered body was measured. Hardness was measured with a Vicker hardness tester (FUTURE TECH; FV-7) 5 kgf.

표 1은 본 실시예에서 제조된 소결체 시편의 cBN 함량과 경도 측정 결과를 나타낸 표이다. Table 1 is a table showing the cBN content and hardness measurement results of the sintered body specimen prepared in this example.

시편Psalter cBN (vol.%)cBN (vol.%) Grain Size (㎛)Grain Size (㎛) 소결 압력 (GPa)Sintering pressure (GPa) 소결 온도 (K)Sintering temperature (K) Hardness (HV)Hardness (HV) 1-11-1 6565 22 4.2Gpa4.2Gpa 1400K1400K 28562856 1-21-2 8080 22 4.2Gpa4.2Gpa 1400K1400K 30533053 1-31-3 9292 22 4.2Gpa4.2Gpa 1400K1400K 19081908

위 표 1에 나타낸 바와 같이, cBN 함량이 65Vol%에서 80Vol%로 증가함에 따라 경도값이 상승하였음. 그러나 cBN 함량이 80Vol%에서 92Vol%로 증가할 경우 오히려 소결 후 소재경도가 하락하는 결과를 보였다. 이러한 결과에서 소재경도의 변화는 cBN 함량에만 국한 된 것이 아니라, 또 다른 인자가 있을 것 이라고 예상된다. As shown in Table 1 above, as the cBN content increased from 65Vol% to 80Vol%, the hardness value increased. However, when the cBN content increased from 80Vol% to 92Vol%, the material hardness decreased after sintering. In these results, the change in material hardness is not limited to the cBN content, but it is expected that there will be another factor.

일반적인 분말야금 소재의 경도를 변화시키는 인자는 구성하는 원료 외에 소결 시 분말에 가해지는 온도, 압력 조건이 있는데, pCBN도 분말 야금법을 적용하여 제작 된 소재이므로 소결 시 가해지는 온도, 압력 조건과 소재 경도의 변화량과 관계가 있을 것으로 예측된다. In addition to the constituent raw materials, the factors that change the hardness of general powder metallurgy materials are temperature and pressure conditions applied to the powder during sintering. Since pCBN is also manufactured by applying powder metallurgy, the temperature, pressure conditions and materials applied during sintering It is expected to be related to the amount of change in hardness.

<실시예 2><Example 2>

실시예 1과 마찬가지로 원료 조성물 분말을 제조하고 초고압 초고온 소결하였다. 이 때 실시예 1과 달리 소결 온도를 1400~1500 K로 달리하였다. As in Example 1, a raw material composition powder was prepared, and ultra high pressure ultra high temperature sintering was performed. At this time, unlike Example 1, the sintering temperature was varied from 1400 to 1500 K.

표 2는 본 실시예에서 제조된 소결체 시편의 cBN 함량과 경도 측정 결과를 나타낸 표이다. 비교를 위하여 스미토모사의 BN7000 재종의 특성을 함께 나타내었다. Table 2 is a table showing the cBN content and hardness measurement results of the sintered body specimen prepared in this example. For comparison, the properties of Sumitomo's BN7000 grade are also shown.

시편Psalter cBN (vol.%)cBN (vol.%) Grain Size (㎛)Grain Size (㎛) 소결 압력 (GPa)Sintering pressure (GPa) 소결 온도 (K)Sintering temperature (K) Hardness (HV)Hardness (HV) BN7000BN7000 85~9085~90 3(Main)3(Main) -- -- 3,8743,874 2-12-1 6565 22 4.24.2 1,4001,400 2,8562,856 2-22-2 6565 22 4.24.2 1,4701,470 3,0713,071 2-32-3 6565 22 4.24.2 1,5001,500 3,1673,167 2-42-4 8080 22 4.24.2 1,4001,400 3,0533,053 2-52-5 8080 22 4.24.2 1,4701,470 3,2013,201 2-62-6 8080 22 4.24.2 1,5001,500 3,3943,394 2-72-7 9292 22 4.24.2 1,4001,400 1,9081,908 2-82-8 9292 22 4.24.2 1,4701,470 1,9801,980 2-92-9 9292 22 4.24.2 1,5001,500 2,1622,162

표 2로부터 cBN 함량과는 무관하게 소결 온도가 높아짐에 따라 소재경도의 물성이 상승하는 경향성을 보이는 것을 알 수 있다. 또한 cBN 함량이 80 vol%일 경우 소재 경도가 평균적으로 높으며, 1500K의 온도에서 가장 높은 소재 경도를 나타내었다. 경도 향상을 위하여 소결 조건 중 소결압력 평가를 추가적으로 실시하였다. It can be seen from Table 2 that the physical properties of the material hardness tend to increase as the sintering temperature increases, regardless of the cBN content. In addition, when the cBN content was 80 vol%, the material hardness was high on average, and showed the highest material hardness at a temperature of 1500K. In order to improve the hardness, sintering pressure evaluation was additionally performed among the sintering conditions.

<실시예 3><Example 3>

실시예 1과 마찬가지로 원료 조성물 분말을 제조하고 초고압 초고온 소결하였다. 이 때 실시예 1과 달리 소결 온도를 1500 K로 하고, 소결 압력을 변화시켰다. As in Example 1, a raw material composition powder was prepared, and ultra high pressure ultra high temperature sintering was performed. At this time, unlike Example 1, the sintering temperature was set to 1500 K, and the sintering pressure was changed.

표 3은 본 실시예에서 제조된 소결체 시편의 cBN 함량과 경도 측정 결과를 나타낸 표이다. 비교를 위하여 스미토모사의 BN7000 재종의 특성을 함께 나타내었다.Table 3 is a table showing the cBN content and hardness measurement results of the sintered body specimen prepared in this example. For comparison, the properties of Sumitomo's BN7000 grade are also shown.

시편Psalter cBN (vol.%)cBN (vol.%) Grain Size (㎛)Grain Size (㎛) 소결 압력 (GPa)Sintering pressure (GPa) 소결 온도 (K)Sintering temperature (K) Hardness (HV)Hardness (HV) BN7000BN7000 85~9085~90 3(Main)3(Main) -- -- 3,8743,874 3-13-1 6565 22 4.24.2 1,5001,500 3,1673,167 3-23-2 6565 22 4.84.8 1,5001,500 3,2503,250 3-33-3 6565 22 5.05.0 1,5001,500 3,3243,324 3-43-4 8080 22 4.24.2 1,5001,500 3,3943,394 3-53-5 8080 22 4.84.8 1,5001,500 3,6523,652 3-63-6 8080 22 5.05.0 1,5001,500 3,7743,774 3-73-7 9292 22 4.24.2 1,5001,500 2,1622,162 3-83-8 9292 22 4.84.8 1,5001,500 3,5103,510 3-93-9 9292 22 5.05.0 1,5001,500 3,9923,992

이상의 결과를 참조하면, cBN 함량에 따라 소재 경도의 변화가 발생하나 소결 시 가해지는 온도와 압력 조건에 가장 많은 영향을 보이는 것으로 나타났다. 이러한 결과는 평균적으로 cBN 함량이 높아짐에 따라 소결 시 요구되는 온도, 압력이 높아져야 되며, 소재의 경도를 변화시키는 주인자는 소결 시 가해지는 온도와 압력임을 알 수 있다. Referring to the above results, the change in material hardness occurs according to the cBN content, but it was found that it shows the most influence on the temperature and pressure conditions applied during sintering. As a result, on average, as the cBN content increases, the temperature and pressure required for sintering must be increased, and it can be seen that the owner who changes the hardness of the material is the temperature and pressure applied during sintering.

<실험예 1><Experimental Example 1>

실시예 3의 3-9 시편을 이용하여 절삭 성능을 평가하였다. 비교를 위하여 스미토모의 BN7000 공구, 일진다이아몬드의 SB95S2 공구를 함께 평가하였다. BN 7000 및 SB95S2의 이미지 분석 결과는 다음과 같다. 이레 표에서 총 원료 중 Main은 전체 중량비에서 50% 이상이며, Sub는 50% 이하의 중량비를 표기한 것이다.Cutting performance was evaluated using the 3-9 specimen of Example 3. For comparison, Sumitomo's BN7000 tool and Iljin Diamond's SB95S2 tool were evaluated together. The image analysis results of BN 7000 and SB95S2 are as follows. In the table, Main is 50% or more of the total weight ratio, and Sub is the weight ratio of 50% or less.

구분division BN7000BN7000 SB95S2SB95S2 cBN함량 (Vol.%)cBN content (Vol.%) 85~9085~90 > 90> 90 cBN 입자크기
(㎛)
cBN particle size
(㎛)
Min.Min. 0.06 0.06 0.06 0.06
Max.Max. 4.37 4.37 5.26 5.26 MainMain 3.30 3.30 1.00 1.00 SubSub 1.10 1.10 0.00 0.00

절삭 성능 평가 조건을 표 5에 나타내었다. Table 5 shows the cutting performance evaluation conditions.

피삭재Workpiece Inconel 718Inconel 718 절삭방식Cutting method 선삭 (Turning)
연속 (Continuous)
Turning
Continuous
장비, 냉각수Equipment, coolant PUMA2600PUMA2600 인서트 규격Insert dimensions CNGA120408 T01225CNGA120408 T01225 홀더 규격Holder specification PCLNL 2525 M12NPCLNL 2525 M12N 절삭조건Cutting condition 주속(m/min.)Main speed (m/min.) 120.0 120.0 이송(mm/rev.)Feed (mm/rev.) 0.12 0.12 절입(mm)Infeed (mm) 0.5 0.5 냉각 방식Cooling method Wet Wet

도 1은 본 실시예의 절삭 성능 평가 결과를 촬영한 사진이다. 도 1에 나타낸 바와 같이, 절삭성능과 내마모성은 3-9 시편이 가장 우수하였다. 1 is a photograph of the cutting performance evaluation result of the present embodiment. As shown in Fig. 1, the cutting performance and abrasion resistance of the 3-9 specimen were the best.

cBN의 공구의 성능은 cBN 입자의 조밀도와 결합상의 특성과 cBN의 직접결합량에 의존한다. 본 발명의 3-9 시편은 비교대상인 BN7000과 SB95S2 두 재종에 비해 cBN 입자 크기가 작고 입자 간의 거리가 작아 cBN 입자의 조밀도가 높아 내마모성이 우수한 것으로 판단된다. 또한 공구의 수명에 영향을 주는 결합상의 내열성이 상대적으로 강하다고 판단된다. The performance of a cBN tool depends on the density of the cBN particles, the nature of the bonding phase, and the amount of cBN direct binding. The 3-9 specimen of the present invention is judged to have excellent abrasion resistance because the cBN particle size is small and the distance between particles is small and the density of cBN particles is high compared to the two grades of comparison, BN7000 and SB95S2. It is also judged that the heat resistance of the bonding phase, which affects the life of the tool, is relatively strong.

가공 후 공구의 마모 상태에서는 상면과 측면 마모 모두 3-9 시편이 가장 적으며, 공구의 치핑성 마모 또한 3-9 시편이 가장 적었다. 이것은 309 시편에서 cBN 직접 결합량이 증가한 것에 기인하는 것으로 판단된다.After machining, the wear condition of the tool had the lowest 3-9 specimens in both the top and side wear, and the chipping wear of the tool also had the lowest 3-9 specimens. This is believed to be due to the increased amount of cBN direct binding in the 309 specimen.

제조된 실시예에 샘플의 이미지 분석을 행하였다. 도 2는 BN7000 샘플과 본 발명의 3-9 시편의 단면을 촬영한 사진이다.Image analysis of the samples was performed in the prepared examples. Figure 2 is a photograph taken in cross section of the BN7000 sample and the 3-9 specimen of the present invention.

도 2의 (a)에 나타난 BN7000 샘플은 도 2의 (b)의 3-9 시편에 비해 입자 크기가 크며, 결합상 포켓의 크기 또한 큼을 알 수 있다. It can be seen that the BN7000 sample shown in FIG. 2(a) has a larger particle size than the 3-9 specimen of FIG. 2(b), and the size of the binding phase pocket is also large.

도 2의 (a) 및 (b)의 우측 사진에는 사진 상의 입자 크기를 실측한 데이터를 병기하였다. 배율 x3000에서 측정된 cBN 입자 크기의 평균 및 표준 편차를 아래 표 2에 나타내었다. 입자 크기는 SEM BSE Mode의 3000 배율에서 무작위 40개의 입자를 선별하여 가로/세로축으로 총 80개의 data를 측정, 기록하였다. 2(a) and 2(b), the data on the particle size on the picture are recorded. The average and standard deviation of the cBN particle size measured at a magnification of x3000 is shown in Table 2 below. For particle size, 40 random particles were selected at 3000 magnification in SEM BSE Mode, and a total of 80 data were measured and recorded along the horizontal/vertical axis.

구분division 평균(㎛)Average (㎛) 표준편차Standard Deviation BN7000BN7000 2.432.43 0.500.50 3-9 시편3-9 Psalms 1.431.43 0.360.36

cBN 입자상 및 결합상의 체적 분율을 계산하여 표 7에 나타내었다. 체적 분율은 시편의 임의의 단면에서 배율 x3000 배 전자현미경 사진을 사용하여, 160㎛ x 120㎛ 영역 내의 입자상과 결합상의 면적분율로부터 계산하였고, 3개 영역에서의 평균값을 취하였다. 이 때, 임의의 단면에서의 면적분율은 체적분율과 동일하다고 가정하였다. 면적 분율의 계산은 Clemex를 사용하였다. Table 7 shows the volume fractions of the cBN particulate phase and the binding phase. The volume fraction was calculated from the area fractions of the particulate and bonded phases in the 160 µm x 120 µm region, using magnification x3000 times electron micrographs at arbitrary cross sections of the specimen, and the average values in the three regions were taken. At this time, it was assumed that the area fraction in an arbitrary cross section is the same as the volume fraction. The area fraction was calculated using Clemex.

구분division 입자상
(체적분율, %)
Granular
(Volume fraction, %)
결합상
(체적분율, %)
Bonding phase
(Volume fraction, %)
BN7000BN7000 87.987.9 12.112.1 3-9 시편3-9 Psalms 90.690.6 9.39.3

표 7에 나타난 바와 같이, 본 발명의 3-9 시편은 결합상의 분율이 10% 미만으로 적은 값을 나타내고 있다. As shown in Table 7, the 3-9 specimen of the present invention shows a small value of the fraction of the bonding phase is less than 10%.

이상 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양하게 구현될 수 있다.The preferred embodiments of the present invention have been described above, but the technical spirit of the present invention is not limited to the preferred embodiments described above, and may be variously implemented within a scope not departing from the technical spirit of the present invention as specified in the claims. have.

Claims (11)

cBN 입자상 및 상기 cBN 입자 사이의 결합상을 포함하는 cBN 소결체를 제조하는 방법에 있어서,
초경합금제 기판 상에 cBN 분말과 Al, Co 및 W 소스 분말로 구성되는 원료 조성물 분말을 충전하는 단계; 및
상기 원료 조성물 분말을 고온 가압하여 소결하는 단계를 포함하고,
상기 초경합금제 기판은 WC-Co를 포함하고,
상기 cBN 분말은 평균입경이 1~2 ㎛이고,
상기 cBN 입자상은 소결체 내의 체적 분율이 90~92%이고,
상기 소결하는 단계는 1400~1500K의 온도에서 4.0 GPa 이상의 압력으로 수행되는 것을 특징으로 하는 cBN 소결체 공구의 제조 방법.
In the method for producing a cBN sintered body comprising a cBN particle phase and a binding phase between the cBN particles,
Filling a raw material composition powder composed of cBN powder and Al, Co, and W source powders on a cemented carbide substrate; And
Sintering by pressing the raw material composition powder at a high temperature,
The substrate made of cemented carbide includes WC-Co,
The cBN powder has an average particle diameter of 1 to 2 μm,
The cBN particulate phase has a volume fraction in the sintered body of 90 to 92%,
The sintering step is a method of manufacturing a cBN sintered body tool, characterized in that performed at a pressure of 4.0 GPa or more at a temperature of 1400-1500K.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 소결하는 단계는,
1400~1500K의 온도에서 5.0 GPa 이상의 압력으로 수행되는 것을 특징으로 하는 cBN 소결체 공구의 제조 방법.
According to claim 1,
The sintering step,
Method of manufacturing a cBN sintered body tool, characterized in that carried out at a pressure of 5.0 GPa or more at a temperature of 1400 ~ 1500K.
제1항에 있어서,
상기 Al 소스는 Al2O3이고, W소스는 WC인 것을 특징으로 하는 cBN 소결체 공구의 제조 방법.
According to claim 1,
The Al source is Al 2 O 3 , W source is a method of manufacturing a cBN sintered body tool, characterized in that WC.
제1항, 제5항 및 제6항 중 어느 한 항에 기재된 방법에 의해 제조되고,
비커스 경도값이 3900~4100 Hv인 것을 특징으로 하는 cBN 소결체 공구.
It is produced by the method according to any one of claims 1, 5, and 6,
CBN sintered compact tool, characterized in that the Vickers hardness value is 3900-4100 Hv.
제7항에 있어서,
상기 cBN 입자상은 상기 소결체 내의 체적 분율이 90~92%인 것을 특징으로 하는 cBN 소결체 공구.
The method of claim 7,
The cBN particulate phase cBN sintered body tool, characterized in that the volume fraction in the sintered body is 90 to 92%.
제7항에 있어서,
상기 cBN 입자상의 평균 입경은 2 ㎛ 미만인 것을 특징으로 하는 cBN 소결체 공구.
The method of claim 7,
CBN sintered body tool, characterized in that the average particle diameter of the cBN particles is less than 2 μm.
제7항에 있어서,
상기 cBN 입자상의 평균 입경은 1~1.5 ㎛인 것을 특징으로 하는 cBN 소결체 공구.
The method of claim 7,
CBN sintered body tool, characterized in that the average particle diameter of the cBN particles is 1 to 1.5 ㎛.
제7항에 있어서,
상기 결합상 성분의 금속 원소는 Al, Co 및 W로 구성되는 것을 특징으로 하는 cBN 소결체 공구.
The method of claim 7,
The cBN sintered body tool, characterized in that the metal element of the bonding phase component is composed of Al, Co, and W.
KR1020180135819A 2018-11-07 2018-11-07 Manufacturing Methods of cBN Sintered Tool With High Hardness KR102124566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180135819A KR102124566B1 (en) 2018-11-07 2018-11-07 Manufacturing Methods of cBN Sintered Tool With High Hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180135819A KR102124566B1 (en) 2018-11-07 2018-11-07 Manufacturing Methods of cBN Sintered Tool With High Hardness

Publications (2)

Publication Number Publication Date
KR20200052632A KR20200052632A (en) 2020-05-15
KR102124566B1 true KR102124566B1 (en) 2020-06-18

Family

ID=70679061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180135819A KR102124566B1 (en) 2018-11-07 2018-11-07 Manufacturing Methods of cBN Sintered Tool With High Hardness

Country Status (1)

Country Link
KR (1) KR102124566B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331456A (en) 2003-05-08 2004-11-25 Tungaloy Corp Cubic boron nitride sintered compact

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502585B1 (en) * 2002-07-08 2005-07-20 일진디스플레이(주) Sintering body having high hardness for cutting cast iron and The producing method the same
CA2571470C (en) 2005-11-18 2013-02-05 Sumitomo Electric Hardmetal Corp. Cbn sintered body for high surface integrity machining, cbn sintered body cutting tool, and cutting method using the same
JP6095162B2 (en) * 2013-03-29 2017-03-15 住友電工ハードメタル株式会社 Cubic boron nitride sintered body
KR101828297B1 (en) * 2016-04-11 2018-02-13 일진다이아몬드(주) Polycrystalline Cubic Boron Nitride and the manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331456A (en) 2003-05-08 2004-11-25 Tungaloy Corp Cubic boron nitride sintered compact

Also Published As

Publication number Publication date
KR20200052632A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
EP2462083B1 (en) Tough coated hard particles consolidated in a tough matrix material
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
US10308559B2 (en) Sintered polycrystalline cubic boron nitride body
KR100219930B1 (en) Superhard composite member and its production
JP6703757B2 (en) Cermet and cutting tool
KR101414910B1 (en) Tool comprising sintered cubic boron nitride
KR20090091803A (en) Cubic boron nitride compacts
KR20180075502A (en) Sintered body and manufacturing method thereof
EP2612719A1 (en) Cubic boron nitride sintered compact tool
KR20170120485A (en) Sintered body and cutting tool
KR100502585B1 (en) Sintering body having high hardness for cutting cast iron and The producing method the same
US20070134494A1 (en) Cubic boron nitride sintered body and method for making the same
EP3530767A1 (en) Composite sintered material
KR102124566B1 (en) Manufacturing Methods of cBN Sintered Tool With High Hardness
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP2000308907A (en) Cermet tool and its manufacture
JP6283985B2 (en) Sintered body
US20230035663A1 (en) Sintered polycrystalline cubic boron nitride material
JP7068657B2 (en) Cutting tool made of cubic boron nitride base sintered body
JP2020131293A (en) Cutting tool made of cubic crystal boron nitride-based sintered body
JPH08225877A (en) Nitrogen-containing sintered hard alloy
KR20000047918A (en) Sintered Body Having High Hardness and High Strength
CN113508101B (en) cBN sintered body and cutting tool
JP2003089005A (en) Laminate chip of wc-based super-hard alloy and method for manufacturing same
JP2024033530A (en) Cubic crystal boron nitride sintered body

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right