JP2010024103A - Method for producing high-purity boron nitride sintered compact having high hardness and high toughness - Google Patents

Method for producing high-purity boron nitride sintered compact having high hardness and high toughness Download PDF

Info

Publication number
JP2010024103A
JP2010024103A JP2008188354A JP2008188354A JP2010024103A JP 2010024103 A JP2010024103 A JP 2010024103A JP 2008188354 A JP2008188354 A JP 2008188354A JP 2008188354 A JP2008188354 A JP 2008188354A JP 2010024103 A JP2010024103 A JP 2010024103A
Authority
JP
Japan
Prior art keywords
boron nitride
wbn
sintered body
powder
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008188354A
Other languages
Japanese (ja)
Other versions
JP5239576B2 (en
Inventor
Eko Wardoyo Akhmadi
アフマディ・エコ・ワルドヨ
Itsuro Tajima
逸郎 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008188354A priority Critical patent/JP5239576B2/en
Publication of JP2010024103A publication Critical patent/JP2010024103A/en
Application granted granted Critical
Publication of JP5239576B2 publication Critical patent/JP5239576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a high-purity boron nitride sintered compact, which is low in cleavage property, is excellent in crack propagation suppressing action and includes high hardness and high toughness. <P>SOLUTION: The high-purity boron nitride sintered compact containing a trace quantity of wurtzite type boron nitride is produced by cleaning the surface of fine wurtzite type boron nitride powder having ≤0.5 μm particle diameter with a supercritical fluid containing no oxygen and using solid polyvinylidene chloride, polyvinyl chloride and polyethylene as fluid sources and sintering under a high-pressure high-temperature condition of ≥5 GPa and ≥1,400°C without adding a sintering aid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、劈開性が低くクラック(亀裂)伝播抑制作用に優れた高硬度かつ高靭性を有する高純度窒化ホウ素焼結体の製造法に関し、特に、異種複合材料の切削工具材料として適用した場合に、耐チッピング性、耐摩耗性ばかりか被削材の仕上げ面精度にも優れ、長期の使用にわたって優れた切削性能を発揮する高純度窒化ホウ素焼結体の製造法に関する。   The present invention relates to a method for producing a high-purity boron nitride sintered body having a high hardness and high toughness having a low cleaving property and an excellent crack propagation suppressing action, and particularly when applied as a cutting tool material of a different composite material. Furthermore, the present invention relates to a method for producing a high-purity boron nitride sintered body that is excellent not only in chipping resistance and wear resistance but also in the finished surface accuracy of a work material and that exhibits excellent cutting performance over a long period of use.

従来、高硬度鋼等の鉄系被削材の切削加工には、被削材との親和性の低い工具材料として、窒化ほう素焼結体、例えば、立方晶窒化ホウ素(以下、cBNで示す)あるいはウルツ鉱型窒化ほう素(以下、wBNで示す)、が用いられることは良く知られている。
そして、これらの窒化ほう素焼結体は、例えば、cBN粉末あるいはwBN粉末を、金属、セラミック等の焼結助剤と混合し、超高圧高温処理により焼結体として製造することが一般的であるが、この焼結体は、焼結助剤を含むために、cBNあるいはwBNに比して、硬度、熱伝導性等が劣り、cBN、wBN本来の特性が充分に発揮されているとはいえなかった。
Conventionally, a boron nitride sintered body, for example, cubic boron nitride (hereinafter referred to as cBN) is used as a tool material having low affinity with a work material for cutting of an iron-based work material such as high hardness steel. Alternatively, it is well known that wurtzite boron nitride (hereinafter referred to as wBN) is used.
These boron nitride sintered bodies are generally manufactured as a sintered body by, for example, mixing cBN powder or wBN powder with a sintering aid such as metal or ceramic and performing ultra-high pressure and high temperature treatment. However, since this sintered body contains a sintering aid, it is inferior in hardness, thermal conductivity, etc. compared to cBN or wBN, and it can be said that the original characteristics of cBN and wBN are sufficiently exhibited. There wasn't.

そこで、よりすぐれた特性の窒化ほう素焼結体を得るための製造方法の一つとして、粒径幅0.5〜2μmのcBN粉末を、酸素を含有しない流体からなり、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル及びポリエチレンの1種または2種以上を使用する超臨界流体で清浄化し、焼結助剤を添加せずに5GPa,1400℃以上の高圧高温条件下で焼結する高純度cBN焼結体の製造法が提案されており、この製造方法によれば、高硬度でかつ異常粒成長がなく耐熱性に優れた高純度cBN焼結体を得ることができるとの報告がなされている。   Therefore, as one of the manufacturing methods for obtaining a boron nitride sintered body having better characteristics, a cBN powder having a particle size width of 0.5 to 2 μm is made of a fluid containing no oxygen and is used as a solid source as a fluid source. High purity purified by supercritical fluid using one or more of vinylidene chloride, polyvinyl chloride and polyethylene, and sintered under high pressure and high temperature conditions of 5 GPa and 1400 ° C or higher without adding sintering aid A method for producing a cBN sintered body has been proposed. According to this production method, it has been reported that a high-purity cBN sintered body having high hardness and no abnormal grain growth and excellent heat resistance can be obtained. ing.

また、wBN粉末を原料として、結合相成分を用いないで焼結体を製造しようとする方法も知られているが、このような場合には、8〜9GPaという超高圧が必要となり、これにたえられるような高価な設備が必要とされるためコスト高となり、さらに、このような超高圧下の焼結によっても、わずか50%以下のwBNがcBNへ相転移するのみであって、cBNへの相転移が不完全であるため、焼結体としてcBNの有するすぐれた特性が十分に発揮されていないという問題があった。   In addition, a method for producing a sintered body using wBN powder as a raw material without using a binder component is also known, but in such a case, an ultrahigh pressure of 8 to 9 GPa is required. Since expensive equipment is required, the cost is high. Furthermore, even under sintering under such ultra-high pressure, only 50% or less of wBN is phase-transformed to cBN, and cBN Since the phase transition to is incomplete, the excellent properties of cBN as a sintered body have not been sufficiently exhibited.

特公昭62−41192号公報Japanese Examined Patent Publication No. 62-41192 特許第3132849号明細書Japanese Patent No. 3132649 特開2007-70148号公報JP 2007-70148 A 「Powder Metallurgy and Metal Ceramics」Vol.37,No.1−2(1998年)48−54頁“Powder Metallurgy and Metal Ceramics” Vol. 37, no. 1-2 (1998) 48-54

cBNは、ダイヤモンドに匹敵する硬度を持つほか、熱的、化学的にも安定であることから、現在、高速度鋼、ダイス鋼、鋳鉄等の鉄系被削材の切削工具材料等としてcBN焼結体が利用されており、例えば、前記特許文献3に示される高純度cBN焼結体からなる切削工具は、高速度鋼、ダイス鋼、鋳鉄等の鉄系被削材の切削加工において優れた耐摩耗性を発揮している。
しかし、最近では、例えば、自動車用部材の軽量化を図るために異種複合材料が使用されるようになってきたが、このような異種複合材料(例えば、ダクタイル鋳鉄−アルミニウム合金の複合材)の切削工具材料としてcBN焼結体を用いた場合には、切刃に作用する高負荷によりクラックが発生しやすくなり、一方、cBN焼結体は劈開性が高くクラック(亀裂)伝播抑制作用が不十分であるため、cBN焼結体中をクラック(亀裂)が伝播することによって、切削工具にチッピング、欠損等が発生し、これが原因で破損に至り、工具寿命が短かくなるという問題があった。
そこで、この発明は、異種複合材料の切削工具材料として適用した場合にも、切削特性の向上、工具寿命の延長を図ることができるような、劈開性が低くクラック(亀裂)伝播抑制作用に優れた高硬度かつ高靭性を有する高純度窒化ほう素焼結体を、簡易にかつ低コストで得ることができる新たな製造方法を提供することを目的とするものである。
cBN has hardness comparable to that of diamond and is also thermally and chemically stable. Therefore, cBN is currently used as a cutting tool material for ferrous materials such as high-speed steel, die steel, and cast iron. For example, a cutting tool made of a high-purity cBN sintered body shown in Patent Document 3 is excellent in cutting of iron-based work materials such as high-speed steel, die steel, and cast iron. Exhibits wear resistance.
However, recently, for example, dissimilar composite materials have been used to reduce the weight of automobile components. However, such dissimilar composite materials (for example, ductile cast iron-aluminum alloy composite materials) When a cBN sintered body is used as the cutting tool material, cracks are likely to occur due to a high load acting on the cutting blade, while the cBN sintered body has a high cleaving property and has no crack (crack) propagation suppressing action. Since it is sufficient, cracks (cracks) propagate through the cBN sintered body to cause chipping, chipping, etc. in the cutting tool, leading to damage and shortening the tool life. .
Therefore, the present invention has a low cleaving property and an excellent crack propagation suppressing action that can improve cutting characteristics and extend the tool life even when applied as a cutting tool material of a different composite material. Another object of the present invention is to provide a new production method capable of easily and inexpensively obtaining a high-purity boron nitride sintered body having high hardness and high toughness.

本発明者らは、高純度窒化ほう素焼結体を製造する際の原料粉末と製造条件について鋭意研究したところ、次のような知見を得た。   The present inventors diligently studied the raw material powder and production conditions when producing a high-purity boron nitride sintered body, and obtained the following knowledge.

前記特許文献3に開示される焼結体の製造方法においては、原料用粉末として、粒径幅0.5〜2μmのcBN粉末を用い、結合相成分を用いることなしに焼結することにより、高純度cBN焼結体を得ていたが、この方法によって得られたcBN焼結体は、既に述べたように高硬度であるものの劈開性が高いため、これを異種複合材料の切削工具材料として用いた場合には、チッピング等の発生により破損を招きやすく工具寿命は短命であった。
そこで、本発明者等は、cBN粉末を原料粉末として用いるのではなく、ウルツ鉱型窒化ほう素(wBN)粉末を原料粉末として用い、結合相成分を用いることなく前記特許文献3に開示された方法と同様な処理を行うことにより、劈開性が低くクラック(亀裂)伝播抑制作用に優れた高硬度かつ高靭性を有する高純度窒化ほう素焼結体が得られることを見出した。
なお、本発明でいう「高純度窒化ほう素焼結体」とは、焼結助剤を使用せずに焼結した窒化ほう素焼結体をいう。また、上記原料粉末としてのwBN粉末は、hBNに対して爆薬で瞬間的に高圧高温状態を作り高圧相wBNに相転移させるという当業者に周知の方法で製造したwBN粉末を用いればよい。
In the method for producing a sintered body disclosed in Patent Document 3, cBN powder having a particle size width of 0.5 to 2 μm is used as a raw material powder and sintered without using a binder phase component. Although a high-purity cBN sintered body has been obtained, the cBN sintered body obtained by this method has a high degree of cleaving although it has a high hardness as described above, and this is used as a cutting tool material of a heterogeneous composite material. When used, the tool life was short because it was liable to be damaged by chipping and the like.
Therefore, the present inventors have disclosed the above Patent Document 3 without using a cBN powder as a raw material powder but using a wurtzite boron nitride (wBN) powder as a raw material powder and without using a binder phase component. It has been found that a high-purity boron nitride sintered body having a high hardness and a high toughness having a low cleaving property and an excellent crack propagation suppressing effect can be obtained by performing the same treatment as the method.
The “high-purity boron nitride sintered body” in the present invention refers to a boron nitride sintered body sintered without using a sintering aid. The wBN powder as the raw material powder may be a wBN powder produced by a method well known to those skilled in the art that instantaneously creates a high-pressure and high-temperature state for hBN with an explosive and causes phase transition to the high-pressure phase wBN.

即ち、本発明は、微粒のウルツ鉱型窒化ほう素(wBN)粉末を原料粉末として用い、結合相成分を用いることなく、比較的低圧(5〜7GPa程度)高温下で焼結を行うことにより、微量かつ微粒のwBNとcompressedhBN(以下、comp.hBNで示す)を含有し、残部がcBNからなる高純度窒化ほう素焼結体を製造し得ることを見出したものである。
なお、上記のcomp.hBNとは、wBNの焼結時に逆相転移によって生じた常圧相の六方晶窒化ほう素(hBN)であるが、X線回折により(002)の回折ピーク位置を求めた場合、通常のhBNの回折ピーク位置より高角側にずれた位置にピークを示し、六方晶のc軸が圧縮され短くなった結晶構造を有することから、圧縮hBN(compressedhBN(comp−hBN))と呼ばれている。
That is, the present invention uses fine wurtzite boron nitride (wBN) powder as a raw material powder and performs sintering at a relatively low pressure (about 5 to 7 GPa) and high temperature without using a binder phase component. The present inventors have found that a high-purity boron nitride sintered body containing a very small amount of fine wBN and compressed hBN (hereinafter referred to as comp.hBN) and the balance being cBN can be produced.
The above comp. hBN is normal-pressure hexagonal boron nitride (hBN) generated by a reverse phase transition during the sintering of wBN. When the diffraction peak position of (002) is obtained by X-ray diffraction, normal hBN is obtained. It is called compressed hBN (compressed hBN (comp-hBN)) because it shows a peak at a position shifted to the higher angle side from the diffraction peak position of the crystal and the c-axis of the hexagonal crystal is compressed and shortened.

そして、本発明によって製造された高純度窒化ほう素焼結体は、劈開性が低くクラック(亀裂)伝播抑制作用に優れ、高硬度かつ高靭性を有することから、これをダクタイル鋳鉄−アルミニウム合金の複合材の如き異種複合材料の切削工具材料として用いた場合には、被削材の仕上げ面精度の向上を図ることができると同時に、チッピング、欠損、破損等を生じることもなく、長期の使用にわたってすぐれた耐摩耗性を発揮し、工具寿命の延命化を図ることができる。   The high-purity boron nitride sintered body produced by the present invention has a low cleaving property, an excellent crack propagation suppressing action, and has a high hardness and high toughness. Therefore, this is a composite of ductile cast iron-aluminum alloy. When used as a cutting tool material of different composite materials such as materials, it is possible to improve the finish surface accuracy of the work material, and at the same time, without causing chipping, chipping, breakage, etc. Excellent wear resistance and tool life can be extended.

本発明は、上記知見に基づいてなされたものであって、
「 粒径が0.5μm以下のウルツ鉱型窒化ホウ素微粒粉末表面を、酸素を含有しない流体からなり、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル及びポリエチレンの1種または2種以上を使用する超臨界流体で清浄化し、焼結助剤を添加せずに立方晶窒化ホウ素の熱力学安定条件下の5GPa以上かつ1400℃以上の高圧高温条件下で焼結することを特徴とする、微量のウルツ鉱型窒化ホウ素を含有する高純度窒化ホウ素焼結体の製造法。」
を特徴とするものである。
The present invention has been made based on the above findings,
"The surface of wurtzite-type boron nitride fine powder with a particle size of 0.5 μm or less is made of a fluid that does not contain oxygen, and one or more of solid polyvinylidene chloride, polyvinyl chloride, and polyethylene are used as the fluid source. Characterized in that it is cleaned with a supercritical fluid and sintered under high pressure and high temperature conditions of 5 GPa or more and 1400 ° C. or more under the thermodynamic stability condition of cubic boron nitride without adding a sintering aid. Of manufacturing a high-purity boron nitride sintered body containing wurtzite-type boron nitride. "
It is characterized by.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

ウルツ鉱型窒化ホウ素(wBN)微粒粉末:
原料粉末としてのウルツ鉱型窒化ホウ素(wBN)微粒粉末は、すでに述べたように、爆薬でhBN粉末に瞬間的に高圧高温状態を作ることによって形成することができ、これによって得られたwBN粉末は、粒径が0.5μm以下の微粒として形成される。このwBN微粒粉末は、超高圧高温条件下での焼結においても、ほとんど粒成長を起こさないため、得られた高純度窒化ほう素焼結体の粒径も小さいもの(ほぼ0.5μm以下)となり、その結果、切削工具材料として用いた場合、被削材表面を荒らすことなく表面粗度が小さい状態(例えば、Ry2.00μm以下)で切削を行うことができ、被削材の仕上げ面精度を高めることができる。
Wurtzite boron nitride (wBN) fine powder:
As described above, the wurtzite boron nitride (wBN) fine powder as the raw material powder can be formed by instantaneously creating a high pressure and high temperature state in the hBN powder with an explosive, and the resulting wBN powder. Are formed as fine particles having a particle size of 0.5 μm or less. Since this wBN fine particle powder hardly causes grain growth even during sintering under ultra-high pressure and high temperature, the resulting high purity boron nitride sintered body has a small particle size (approximately 0.5 μm or less). As a result, when used as a cutting tool material, cutting can be performed with a low surface roughness (for example, Ry 2.00 μm or less) without roughening the surface of the work material, and the finished surface accuracy of the work material can be improved. Can be increased.

清浄化:
上記wBN微粒粉末の焼結性を高めるために、その表面を、酸素を含有しない流体からなり、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル及びポリエチレンの1種または2種以上を使用する超臨界流体で清浄化し、焼結すると、微粒粉末の表面が活性化され、焼結助剤(結合相成分)無添加であっても、微粒粉末相互が強固に結合した高純度窒化ほう素焼結体が形成される。
そして、高純度窒化ほう素焼結体は、原料粉末のwBNが焼結時に相転移したcBNによって大部分構成されるが、原料粉末のwBNのうちの一部については、cBNへの相転移を起こさせずに焼結体中にwBNのまま含有させておくことがこの発明では特に重要である。
なお、原料粉末のwBNのうちの他の一部はcomp−hBNへと逆相転移を起こし、comp−hBNとして焼結体中に残存するが、comp−hBNは微量(10vol%未満程度)であって、焼結体の特性に悪影響を及ぼすことはない。
本発明の製造方法においては、wBNからなる原料粉末を完全にcBNに相転移させず、敢て、微量のwBNを焼結体中に含有させておくことによって、劈開性が高く、クラック伝播抑制作用に劣る100%cBN焼結体の特性を改善することができ、高硬度かつ高靭性を有する高純度窒化ホウ素焼結体を製造することができる。
Cleaning:
In order to enhance the sinterability of the above wBN fine powder, the surface is made of a fluid containing no oxygen, and an ultra-high-performance material using one or more of solid polyvinylidene chloride, polyvinyl chloride and polyethylene as a fluid source. When cleaned and sintered with a critical fluid, the surface of the fine powder is activated, and the high-purity boron nitride sintered body in which the fine powder is firmly bonded to each other even without the addition of a sintering aid (binding phase component). Is formed.
The high-purity boron nitride sintered body is mostly composed of cBN in which wBN of the raw material powder undergoes phase transition during sintering, but a part of the wBN of the raw material powder undergoes phase transition to cBN. It is particularly important in the present invention that wBN is contained in the sintered body as it is.
The other part of the raw powder wBN undergoes a reverse phase transition to comp-hBN and remains in the sintered body as comp-hBN, but the amount of comp-hBN is very small (less than about 10 vol%). Thus, the properties of the sintered body are not adversely affected.
In the production method of the present invention, the raw material powder composed of wBN is not completely phase-transformed into cBN, and by intentionally containing a small amount of wBN in the sintered body, the cleavage property is high and crack propagation is suppressed. The characteristics of the 100% cBN sintered body inferior in action can be improved, and a high-purity boron nitride sintered body having high hardness and high toughness can be produced.

焼結条件:
従来のcBN焼結体の製造においては、6GPa以上かつ1700℃以上の超高圧高温条件下で焼結が行われていたが、この発明では、焼結助剤を添加することなく、従来技術に比して比較的緩和された条件、即ち、5GPa以上かつ1400℃以上の高圧高温条件で焼結を行うことができ、しかも、このような緩和された条件で焼結することによって、異常粒成長がなく微粒かつ緻密な焼結組織を有し、微量のwBNを含有する高純度窒化ほう素焼結体を得ることができる。
wBNからcBNへの相転移を完全には行なわせず微量のwBNを残存含有させ、その一方、comp−hBNの形成量を微量(10vol%未満程度)に抑えるという点からは、その焼結条件は、5〜7GPa、1400〜1900℃、5〜30分とすることが好ましい。
高圧高温、即ち、5GPa以上かつ1400℃以上の条件、好ましくは、5〜7GPa、1400〜1900℃、5〜30分の条件、での焼結によって、粒子粉末相互が強固な結合をし、さらに、焼結体の粒子径は1μm以下の微粒かつ緻密な焼結組織を有する高純度窒化ほう素焼結体が得られる。
そして、製造された高純度窒化ほう素焼結体は、劈開性が低く、クラック(亀裂)伝播抑制作用に優れ、高硬度かつ高靭性を備え、これを、ダクタイル鋳鉄−アルミニウム合金等の異種複合材料の切削工具材料として用いた場合、すぐれた仕上げ面精度を有し(Ry2.00μm以下)、また、チッピング、欠損等を発生することなく長期の使用にわたってすぐれた耐摩耗性を発揮するものである。
Sintering conditions:
In the production of a conventional cBN sintered body, sintering was performed under ultra-high pressure and high temperature conditions of 6 GPa or more and 1700 ° C. or more. However, in the present invention, the conventional technology is used without adding a sintering aid. Compared with relatively relaxed conditions, that is, high pressure and high temperature conditions of 5 GPa or more and 1400 ° C. or more, abnormal grain growth is achieved by sintering under such relaxed conditions. It is possible to obtain a high-purity boron nitride sintered body having a fine and dense sintered structure and containing a small amount of wBN.
From the point that the phase transition from wBN to cBN is not carried out completely and a small amount of wBN is left to be contained, while the amount of comp-hBN formed is suppressed to a very small amount (less than about 10 vol%). Is preferably 5 to 7 GPa, 1400 to 1900 ° C., and 5 to 30 minutes.
By sintering under high pressure and high temperature, that is, conditions of 5 GPa or more and 1400 ° C. or more, preferably 5 to 7 GPa, 1400 to 1900 ° C., and 5 to 30 minutes, the particle powders are strongly bonded to each other. A high-purity boron nitride sintered body having a fine and dense sintered structure with a particle size of 1 μm or less is obtained.
The manufactured high-purity boron nitride sintered body has a low cleavage property, an excellent crack propagation suppressing effect, a high hardness and a high toughness, and is made of a heterogeneous composite material such as a ductile cast iron-aluminum alloy. When used as a cutting tool material, it has excellent finished surface accuracy (Ry 2.00 μm or less) and exhibits excellent wear resistance over a long period of use without causing chipping, chipping, etc. .

図1に、本発明による高純度窒化ほう素焼結体の製造にあたり、原料粉末であるwBN微粒粉末を充填するためのカプセルの一例を示す。
Taカプセル1の内部に、粒径が0.5μm以下のwBN微粒粉末2、Ta箔3、ポリ塩化ビニリデン4を交互に重ね、上下に黒鉛円盤5を配置している。具体例では、試料容器にTaカプセルを使用し、カプセルの下部に黒鉛円盤を配置した。黒鉛円盤上にTa箔を3枚を配置後、粒径が0.5μm以下のwBN微粒粉末を500mgを秤量し、このwBN微粒粉末上に2.2mgのポリ塩化ビニリデンを積層し、このポリ塩化ビニリデン上に同じ粒径幅のwBN微粒粉末を500mgを充填してwBN微粒粉末上にTa箔の円板を3枚のせた。さらに、粒径0.5μm以下のwBN微粒粉末を500mgを二つ秤量し、wBN微粒粉末の間に2.2mgのポリ塩化ビニリデンをサンドイッチ状に配置し、wBN微粒粉末上をTa箔で覆った。
なお、流体源としては、ポリ塩化ビニリデンばかりでなく、ポリ塩化ビニリデン、ポリ塩化ビニル及びポリエチレンの1種または2種以上を使用する事ができる。
FIG. 1 shows an example of a capsule for filling a wBN fine particle powder which is a raw material powder in the production of a high purity boron nitride sintered body according to the present invention.
Inside the Ta capsule 1, wBN fine powder 2 having a particle size of 0.5 μm or less, Ta foil 3, and polyvinylidene chloride 4 are alternately stacked, and a graphite disk 5 is arranged above and below. In a specific example, a Ta capsule was used for the sample container, and a graphite disk was placed under the capsule. After placing three Ta foils on a graphite disk, 500 mg of wBN fine powder having a particle size of 0.5 μm or less is weighed, and 2.2 mg of polyvinylidene chloride is laminated on the wBN fine powder. 500 mg of wBN fine powder having the same particle size width was filled on vinylidene, and three Ta foil discs were placed on the wBN fine powder. Further, two 500 mg of wBN fine powder having a particle size of 0.5 μm or less was weighed, 2.2 mg of polyvinylidene chloride was sandwiched between the wBN fine powder, and the wBN fine powder was covered with Ta foil. .
As the fluid source, not only polyvinylidene chloride but also one or more of polyvinylidene chloride, polyvinyl chloride, and polyethylene can be used.

上記のとおり、本発明は、焼結用原料粉末として、粒径幅0.5μm以下のウルツ鉱型窒化ホウ素(wBN)微粒粉末を用い、この表面を、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル、ポリエチレンを使用する超臨界流体で清浄化し、焼結助剤を添加することなく立方晶窒化ホウ素の熱力学安定条件下の5GPa以上かつ1400℃以上の比較的緩和された高圧高温条件(好ましくは、5〜7GPa、1400〜1900℃、5〜30分の条件)で焼結することによって、異常粒成長がなく粒子粉末が強固に結合した微粒かつ緻密な焼結組織が得られ、その結果、劈開性が低く、クラック伝播抑制作用に優れ、高硬度かつ高靭性を有する微量のwBNを含有する高純度窒化ほう素焼結体を製造することができる。
そして、この製造法によって得た高純度窒化ほう素焼結体を、例えば、ダクタイル鋳鉄とアルミニウム合金の複合材からなる異種複合材料の切削加工用の工具材料として用いた場合には、被削材の仕上げ面精度を向上させるばかりか、工具のチッピング、欠損・破損の恐れなく長期の使用にわたってすぐれた耐摩耗性を発揮し、切削特性の向上を図ることができるとともに、工具寿命の延長を図ることができる。
As described above, the present invention uses a wurtzite-type boron nitride (wBN) fine particle powder having a particle size width of 0.5 μm or less as a raw material powder for sintering, and this surface is used as a solid source of polyvinylidene chloride, poly Cleaned with supercritical fluid using vinyl chloride and polyethylene, relatively relaxed high pressure and high temperature conditions of 5 GPa or more and 1400 ° C. or more under the thermodynamic stability condition of cubic boron nitride without adding sintering aid ( Preferably, by sintering at 5 to 7 GPa, 1400 to 1900 ° C. for 5 to 30 minutes, a fine and dense sintered structure in which the particle powder is firmly bonded without abnormal grain growth is obtained. As a result, it is possible to produce a high-purity boron nitride sintered body containing a small amount of wBN having a low cleavage property, excellent crack propagation suppressing action, high hardness and high toughness.
When the high-purity boron nitride sintered body obtained by this manufacturing method is used as a tool material for cutting a heterogeneous composite material composed of a composite material of ductile cast iron and an aluminum alloy, for example, In addition to improving the accuracy of the finished surface, it offers excellent wear resistance over a long period of use without fear of chipping, chipping or breaking of the tool, improving cutting characteristics and extending the tool life. Can do.

以下に、本発明の高硬度かつ高靭性を有する高純度窒化ほう素焼結体の製造法を実施例に基づいて具体的に説明する。   Below, the manufacturing method of the highly purified boron nitride sintered compact which has the high hardness and toughness of this invention is demonstrated concretely based on an Example.

粒径0.5μm以下のwBN微粒粉末を、図1に示すように、直径11.2mmの層状にならし、その上に、表1に示す超臨界流体源からなる1.5mgの円盤を配置し、その上に同量のwBN微粒粉末を加圧充填した。このwBN微粒粉末を他のwBN微粒粉末とともに、Taカプセルに充填した。Taカプセルの上下には、黒鉛円盤を配置した。このカプセルを圧力媒体とともに、表2に示す条件で高圧高温処理し、厚さ0.5〜2mmの本発明の高純度窒化ほう素焼結体(本発明焼結体という)1〜10を製造した。
製造された本発明焼結体1〜10について、まず、粉末試料を作製し、X線回折によりX線回折パターンを測定し、焼結体中のcBN、wBN及びcomp−hBNのピーク強度Iを求めた。図2に、本発明焼結体3について、ブルカー製AXSMXP18VAHFにより測定したX線回折チャートを示す。
また、焼結体表面を研削後、ダイヤモンドペーストを研摩剤として研摩し、研摩後の本発明焼結体1〜10の表面のヴィッカース硬さHvを測定した。
上記ピーク強度I、ヴィッカース硬さHvの値を、表3に示す。
さらに、本発明焼結体1〜10の研摩後の焼結組織を走査型電子顕微鏡によって観察した。
As shown in FIG. 1, a wBN fine particle powder having a particle size of 0.5 μm or less is stratified into a layer having a diameter of 11.2 mm, and a 1.5 mg disk made of a supercritical fluid source shown in Table 1 is placed thereon. Then, the same amount of wBN fine powder was pressure-filled thereon. This wBN fine powder was filled into a Ta capsule together with other wBN fine powder. Graphite disks were placed above and below the Ta capsule. The capsules were subjected to high-pressure and high-temperature treatment together with the pressure medium under the conditions shown in Table 2 to produce high-purity boron nitride sintered bodies (referred to as sintered bodies of the present invention) 1 to 10 having a thickness of 0.5 to 2 mm. .
For the manufactured sintered bodies 1 to 10 of the present invention, first, a powder sample is prepared, an X-ray diffraction pattern is measured by X-ray diffraction, and peak intensities I of cBN, wBN and comp-hBN in the sintered body are determined. Asked. FIG. 2 shows an X-ray diffraction chart of the sintered body 3 of the present invention measured by Bruker AXSMXP18VAHF.
Moreover, after grinding the sintered compact surface, it grind | polished using a diamond paste as an abrasive | polishing agent, and measured the Vickers hardness Hv of the surface of this invention sintered compact 1-10 after grinding | polishing.
Table 3 shows values of the peak intensity I and the Vickers hardness Hv.
Furthermore, the sintered structure after polishing of the sintered bodies 1 to 10 of the present invention was observed with a scanning electron microscope.

比較のために、粒径0.5〜1.5μmのcBN粉末を、直径11.2mmの層状にならし、その上に、表1に示す超臨界流体源からなる1.5mgの円盤を配置し、その上に同量のcBN粉末を加圧充填した。このcBN粉末を他のcBN粉末とともに、Taカプセル充填した。Taカプセルの上下には、黒鉛円盤を配置した。このカプセルを圧力媒体とともに、表2に示す条件で高圧高温処理し、厚さ0.5〜2.0mmの比較例としての高純度cBN焼結体(比較例焼結体という)1〜10を製造した。
製造された比較例焼結体1〜10について、本発明焼結体1〜10の場合と同様に、X線回折によるピーク強度測定、ヴィッカース硬さHv測定を行うとともに、その表面を研削・研摩し、組織観察を行なった。
図3には、比較例焼結体3について、ブルカー製AXSMXP18VAHFにより測定したX線回折チャ−トを示す。また、比較例焼結体1〜10についてのピーク強度、Hvを、表4に示す。
For comparison, cBN powder having a particle size of 0.5 to 1.5 μm is layered with a diameter of 11.2 mm, and a 1.5 mg disk made of the supercritical fluid source shown in Table 1 is placed thereon. Then, the same amount of cBN powder was pressure-filled thereon. This cBN powder was filled with Ta capsule together with other cBN powders. Graphite disks were placed above and below the Ta capsule. This capsule was subjected to high-pressure and high-temperature treatment under the conditions shown in Table 2 together with the pressure medium, and high-purity cBN sintered bodies (referred to as comparative example sintered bodies) 1 to 10 having a thickness of 0.5 to 2.0 mm as comparative examples. Manufactured.
About the manufactured comparative example sintered compacts 1-10, while performing the peak intensity measurement by X-ray diffraction and the Vickers hardness Hv measurement similarly to the case of this invention sintered compact 1-10, the surface is ground and polished. Then, the structure was observed.
FIG. 3 shows an X-ray diffraction chart of the comparative sintered body 3 measured by Bruker AXSMXP18VAHF. In addition, Table 4 shows the peak intensity and Hv for the comparative sintered bodies 1 to 10.

Figure 2010024103
Figure 2010024103

Figure 2010024103
Figure 2010024103

Figure 2010024103
Figure 2010024103

Figure 2010024103
Figure 2010024103

本発明焼結体1〜10と比較例焼結体1〜10のX線回折チャートを比較すると、チャートに示されたピーク強度について、両者には大きな相違があった。
本発明焼結体1〜10のX線回折チャートは、図2とほぼ同様な傾向を示し、また、比較例焼結体1〜10のX線回折チャートは、図3とほぼ同様な傾向を示すが、例えば、図2では、cBNのピーク強度I(cBN)=23083(43.3度)、wBNのピーク強度I(wBN)=756(40.8度)及びcomp−hBNのピーク強度I(hBN)=872(28.5度)が出ているのに対して、図3では、cBNのピーク強度I(cBN)=15294が43.3度に出ているのみで、wBN及びcomp−hBNのピーク強度は見られない。
このことから、本発明焼結体1〜10は、微量のwBN及びcomp−hBNを含有しているのに対して、比較例焼結体1〜10では、wBN及びcomp−hBNを含有しておらず、ほぼ100%がcBNで構成されていることが分かる。
また、本発明焼結体1〜10と比較例焼結体1〜10の硬度Hvについては、 表3、表4の結果から明らかなように大きな相違はみられず、ほぼ同等であった。
また、本発明焼結体1〜10の焼結組織は、焼結体内部にはクラック(亀裂)がほとんど存在せず、粒径1μm以下の粒子粉末が強固に結合した微細かつ緻密な組織であったが、比較例焼結体1〜10では、焼結体内部にはクラック(亀裂)がほとんど存在しないものの、粗大な粒子が結合した粗い組織が形成されていた。
When the X-ray diffraction charts of the sintered bodies 1 to 10 of the present invention and the comparative sintered bodies 1 to 10 were compared, there was a great difference between the two in terms of the peak intensity shown in the chart.
The X-ray diffraction charts of the sintered bodies 1 to 10 of the present invention show almost the same tendency as that shown in FIG. 2, and the X-ray diffraction charts of the sintered bodies 1 to 10 of the comparative examples show almost the same tendency as that shown in FIG. For example, in FIG. 2, cBN peak intensity I (cBN) = 23083 (43.3 degrees), wBN peak intensity I (wBN) = 756 (40.8 degrees), and comp-hBN peak intensity I In contrast to (hBN) = 872 (28.5 degrees), FIG. 3 shows that cBN peak intensity I (cBN) = 15294 is only 43.3 degrees, and wBN and comp− The peak intensity of hBN is not seen.
Accordingly, the sintered bodies 1 to 10 of the present invention contain a small amount of wBN and comp-hBN, whereas the comparative sintered bodies 1 to 10 contain wBN and comp-hBN. It can be seen that almost 100% is composed of cBN.
Moreover, about the hardness Hv of this invention sintered compact 1-10 and comparative example sintered compact 1-10, a big difference was not seen evidently from the result of Table 3, Table 4, and it was substantially equivalent.
In addition, the sintered structures of the sintered bodies 1 to 10 of the present invention are fine and dense structures in which almost no cracks are present inside the sintered bodies and particle powders having a particle diameter of 1 μm or less are firmly bonded. However, in Comparative Example sintered bodies 1 to 10, although there were almost no cracks in the sintered body, a coarse structure in which coarse particles were bonded was formed.

次に、上記本発明焼結体3、5、9を、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格CNMA120408の形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNMA120408のインサート形状をもった高純度窒化ほう素製切削工具(本発明工具という)1〜3を製造した。   Next, the sintered bodies 3, 5 and 9 of the present invention are divided into equilateral triangles having a side of 3 mm by a wire electric discharge machine, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition And a brazing portion (corner portion) of a WC-based cemented carbide insert body having the shape of CIS standard CNMA120408 in mass%, Cu: 26%, Ti: 5%, Ni: 2.5%, Ag: After brazing using a brazing material of an Ag alloy having the remaining composition and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and finish polishing is further performed. As a result, high-purity boron nitride cutting tools (referred to as tools of the present invention) 1 to 3 having an ISO standard CNMA120408 insert shape were produced.

比較のため、比較例焼結体3、5、9についても前記と同様にして、ISO規格CNMA120408のインサート形状をもったcBN製切削工具(比較例工具という)1〜3を製造した。   For comparison, cBN cutting tools (referred to as comparative example tools) 1 to 3 having the insert shape of ISO standard CNMA120408 were manufactured in the same manner as described above for the comparative example sintered bodies 3, 5 and 9.

上記本発明工具1〜3及び比較例工具1〜3を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:FCD450とA390T6の異種複合材丸棒、
切削速度: 200 m/min.、
切り込み: 0.15 mm、
送り: 0.07 mm/rev.、
の条件で、ダクタイル鋳鉄とAl−17%Si合金の異種複合材を湿式高速切削加工し、切削時間1分、3分、5分、10分経過後のそれぞれの切刃の逃げ面摩耗幅(mm)を測定した。
その値を表5に示す。
The present invention tools 1 to 3 and comparative tools 1 to 3 are all screwed to the tip of the tool steel tool with a fixing jig.
Work material: FCD450 and A390T6 heterogeneous composite round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.07 mm / rev. ,
Wet high-speed cutting of a different composite material of ductile cast iron and Al-17% Si alloy under the conditions of the above, and the flank wear width of each cutting edge after the cutting time of 1 minute, 3 minutes, 5 minutes and 10 minutes ( mm).
The values are shown in Table 5.

また、10分間切削を行った後の上記被削材について、ミツトヨ製のサーフテストSJ−201Pによりその表面粗さRyを測定した。
その値を、同じく表5に示す。
Further, the surface roughness Ry of the work material after cutting for 10 minutes was measured by a surf test SJ-201P manufactured by Mitutoyo.
The values are also shown in Table 5.

Figure 2010024103
Figure 2010024103

表5からも明らかなように、本発明工具1〜3はいずれも欠損・破損等を生じることなく優れた耐摩耗性を示し、さらに、被削材の仕上げ面精度も高い(表面粗さRaが小さい)のに対して、比較例工具1〜3では、耐摩耗性については本発明工具1〜3とほぼ同等な特性を示したものの、比較例工具2では切削試験時間内に一部にチッピングが発生しており、また、比較例工具1〜3のいずれについても、被削材の仕上げ面精度は本発明工具1〜3に比べて劣るものであった。     As is apparent from Table 5, all of the inventive tools 1 to 3 exhibit excellent wear resistance without causing breakage or breakage, and the finished surface accuracy of the work material is high (surface roughness Ra). In contrast, the comparative tools 1 to 3 showed almost the same characteristics as the tools 1 to 3 of the present invention, but the comparative tool 2 partly within the cutting test time. Chipping has occurred, and the finishing surface accuracy of the work material was inferior to that of the inventive tools 1 to 3 for any of the comparative tools 1 to 3.

上記のとおり、本発明の製造法によれば、高純度窒化ホウ素焼結体を製造するにあたっての原料粉末として、微粒のwBN粉末を用い、焼結後の焼結体中に微量のwBNを含有させておくことにより、劈開性が低く、クラック(亀裂)伝播抑制作用に優れ、高硬度かつ高靭性を有する高純度窒化ホウ素焼結体を得ることができる。
そして、例えば、この高純度窒化ホウ素焼結体を、異種複合材料の切削工具材料として適用した場合には、該高純度窒化ホウ素焼結体からなる切削工具は、被削材の仕上げ面精度を向上させることができるばかりか、耐チッピング性、耐摩耗性にも優れ、長期の使用にわたって優れた切削性能を発揮する。
As described above, according to the production method of the present invention, fine wBN powder is used as a raw material powder for producing a high-purity boron nitride sintered body, and a small amount of wBN is contained in the sintered body after sintering. By doing so, it is possible to obtain a high-purity boron nitride sintered body having low cleaving property, excellent crack propagation suppressing action, high hardness and high toughness.
For example, when this high-purity boron nitride sintered body is applied as a cutting tool material of a different composite material, the cutting tool made of the high-purity boron nitride sintered body has a finished surface accuracy of the work material. In addition to being able to improve, it also has excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of use.

本発明による高純度窒化ほう素焼結体の製造にあたり、原料粉末であるwBN微粒粉末を充填するためのカプセルの概略断面図である。FIG. 3 is a schematic cross-sectional view of a capsule for filling a wBN fine particle powder that is a raw material powder in the production of a high-purity boron nitride sintered body according to the present invention. 本発明焼結体3について測定したX線回折チャートを示す。The X-ray diffraction chart measured about this invention sintered compact 3 is shown. 比較例焼結体3について測定したX線回折チャートを示す。The X-ray diffraction chart measured about the comparative example sintered compact 3 is shown.

符号の説明Explanation of symbols

1:Taカプセル
2:wBN粉末
3:Ta箔
4:ポリ塩化ビニリデン
5:黒鉛円盤
1: Ta capsule 2: wBN powder 3: Ta foil 4: Polyvinylidene chloride 5: Graphite disk

Claims (1)

粒径が0.5μm以下のウルツ鉱型窒化ホウ素微粒粉末表面を、酸素を含有しない流体からなり、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル及びポリエチレンの1種または2種以上を使用する超臨界流体で清浄化し、焼結助剤を添加せずに立方晶窒化ホウ素の熱力学安定条件下の5GPa以上かつ1400℃以上の高圧高温条件下で焼結することを特徴とする、微量のウルツ鉱型窒化ホウ素を含有する高純度窒化ホウ素焼結体の製造法。   The surface of wurtzite-type boron nitride fine powder having a particle size of 0.5 μm or less is made of a fluid that does not contain oxygen, and one or more of solid polyvinylidene chloride, polyvinyl chloride, and polyethylene are used as a fluid source. It is cleaned with a supercritical fluid and sintered under high pressure and high temperature conditions of 5 GPa or more and 1400 ° C. or more under the thermodynamic stability condition of cubic boron nitride without adding a sintering aid. A method for producing a high-purity boron nitride sintered body containing wurtzite boron nitride.
JP2008188354A 2008-07-22 2008-07-22 Method for producing high purity boron nitride sintered body having high hardness and high toughness Active JP5239576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188354A JP5239576B2 (en) 2008-07-22 2008-07-22 Method for producing high purity boron nitride sintered body having high hardness and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188354A JP5239576B2 (en) 2008-07-22 2008-07-22 Method for producing high purity boron nitride sintered body having high hardness and high toughness

Publications (2)

Publication Number Publication Date
JP2010024103A true JP2010024103A (en) 2010-02-04
JP5239576B2 JP5239576B2 (en) 2013-07-17

Family

ID=41730260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188354A Active JP5239576B2 (en) 2008-07-22 2008-07-22 Method for producing high purity boron nitride sintered body having high hardness and high toughness

Country Status (1)

Country Link
JP (1) JP5239576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184290A (en) * 2010-02-09 2011-09-22 Mitsubishi Materials Corp Method for producing sintered cubic boron nitride compact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128700A (en) * 1975-04-08 1976-11-09 Shinroku Saito Poly-crystalline boron nitride of high pressure phase
JPH11335174A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2007070148A (en) * 2005-09-06 2007-03-22 National Institute For Materials Science Producing method of high purity cubic boron nitride sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128700A (en) * 1975-04-08 1976-11-09 Shinroku Saito Poly-crystalline boron nitride of high pressure phase
JPH11335174A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2007070148A (en) * 2005-09-06 2007-03-22 National Institute For Materials Science Producing method of high purity cubic boron nitride sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184290A (en) * 2010-02-09 2011-09-22 Mitsubishi Materials Corp Method for producing sintered cubic boron nitride compact
EP2354110A3 (en) * 2010-02-09 2012-11-28 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
US8657893B2 (en) 2010-02-09 2014-02-25 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact

Also Published As

Publication number Publication date
JP5239576B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP6447205B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP5680567B2 (en) Sintered body
JP6293669B2 (en) Sintered cubic boron nitride cutting tool
JP6291995B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
JP2000054007A (en) Diamond-sintered body and its production
KR101902856B1 (en) Sintered object of cubic boron nitride and cutting tool
WO2012029440A1 (en) Cubic boron nitride sintered compact tool
JP2017165637A (en) Composite sintered body for cutting tool and cutting tool using the same
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
Miao et al. Influence of graphite addition on bonding properties of abrasive layer of metal-bonded CBN wheel
WO2004054943A1 (en) Heat-resistant composite diamond sintered product and method for production thereof
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
KR102587409B1 (en) Sintered body and cutting tool
WO2014126178A1 (en) Cutting tool
JP5239576B2 (en) Method for producing high purity boron nitride sintered body having high hardness and high toughness
JP5407487B2 (en) Surface coated cutting tool
JP6265097B2 (en) Sintered body, cutting tool using sintered body
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
JP2011200986A (en) Surface coat cutting tool
JP5266587B2 (en) CBN sintered body for cutting tools containing coarse cBN particles
JP6365228B2 (en) Sintered body
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JP2005212048A (en) Ceramics and cutting tool using the same
JP5239060B2 (en) CBN sintered compact tool that suppresses damage at the edge boundary
JP4636574B2 (en) Ceramic-based sintered material for tool and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150