JP4636574B2 - Ceramic-based sintered material for tool and manufacturing method thereof - Google Patents
Ceramic-based sintered material for tool and manufacturing method thereof Download PDFInfo
- Publication number
- JP4636574B2 JP4636574B2 JP2000356614A JP2000356614A JP4636574B2 JP 4636574 B2 JP4636574 B2 JP 4636574B2 JP 2000356614 A JP2000356614 A JP 2000356614A JP 2000356614 A JP2000356614 A JP 2000356614A JP 4636574 B2 JP4636574 B2 JP 4636574B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- ceramic
- cast iron
- tool
- ticn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、被切削材を切削する切削工具等の工具として有効に利用することができる工具用セラミック基焼結材及びその製造方法に関する。本発明に係る工具セラミック基焼結材は、例えば、ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄、球状黒鉛鋳鉄や片状黒鉛鋳鉄に代表される一般鋳鉄などの被切削材を切削加工するのに適する。殊に、切削速度が速い高速切削、または、1回あたりの切削代が大きい重切削で切削するのに適する。
【0002】
【従来の技術】
ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄を切削する切削工具を例にとって、従来技術について説明する。ニレジスト(NiーResist)鋳鉄は、ニッケルークロムー銅系のオーステナイト鋳鉄であり、オーステナイト地に黒鉛が存在している。ニレジスト鋳鉄は、普通鋳鉄に比べ、耐摩耗性、耐熱性及び耐食性に優れているため、腐食性雰囲気の下、高温強度や耐摩耗性を必要とする機械部品の材料として広く使用されている。特に、近年、自動車の一層の高性能化により、主に自動車を構成する基幹重要部品として使用されている。一方、オーステンパ球状黒鉛鋳鉄は、球状黒鉛鋳鉄に熱処理を行うことでベイナイト組織とオーステナイト組織中に球状化した黒鉛が存在しており、例えばJIS G 5503 FCAD 1000−5があげられる。オーステンパ球状黒鉛鋳鉄は、普通鋳鉄に比べ、引張り強さと耐摩耗性に優れているため、強度を必要とする機械部品の材料として望まれている。また、高強度ゆえに、近年の自動車の小型・軽量化ニーズの材料アイテムとしても切望されている。
【0003】
このようなニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄を前記基幹重要部品などの最終形状寸法にするために、通常、鋳造後に切削加工を必要とされることが多い。ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄等に代表される高級鋳鉄を切削する切削工具は、必要とする加工精度で迅速に無駄なく加工できる性能を有していなければならない。工具の刃先が摩耗したりチッピングなどにより欠損すると、加工表面に面荒れやバリが発生するなど、必要とする寸法精度及び表面粗度が得られないため、不良品となり、製品として出荷できない。
【0004】
そのため、前記切削工具の摩耗や欠損などが生じた場合には、直ちに切削工具を交換しなければならない。この工具交換は生産性低下につながるため、極力低減しなければならない。このため長寿命で安価な切削工具の開発が強く望まれている。このような不具合を解消する切削工具として、例えば特開昭62ー280362号公報または特開昭62ー278265号公報に記載されているようなTiCN系のセラミック基焼結材が提案されている。
【0005】
【発明が解決しようとする課題】
ニレジスト鋳鉄及びオーステンパ球状黒鉛鋳鉄等といった高級鋳鉄は、一般的な球状黒鉛鋳鉄に比べて、硬度が硬く耐摩耗性に優れており、また、切削時の加工応力によりオーステナイト組織が応力誘起によりマルテンサイトに変態し、組織自体が切削中に高硬度化する。また、これらの高級鋳鉄は、切削時の発熱が一般的な球状黒鉛鋳鉄等に比較して激しい。さらに、高級鋳鉄が粗形材の状態では凹凸を有する鋳肌を有し、この鋳肌面から切削していくことになるが、鋳肌部分の切削は、振動を誘発する断続切削の状態になり易い。このため、断続的な切削に耐え得るだけの靱性が切削工具に要求される。
【0006】
以上のように、高級鋳鉄を切削するための切削工具においては、高級鋳鉄の硬度に十分対向し得る耐摩耗性、切削時の発熱による熱劣化(硬度低下)が起こらない程度の耐熱性、鋳肌面の切削等の断続切削に追従するための靱性(耐欠損性)を兼ね備えた切削工具が要求されるところ、上記公報に記載のTiCN系セラミック基焼結材では、特に耐熱性が低く、切削時の発熱により硬度低下を起こし、耐摩耗性が低下してしまう。このため切削工具の交換頻度が頻繁となる。
【0007】
このように、従来から提案されてきた切削工具では、ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄等といった高級鋳鉄を切削する際に要求される耐摩耗性、耐熱性、耐欠損性をいずれも充足する工具はcBNを含む切削工具以外にはなく、切削工具として望まれているレベルの長寿命化を実現することはできなかった。
【0008】
cBNやダイヤモンドを含む切削工具を使用すれば良いが、このような切削工具は製造コストが高い。
【0009】
本発明は、かかる従来の問題点に鑑みてなされたものであり、その課題は、耐熱性、耐摩耗性、耐欠損性に優れた安価で且つ長寿命な切削工具等に代表される工具を形成することができる工具用セラミック基焼結材、及び、その製造方法を提供しようとするものである。
【0010】
殊に、代表的な工具である切削工具に本発明を適用した場合には、その課題は、球状黒鉛鋳鉄や片状黒鉛鋳鉄に代表される一般鋳鉄の切削のみならず、ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄等に代表される高級鋳鉄の鋳肌を含んだ状態での切削にも適用可能であり、これらの一般鋳鉄や高級鋳鉄等の金属系の被切削材を、高速切削、重切削、断続切削等の過酷な条件においても良好に切削することが可能で、且つ、安価で寿命が長い切削工具を形成することができる工具用セラミック基焼結材、及び、その製造方法を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明者は、切削工具等に使用される工具用セラミック基焼結材及びその製造方法について長年にわたり開発を進めている。そして、混合粉末の合計を100%としたとき、TiCNを体積比で15%〜40%、Si 3 N 4 を体積比で5%〜25%、Al 2 O 3 を体積比で15%〜40%、Cr X N(x=1〜2.7)を体積比で5%〜30%を含有するように、TiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)の各粉末を含有する混合粉末を作製し、この混合粉末を焼結して焼成体を形成し、この焼結体で切削工具等の工具用セラミック基焼結材を構成すれば、上記した課題を達成できることを知見し、この知見に基づいて本発明を完成した。
【0012】
上記した課題が達成される理由は現在のところ必ずしも明確ではないが、次のように推察される。即ち、TiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)の各粉末を含有する混合粉末を作製し、この混合粉末を焼結して焼成体を形成し、この焼結体で切削工具用セラミック基焼結材を構成すれば、出発原料であるTiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)に対して結晶構造が変化した新たな相が生成され、この相が切削時等の材質の改善に寄与しているものと推察される。CrXNを含まない同様の配合の混合粉末を焼結してセラミック基焼成材を構成した場合には、この新たな相は発見されず、耐熱性、耐摩耗性、耐欠損性等は必ずしも充分ではなかった。
【0013】
第1発明に係る工具用セラミック基焼結材は、混合粉末の合計を100%としたとき、TiCNを体積比で15%〜40%、Si 3 N 4 を体積比で5%〜25%、Al 2 O 3 を体積比で15%〜40%、Cr X N(x=1〜2.7)を体積比で5%〜30%を含有するように、TiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)の各粉末を含有する混合粉末が焼結されて形成された焼成体で構成されていることを特徴とするものである。
【0014】
第2発明に係る工具用セラミック基焼結材の製造方法は、混合粉末全体を100%としたとき、TiCNを体積比で15%〜40%、Si 3 N 4 を体積比で5%〜25%、Al 2 O 3 を体積比で15%〜40%、Cr X N(x=1〜2.7)を体積比で5%〜30%の配合割合で、TiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)の各粉末を含有する混合粉末を作製する工程と、次いで混合粉末を焼結して焼成体を形成する焼結工程とを順に実施することを特徴とするものである。
【0015】
本発明において最も注目すべきことは、出発原料である上記TiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)を含む混合粉末を用いて焼結すると、焼結体において、出発原料であるTiCN、Si3N4、Al2O3及びCrXN(x=1〜2.7)に対して結晶構造が変化した新たな生成物質が認められることである。これにより切削工具に代表される工具の耐熱性が向上し、高温域における硬度及び強度が確保され、耐摩耗性及び耐欠損性が向上し、長寿命化を図り得るものと推察される。従って、本発明に係る工具用セラミック基焼結材を、代表的な工具である切削工具に適用した場合には、ニレジスト鋳鉄やオーステンパ鋳球状黒鉛鋳鉄に代表される高級鋳鉄等の難削性の被切削材を、高速切削、重切削、断続切削であっても、良好に切削することが可能な切削工具用のセラミック基焼結材が得られる。即ち、本発明は従来のセラミック基焼結材に比べ、高温領域においても硬度及び強度が確保され、従って、耐摩耗性及び靱性に優れ、高速切削、重切削、断続切削の場合であっても、耐久性に優れ、寿命が長い切削工具を得ることができる。なお切削工具の形状の代表例を図2に示す。
【0016】
上記した機能を発揮できる混合粉末の配合割合は、混合粉末の合計を100%としたとき、TiCNが体積比で15%〜40%、Si3N4が体積比で5%〜25%、Al2O3が体積比で15%〜40%、CrXN(x=1〜2.7)が体積比で5%〜30%の割合で含有されている。このような配合で混合した混合粉末を焼結すると、焼結後のセラミック基焼結材においては、TiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)に対して変化した結晶構造を有する生成物質の発生が認められ、これらが強固に結合するため、ニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄等といった難削性をもつ被切削材であっても、高速切削、重切削、断続切削の状態で切削することがででき、寿命が長い優れた工具用セラミック基焼結材が得られる。
【0017】
更に、被切削材の材質に応じて、上記組成の混合粉末は、SiCを外部添加により体積比で5%〜20%まで含有することが好ましい。この場合SiCが過剰であると、セラミック基焼結材がもろくなり、過少であると、添加の効果が現われない。SiCを外部添加で5%添加するとは、全体が105%(100+5)となることを意味する。
【0018】
TiCNは、いずれも立方晶系のTiNとTiCが連続固溶して生成するものであり、N:Cの比は原子数比で(1:9)〜(9:1)の範囲であればいずれでも構わない。しかし、好適には、TiNとTiCの両方の性質が程良く現れるためには、N:Cの比は原子数比で(2:8)〜(8:2)の範囲のものがよい。
【0019】
TiCNの配合量が15%未満では、本発明のセラミック基焼結材の出発原料として作用しにくい。一方、TiCNの配合量が40%を越えると、他の出発原料であるSi3N4、Al2O3、CrXN(x=1〜2.7)とのバランスが崩れ、所望の混合粉末となりにくい。従って、TiCNの配合量は体積比で15%〜40%が好ましいが、更に、TiCNの配合量は体積比で20%〜35%が好ましい。
【0020】
TiCNの粉末の粒径としては、小さいことが好ましい。TiCNの粒径が10μmを超える場合には、上記配合によって生成すべき生成物質が十分に生成せず、焼結条件に依存するがTiCNが焼結後にかなり残存する可能性がある。また、TiCNの粒径が10μmを超える場合には、TiCNの全てが反応して生成すべき生成物質が生成しても、生成物質が偏析し、満遍なく分布することが困難となるという問題がある。従って、粉砕する必要がある時は不純物の汚染に注意する必要はあるが、TiCNの粉末の粒粒は5μm以下、好ましくは2μm〜1μm、あるいは、それより細かい方がよい。TiCNは一般に粒径が0.1μm以下の超微粒子が好適であるが、この場合吸着ガスの除去に配慮する必要がある。
【0021】
Si3N4は、その結晶構造が六方晶系のα型と三方晶系のβ型とが存在する。本発明では基本的にはいずれの結晶構造も適用可能であるが、酸素を固溶しやすいα型のものがよい。Si3N4の配合量は前記したように5〜25%が好ましい。5%未満では、本発明のセラミック基焼結材の出発原料として作用しにくい。一方、Si3N4の配合量が25%を越えると、他の原料であるTiCN、Al2O3、CrXN(x=1〜2.7)とのバランスが崩れ、所望の混合材料となりにくい。従って、Si3N4の配合量は体積比で5%〜25%が好ましい。8〜20%がより好ましい。また、Si3N4の粉末の粒径としては、小さいことが好ましい。Si3N4の粉末の粒径が10μmを超える場合には、上記配合によって生成すべき生成物質が十分生成せず、焼結条件に依存するがSi3N4が焼結後にかなり残存する可能性がある。また、Si3N4の全てが反応して生成すべき生成物質が生成しても、該生成物質が偏析し、満遍なく分布することが困難となるという問題がある。従って、不純物の汚染に注意する必要はあるが、Si3N4の粒径は5μm以下、好ましくは2μm〜1μm、あるいは、それより細かい方がよい。一般に粒径が0.1μm以下の超微粒子が好適であるが、この場合には吸着ガスの除去に配慮する必要がある。
【0022】
Al2O3は、多くの結晶構造が存在する。基本的にはその結晶構造に制限はないが、1000℃以上でα型に変化する立方晶系スピネル型のγ型やその高温で安定な三方晶系鋼玉型のα型が好適である。Al2O3の配合量は15〜40%が好ましい。Al2O3の配合量が15%未満では、本発明の工具用セラミック基焼結材の出発原料として作用しにくい。一方、Al2O3の配合量が40%を越えると、他の出発原料であるTiCN、Si3N4、CrXN(x=1〜2.7)とのバランスが崩れ、所望の焼結とはなりにくい。従って、Al2O3の配合量は体積比で15%〜40%が好ましい。殊に20%〜35%がより好ましい。Al2O3の粉末の粒径としては、小さいことが好ましい。Al2O3の粉末は1μm以下で高純度な粉末が容易に市場で入手できるので、そのような粉末を用いるとよい。そうすれば、TiCNやSi3N4などで考慮した未反応や偏析の問題を心配するおそれが低下する。但し、Al2O3は一般に粒径が0.1μm以下の超微粒子が好適であるが、この場合は吸着ガスの除去に配慮する必要がある。
【0023】
CrXN(x=1〜2.7)は、主にはCrNとCr2Nとが存在するが、いずれも不定比化合物である。CrXN(x=1〜2.7)の配合量は5〜30%が好ましい。CrXNの配合量が5%未満では、本発明のセラミック基焼結材の出発原料として作用しにくい。一方、CrXNの配合量が30%を越えると、他の原料であるTiCN、Si3N4、Al2O3とのバランスが崩れ、所望の結合材とならない。従って、CrXN(x=1〜2.7)の配合量は前記したように体積比で5%〜30%が好ましいが、体積比で8〜25%がより好ましい。
【0024】
(x=1〜2.7)の粉末の粒径としては小さいことが好ましい。CrXNの粒径が10μmを超える場合には、上記配合によって生成物質が十分生成せず、焼成条件に依存するがCrXN(x=1〜2.7)が焼結後にかなり残存する可能性がある。更に生成物質が偏析し、満遍なく分布することが困難となるという問題がある。従って、不純物の汚染に注意する必要はあるが、CrXNの粒径は5μm以下、好ましくは2μm乃至1μmか、それより細かい方がよい。CrXNは一般に粒径が0.1μm以下の超微粒子が好適であるが、この場合には吸着ガスの除去に配慮する必要がある。
【0025】
次に、本発明の作用につき説明する。本発明の工具用セラミック基焼結材の製造方法においては、上記特定の組成のTiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)の各粉末の混合原料を焼結し、得られたセラミック基焼結材は、切削工具に使用した場合に優れた耐久性を発揮し、寿命が長い。
【0026】
従来の焼結体では、高級鋳鉄と称せられるニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄等の難削系の被切削材を切削する場合には、十分な耐久性を発揮できなかった。その理由は、原料粉末自体の耐熱性、耐酸化性と耐久性の低さに原因があると考えられる。これに対し本発明においては、出発原料としてTiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)を配合して用いているため、焼結後のセラミック基焼結材においては、TiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)に対して結晶構造が変化している新たな生成物質が認められ、これが強固に結合しているため、高温領域における硬度及び強度が優れ、耐摩耗性、耐欠損性に優れるものと推察される。それ故、本発明において得られる工具用セラミック基焼結材は、優れた耐久性、寿命を有する。そして、例えばニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄等の被切削材を切削する切削工具として用いた場合には、切削速度が速い高速切削、1回当たりの削り代が大きい重切削であっても、良好に切削することが可能となる。
【0027】
好適な工具用セラミック基焼結材の製造方法としては、上記組成の混合粉末に対し、SiCを外部添加により体積比で5%〜20%まで含有することができる。SiCは、菱面体ウルツ鉱型のα型と、立方晶系閃亜鉛鉱型のβ型があるが、いずれでも差し支えはない。よりしなやかなα型の方が好適である。SiCの添加により、焼結後に一層高硬度化するため、工具用セラミック基焼結材の耐摩耗性がより向上する効果がある。SiCの外部添加による添加量が体積比で5%未満のときには、その高硬度化を図るという効果があまり認められず、一方、20%を越えるときには、上記配合のバランスが崩れ、特にマトリックスの靱性が低下するために、逆に切削工具として用いたとき、欠けが増加する弊害が生ずる。好ましくは、SiCの添加量は、外部添加による添加量が体積比で7%〜15%である。また、SiCの粉末の粒径としては、上記したTiCN、Si3N4、Al2O3、CrXNといったセラミック粉末の粒径より小さいことが好ましい。強化材としてSiCをマトリックスに満遍なく分布させるために、不純物の汚染に注意する必要があるが、SiCの粒径は3μm以下がよく、更に2μm〜1μmがより好ましく、1μmよりも細かい方がより好ましい。SiCは一般に粒径が0.1μm以下の超微粒子が好適であるが、この場合には吸着ガスの除去に配慮する必要がある。
【0028】
【発明の実施の形態】
以下、実施例に基づいて本発明の実施の形態を説明する。
【0029】
出発原料粉末として、平均粒径が2.0μm以下のSi3N4粉末と、平均粒径が2.0μm以下のTiCN粉末、平均粒径が1.0μm以下のAl2O3粉末、平均粒径が2.0μm以下のCrXN粉末、及び平均粒径が2.0μm以下のSiC粉末を用いた。これらの粉末を、表1に示す配合比に配合し、遊星ボールミルで約1時間混合することにより混合粉末を形成した。その後、混合粉末を乾燥して金型で圧縮成形し、圧密体を形成した。この圧密体を、表1に示す焼結条件にて加熱保持して焼結体を形成した。即ち、表1に示すように、ホットプレス、HIP、又は、ピストン・シリンダを用い、圧力(30Mpa〜2000MPa)、温度(1400〜1800℃)の条件下に、1時間〜3時間加熱保持し、No.1焼結体を形成した。表1の圧力の項目において、*1はアルゴンガスを流しつつホットプレスを施したことを意味し、*2は熱間静水圧加圧(HIP)を施したことを意味し、*3はシリンダ内に挿入した素材をピストンで加圧したシリンダ・ピストンン方式を意味する。
【0030】
【表1】
【0031】
上記したように焼結体を形成した後、その焼結体を冷却・降圧することにより、本実施例に係るセラミック基焼結材に相当するNo.1〜No.12を得た。
【0032】
このようにして得られたセラミック基焼結材(試験片:No.5)について、X線回折図のピークを求め、これを図1に示す。また比較のために、焼結前の混合粉末についてのX線回折図のピークを図1に併記する。図1において、●はAl2O3、○はSi3N4、◎はCrN、△はSiC、◇はTiCN、◆は未知相つまり未知の生成物質(unknown)を示す。図1に示すX線回折の結果から明らかなように、本発明によって得られるセラミック基焼結材は、出発原料であるAl2O3、Si3N4、CrN、SiC、TiCNに対して結晶構造が変化した新しい生成物質(図1において◆で示すピーク)が生成していることが確認された。この生成物質は現在のところ未知である。
【0033】
上記のようにして得られたセラミック基焼結材を、所定の切削工具(JIS:SPGN120304SN)形状に加工した。そしてこの切削工具を用い、下記の切削条件にて被切削材に対して切削を行った。
【0034】
切削条件
被切削材:外径110mmのニレジスト鋳鉄(JIS:FCA−NiCuCr1562 硬さ:Hv163)
切削速度:220m/min
送り:0.3mm/rev
切込み:4.5mm
切削油:ケミクールSR〜1
そして、切削長さが10kmのときにおける工具の逃げ面の摩耗量(VB )を測定し、これを切削工具用のセラミック基焼結材の寿命の目安として評価した。この切削結果も併せて表1に示す。表1に示す焼結体の密度は、真密度に対する割合を意味する。比較例1として、出発原料としてTiCNを含まないように、Si3N4、Al2O3、CrxN、SiCを用い、表1に示す条件にてセラミック基焼結材を形成した。
【0035】
更に従来例1として、従来より用いられているAl2O3−TiC系の市販のセラミック基焼結材で形成された切削工具を同様の方法で評価した。また従来例2として、従来より用いられているAl2O3−SiCウィスカ系の市販のセラミック基焼結材で形成された切削工具についても同様の方法で評価した。
【0036】
更に従来例3,従来例4として、cBNを含む焼結体で形成された切削工具を同様の方法で評価した。従来例3は体積比でcBNが80%,WC−Coが20%の割合で形成された焼結体で得られた切削工具である。従来例4は体積比でcBNが60%,Al2O3−TiCが40%の割合で得られた焼結体で形成された切削工具である。これらの比較例1、従来例1〜従来例4についての切削性能についても表1に併記した。
【0037】
表1から理解できるように、実施例に相当するNo.1〜No.12は、欠損がなく、工具の摩耗量も少なく、良好なる切削試験結果を示した。殊にSiCを出発原料として配合したNo.3,No.4,No.6,No.7,No.10,No.12については、工具の摩耗量は少な目であり、耐摩耗性が向上していた。
【0038】
これに対して表1から理解できるように、比較例1、従来例1、従来例2では欠損が発生した。またcBNが採用されている従来例3、従来例4では、欠損しないものの、摩耗量が大きく、0.28mmを超えていた。
【0039】
(その他)
上記した実施例では、被切削材としてニレジスト鋳鉄を採用し、ニレジスト鋳鉄に対して切削を行っているが、これに限らず、オーステンパ球状黒鉛鋳鉄に代表される高級鋳鉄等の難削系の被切削材、更には、一般的な球状黒鉛鋳鉄や片状黒鉛鋳鉄といった一般鋳鉄、炭素鋼系、合金鋼系等の被切削材についても適用できることは勿論である。また、前記した実施例に係るセラミック基焼結体は、切削速度が速い高速切削、1回あたりの切削代が大きな重切削に好適なものであるが、これに限定されるものではなく、高速切削及び重切削以外の切削形態、例えば切削速度や1回当たりの切削代が通常である切削形態などにも適用できることは勿論である。
【0040】
また上記した実施例は切削工具に適用したものであるが、必ずしも切削工具に限定されるものではなく、基準金、アンビル、金敷、掘削用ビット等といった工具にも適用できるものである。
【0041】
その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できることは勿論である。実施例に記載の語句は例示であり、一部であっても請求項に記載できるものである。
【0042】
【発明の効果】
本発明によれば、出発原料であるTiCN、Si3N4、Al2O3、CrXN(x=1〜2.7)に対して変化した結晶構造をもつ生成物質が認められ、セラミック基焼結材における高温領域の硬度及び強度を高めることができる。よって、切削などのように相手材と接触する環境下において良好なる耐摩耗性、耐欠損性を確保することができ、耐久性の向上、長寿命化を図るのに有利である。これにより、本発明を切削工具に適用した場合には、鋳鉄の中でも難加工性を示すニレジスト鋳鉄やオーステンパ球状黒鉛鋳鉄に代表される難削系の高級鋳鉄等の被切削材を切削する場合についても、高速切削や重切削を良好に行うことができ、切削工具の耐久性の向上を図り得、長寿命化を実現することができる。
【図面の簡単な説明】
【図1】混合粉末の状態(焼結前)及び焼結材(焼結後)におけるX線回折図である。
【図2】切削工具の一例を示す構成図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic-based sintered material for a tool that can be effectively used as a tool such as a cutting tool for cutting a workpiece, and a method for manufacturing the same. The tool ceramic-based sintered material according to the present invention, for example, cuts a work material such as high-grade cast iron typified by Ni-resist cast iron and austempered spheroidal graphite cast iron, and general cast iron typified by spheroidal graphite cast iron and flake graphite cast iron. Suitable for doing. It is particularly suitable for high-speed cutting with a high cutting speed or heavy cutting with a large cutting allowance.
[0002]
[Prior art]
The prior art will be described using a cutting tool for cutting high-grade cast iron typified by Ni-resist cast iron and austempered spheroidal graphite cast iron as an example. Ni-resist cast iron is a nickel-chromium-copper austenitic cast iron, and graphite exists in the austenitic ground. Ni-resist cast iron is widely used as a material for machine parts that require high-temperature strength and wear resistance in a corrosive atmosphere because it is superior in wear resistance, heat resistance, and corrosion resistance compared to ordinary cast iron. In particular, in recent years, due to further improvement in performance of automobiles, they are mainly used as key important parts constituting automobiles. On the other hand, austempered spheroidal graphite cast iron contains spheroidal graphite in bainite structure and austenite structure by heat treatment of spheroidal graphite cast iron, for example, JIS G 5503 FCAD 1000-5. Since austempered spheroidal graphite cast iron is superior in tensile strength and wear resistance compared to ordinary cast iron, it is desired as a material for mechanical parts that require strength. In addition, because of its high strength, it has been eagerly desired as a material item for the needs for miniaturization and weight reduction of recent automobiles.
[0003]
In order to make such high-grade cast iron typified by Ni-resist cast iron and austempered spheroidal graphite cast iron into final shape dimensions such as the above-mentioned key important parts, usually, cutting is often required after casting. A cutting tool for cutting high-grade cast iron such as Ni-resist cast iron or austempered spheroidal graphite cast iron must have a performance capable of being quickly and efficiently processed with the required processing accuracy. If the cutting edge of the tool is worn out or chipped due to chipping or the like, the required dimensional accuracy and surface roughness cannot be obtained, such as surface roughness and burrs on the processed surface, resulting in a defective product that cannot be shipped as a product.
[0004]
Therefore, when the cutting tool is worn or damaged, the cutting tool must be replaced immediately. Since this tool change leads to a decrease in productivity, it must be reduced as much as possible. Therefore, development of a long-life and inexpensive cutting tool is strongly desired. As a cutting tool for solving such a problem, for example, a TiCN-based ceramic-based sintered material as described in Japanese Patent Application Laid-Open No. 62-280362 or Japanese Patent Application Laid-Open No. 62-278265 has been proposed.
[0005]
[Problems to be solved by the invention]
High-grade cast irons such as Ni-resist cast iron and austempered spheroidal graphite cast iron have higher hardness and wear resistance than general spheroidal graphite cast iron, and the austenitic structure is martensite due to stress induced by processing stress during cutting. The structure itself becomes harder during cutting. In addition, these high-grade cast irons generate more heat during cutting than general spheroidal graphite cast irons. Furthermore, when the high-grade cast iron is in the state of a rough shape, it has a cast surface with irregularities, and it will be cut from the surface of this cast surface, but the cutting of the cast surface part is in an intermittent cutting state that induces vibration. Easy to be. For this reason, the toughness which can endure intermittent cutting is requested | required of a cutting tool.
[0006]
As described above, in cutting tools for cutting high-grade cast iron, wear resistance that can sufficiently face the hardness of high-grade cast iron, heat resistance that does not cause thermal deterioration (hardness reduction) due to heat generation during cutting, Where a cutting tool having toughness (breakage resistance) for following intermittent cutting such as cutting of the skin surface is required, the TiCN ceramic-based sintered material described in the above publication has particularly low heat resistance, Heat generation during cutting causes a decrease in hardness and wear resistance. For this reason, the exchange frequency of a cutting tool becomes frequent.
[0007]
Thus, in the cutting tools that have been proposed in the past, there are no tools that satisfy all of the wear resistance, heat resistance, and fracture resistance required when cutting high-grade cast iron such as Ni-resist cast iron and austempered spheroidal graphite cast iron. There is nothing other than a cutting tool containing cBN, and it has not been possible to realize a long life expectancy as a cutting tool.
[0008]
A cutting tool containing cBN or diamond may be used, but such a cutting tool is expensive to manufacture.
[0009]
The present invention has been made in view of such conventional problems, and its problem is to provide a tool represented by an inexpensive and long-life cutting tool having excellent heat resistance, wear resistance, and fracture resistance. An object of the present invention is to provide a ceramic-based sintered material for a tool that can be formed and a method for producing the same.
[0010]
In particular, when the present invention is applied to a cutting tool that is a representative tool, the problem is not only the cutting of general cast iron represented by spheroidal graphite cast iron and flake graphite cast iron, but also Niresist cast iron and austemper spherical. It can also be applied to cutting of high-grade cast iron, such as graphite cast iron, including metal cast materials such as general cast iron and high-grade cast iron. A ceramic-based sintered material for a tool that can be cut well even under severe conditions such as cutting, can form a cutting tool that is inexpensive and has a long life, and a method for producing the same. Is.
[0011]
[Means for Solving the Problems]
The inventor has been developing a ceramic-based sintered material for a tool used for a cutting tool and the like and a manufacturing method thereof for many years. AndWhen the total of the mixed powder is 100%, TiCN is 15% to 40% by volume, SiCN 3 N 4 5 to 25% by volume, Al 2 O 3 15 to 40% by volume, Cr X N (x = 1 to 2.7) so as to contain 5% to 30% by volume ratio,TiCN, Si3N4, Al2O3And CrXA mixed powder containing each powder of N (x = 1 to 2.7) is prepared, and the mixed powder is sintered to form a fired body. It has been found that the above-mentioned problems can be achieved by configuring the binder, and the present invention has been completed based on this finding.
[0012]
The reason why the above-mentioned problem is achieved is not necessarily clear at present, but is presumed as follows. That is, TiCN, Si3N4, Al2O3And CrXA mixed powder containing each powder of N (x = 1 to 2.7) is prepared, and the mixed powder is sintered to form a fired body. If configured, starting materials TiCN, Si3N4, Al2O3And CrXIt is presumed that a new phase having a crystal structure changed with respect to N (x = 1 to 2.7) is generated, and this phase contributes to the improvement of the material during cutting or the like. CrXWhen a ceramic-based fired material is formed by sintering a mixed powder having the same composition not containing N, this new phase is not found, and the heat resistance, wear resistance, fracture resistance, etc. are not always sufficient. There wasn't.
[0013]
The ceramic-based sintered material for a tool according to the first invention isWhen the total of the mixed powder is 100%, TiCN is 15% to 40% by volume, SiCN 3 N 4 5 to 25% by volume, Al 2 O 3 15 to 40% by volume, Cr X N (x = 1 to 2.7) so as to contain 5% to 30% by volume ratio,TiCN, Si3N4, Al2O3And CrXMixed powder containing N (x = 1 to 2.7) powdersFormed by sinteringIt is characterized by comprising a fired body.
[0014]
The method for producing a ceramic-based sintered material for a tool according to the second invention is as follows:When the entire mixed powder is 100%, TiCN is 15% to 40% by volume, SiCN 3 N 4 5 to 25% by volume, Al 2 O 3 15 to 40% by volume, Cr X N (x = 1 to 2.7) in a volume ratio of 5% to 30%,TiCN, Si3N4, Al2O3And CrXProducing mixed powder containing each powder of N (x = 1 to 2.7)And a process ofNextsoSinter the mixed powder to form a fired bodySequentially performing the sintering processIt is characterized by doing.
[0015]
What should be most noticeable in the present invention is the above-mentioned TiCN, Si, which are starting materials.3N4, Al2O3, CrXWhen sintered using a mixed powder containing N (x = 1 to 2.7), the starting material is TiCN, Si3N4, Al2O3And CrXA new product having a changed crystal structure with respect to N (x = 1 to 2.7) is observed. As a result, the heat resistance of a tool typified by a cutting tool is improved, hardness and strength in a high temperature range are ensured, wear resistance and fracture resistance are improved, and a long life can be expected. Therefore, when the ceramic-based sintered material for a tool according to the present invention is applied to a cutting tool that is a representative tool, it is difficult to machine such as high-grade cast iron typified by Ni-resist cast iron or austempered cast spheroidal graphite cast iron. Even if the material to be cut is high-speed cutting, heavy cutting, or intermittent cutting, a ceramic-based sintered material for a cutting tool capable of cutting well can be obtained. That is, the present invention secures hardness and strength even in a high temperature region as compared with the conventional ceramic-based sintered material, and therefore has excellent wear resistance and toughness, even in the case of high speed cutting, heavy cutting, and intermittent cutting. A cutting tool having excellent durability and a long life can be obtained. A typical example of the shape of the cutting tool is shown in FIG.
[0016]
The blending ratio of the mixed powder capable of exhibiting the above-described function is as follows: TiCN is 15% to 40% by volume when the total of the mixed powder is 100%, Si3N4Is 5% to 25% by volume, Al2O3Is 15% to 40% by volume, CrXN (x = 1 to 2.7) is contained in a volume ratio of 5% to 30%. When the mixed powder mixed in such a composition is sintered, in the ceramic-based sintered material after sintering, TiCN, Si3N4, Al2O3, CrXGeneration of a product having a crystal structure changed with respect to N (x = 1 to 2.7) is recognized, and these are firmly bonded. Therefore, high-grade cast iron typified by Ni-resist cast iron and austempered spheroidal graphite cast iron, etc. Even a difficult-to-cut material can be cut in the state of high-speed cutting, heavy cutting, and intermittent cutting, and an excellent ceramic-based sintered material for a tool having a long life can be obtained.
[0017]
Furthermore, it is preferable that the mixed powder having the above composition contains SiC in an amount of 5% to 20% by volume by external addition depending on the material of the material to be cut. In this case, if SiC is excessive, the ceramic-based sintered material becomes brittle, and if it is excessive, the effect of addition does not appear. Adding 5% of SiC by external addition means that the whole becomes 105% (100 + 5).
[0018]
TiCN is produced by continuous solid solution of cubic TiN and TiC, and the N: C ratio is in the range of (1: 9) to (9: 1) in terms of atomic ratio. Either is fine. However, it is preferable that the ratio of N: C is in the range of (2: 8) to (8: 2) in terms of the number of atoms so that both properties of TiN and TiC appear appropriately.
[0019]
When the blending amount of TiCN is less than 15%, it is difficult to act as a starting material for the ceramic-based sintered material of the present invention. On the other hand, when the amount of TiCN exceeds 40%, Si, which is another starting material, is used.3N4, Al2O3, CrXThe balance with N (x = 1 to 2.7) is lost, and it is difficult to obtain a desired mixed powder. Therefore, the blending amount of TiCN is preferably 15% to 40% by volume ratio, and the blending amount of TiCN is preferably 20% to 35% by volume ratio.
[0020]
The particle size of the TiCN powder is preferably small. When the particle size of TiCN exceeds 10 μm, the product to be generated by the above formulation is not sufficiently generated, and depending on the sintering conditions, TiCN may remain considerably after sintering. In addition, when the particle size of TiCN exceeds 10 μm, there is a problem that even if all the TiCN reacts to generate a product to be generated, the generated material is segregated and it is difficult to evenly distribute it. . Accordingly, when it is necessary to grind, it is necessary to pay attention to the contamination of impurities, but the TiCN powder particles should be 5 μm or less, preferably 2 μm to 1 μm, or finer. In general, TiCN is preferably ultrafine particles having a particle size of 0.1 μm or less, but in this case, it is necessary to consider removal of the adsorbed gas.
[0021]
Si3N4The crystal structure includes a hexagonal α-type and a trigonal β-type. In the present invention, basically any crystal structure can be applied, but an α-type that easily dissolves oxygen is preferable. Si3N4As described above, the blending amount of is preferably 5 to 25%. If it is less than 5%, it hardly acts as a starting material for the ceramic-based sintered material of the present invention. On the other hand, Si3N4If the blending amount exceeds 25%, other raw materials TiCN, Al2O3, CrXThe balance with N (x = 1 to 2.7) is lost, and it is difficult to obtain a desired mixed material. Therefore, Si3N4Is preferably 5% to 25% by volume. 8 to 20% is more preferable. Si3N4The particle size of the powder is preferably small. Si3N4When the particle size of the powder exceeds 10 μm, the product to be generated by the above blending is not sufficiently generated, and depending on the sintering conditions, Si3N4May remain significantly after sintering. Si3N4Even when all of the above react to produce a product to be produced, there is a problem that the product is segregated and it is difficult to evenly distribute it. Therefore, it is necessary to pay attention to impurity contamination, but Si3N4The particle size of 5 μm or less, preferably 2 μm to 1 μm, or finer is better. In general, ultrafine particles having a particle size of 0.1 μm or less are suitable, but in this case, it is necessary to consider removal of the adsorbed gas.
[0022]
Al2O3There are many crystal structures. Basically, the crystal structure is not limited, but a cubic spinel γ type that changes to α type at 1000 ° C. or higher and a trigonal steel ball type α type that is stable at a high temperature are preferable. Al2O3The blending amount is preferably 15 to 40%. Al2O3If it is less than 15%, it is difficult to act as a starting material for the ceramic-based sintered material for tools of the present invention. On the other hand, Al2O3When the compounding amount exceeds 40%, other starting materials TiCN, Si3N4, CrXThe balance with N (x = 1 to 2.7) is lost, and it is difficult to achieve desired sintering. Therefore, Al2O3Is preferably 15% to 40% by volume..In particular, 20% to 35% is more preferable. Al2O3The particle size of the powder is preferably small. Al2O3Since a high-purity powder having a particle size of 1 μm or less can be easily obtained on the market, such a powder is preferably used. Then, TiCN and Si3N4The risk of worrying about unreacted and segregated problems considered in However, Al2O3In general, ultrafine particles having a particle size of 0.1 μm or less are suitable, but in this case, it is necessary to consider removal of the adsorbed gas.
[0023]
CrXN (x = 1 to 2.7) is mainly CrN and Cr2N is present but both are non-stoichiometric compounds. The blending amount of CrXN (x = 1 to 2.7) is preferably 5 to 30%. CrXWhen the N content is less than 5%, it is difficult to act as a starting material for the ceramic-based sintered material of the present invention. On the other hand, CrXWhen the compounding amount of N exceeds 30%, other raw materials such as TiCN and Si3N4, Al2O3And the desired bonding material is not obtained. Therefore, CrXAs described above, the blending amount of N (x = 1 to 2.7) is preferably 5% to 30% by volume ratio, but more preferably 8 to 25% by volume ratio.
[0024]
The particle size of the powder (x = 1 to 2.7) is preferably small. CrXWhen the particle size of N exceeds 10 μm, the product is not sufficiently generated by the above blending, and Cr depends on the firing conditions.XN (x = 1 to 2.7) may remain significantly after sintering. Furthermore, there is a problem that the product substance segregates and it is difficult to distribute it uniformly. Therefore, it is necessary to pay attention to impurity contamination, but CrXThe particle size of N is 5 μm or less, preferably 2 μm to 1 μm or smaller. CrXIn general, N is preferably ultrafine particles having a particle size of 0.1 μm or less, but in this case, it is necessary to consider removal of the adsorbed gas.
[0025]
Next, the operation of the present invention will be described. In the method for producing a ceramic-based sintered material for a tool of the present invention, TiCN, Si having the above specific composition3N4, Al2O3, CrXThe mixed raw material of each powder of N (x = 1 to 2.7) is sintered, and the obtained ceramic-based sintered material exhibits excellent durability when used for a cutting tool and has a long life.
[0026]
Conventional sintered bodies have not been able to exhibit sufficient durability when cutting difficult-to-cut materials such as Ni-resist cast iron and austempered spheroidal graphite cast iron, which are called high-grade cast iron. The reason is considered to be due to the low heat resistance, oxidation resistance and durability of the raw material powder itself. On the other hand, in the present invention, TiCN, Si as starting materials3N4, Al2O3, CrXSince N (x = 1 to 2.7) is mixed and used, in the sintered ceramic-based sintered material, TiCN, Si3N4, Al2O3, CrXA new product having a changed crystal structure with respect to N (x = 1 to 2.7) is observed, and since this is firmly bonded, the hardness and strength in the high temperature region are excellent, wear resistance, It is inferred that it has excellent fracture resistance. Therefore, the ceramic base sintered material for tools obtained in the present invention has excellent durability and life. And, for example, when used as a cutting tool for cutting workpieces such as high-grade cast iron typified by Ni-resist cast iron and austempered spheroidal graphite cast iron, high-speed cutting with a high cutting speed, heavy cutting with a large machining allowance per time Even so, it becomes possible to cut well.
[0027]
As a suitable method for producing a ceramic-based sintered material for a tool, SiC can be contained in an amount of 5% to 20% by volume by external addition to the mixed powder having the above composition. There are two types of SiC, rhombohedral wurtzite type α and cubic zinc blende type β type, either of which can be used. The more supple α type is preferred. By adding SiC, the hardness is further increased after sintering, so that the wear resistance of the ceramic-based sintered material for tools is further improved. When the added amount of SiC by external addition is less than 5% by volume, the effect of increasing the hardness is not so much recognized. On the other hand, when it exceeds 20%, the balance of the above composition is lost, especially the toughness of the matrix. On the contrary, when used as a cutting tool, there is a problem that chipping increases. Preferably, the addition amount of SiC is 7% to 15% in terms of volume ratio by external addition. In addition, as the particle size of the SiC powder, the above-described TiCN, Si3N4, Al2O3, CrXN is preferably smaller than the particle size of the ceramic powder. In order to distribute SiC uniformly in the matrix as a reinforcing material, it is necessary to pay attention to impurity contamination, but the particle size of SiC is preferably 3 μm or less, more preferably 2 μm to 1 μm, and more preferably smaller than 1 μm. . In general, SiC is preferably ultrafine particles having a particle size of 0.1 μm or less, but in this case, it is necessary to consider removal of the adsorbed gas.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on examples.
[0029]
As a starting material powder, Si having an average particle size of 2.0 μm or less3N4Powder, TiCN powder with an average particle size of 2.0 μm or less, Al with an average particle size of 1.0 μm or less2O3Powder, Cr with an average particle size of 2.0 μm or lessXN powder and SiC powder having an average particle size of 2.0 μm or less were used. These powders were blended at a blending ratio shown in Table 1, and mixed with a planetary ball mill for about 1 hour to form a mixed powder. Thereafter, the mixed powder was dried and compression molded with a mold to form a consolidated body. This compact was heated and held under the sintering conditions shown in Table 1 to form a sintered body. That is, as shown in Table 1, using a hot press, HIP, or a piston / cylinder, heat and hold for 1 hour to 3 hours under conditions of pressure (30 Mpa to 2000 MPa) and temperature (1400 to 1800 ° C.) No. One sintered body was formed. In the pressure items in Table 1, * 1 means that hot pressing was performed while flowing argon gas, * 2 means that hot isostatic pressing (HIP) was performed, and * 3 was cylinder This means a cylinder / piston type where the material inserted inside is pressurized with a piston.
[0030]
[Table 1]
[0031]
After forming the sintered body as described above, the sintered body is cooled and depressurized, whereby No. 1 to No. 1 corresponding to the ceramic-based sintered material according to this example. 12 was obtained.
[0032]
With respect to the ceramic-based sintered material (test piece: No. 5) thus obtained, the peak of the X-ray diffraction diagram was obtained, and this is shown in FIG. For comparison, the peak of the X-ray diffraction diagram for the mixed powder before sintering is also shown in FIG. In FIG. 1, ● indicates Al.2O3, ○ is Si3N4, Cr indicates CrN, Δ indicates SiC, ◇ indicates TiCN, and ♦ indicates an unknown phase, that is, an unknown product (unknown). As is clear from the results of X-ray diffraction shown in FIG. 1, the ceramic-based sintered material obtained by the present invention is Al starting material.2O3, Si3N4, CrN, SiC, and TiCN, it was confirmed that a new product (a peak indicated by ♦ in FIG. 1) having a changed crystal structure was generated. This product is currently unknown.
[0033]
The ceramic-based sintered material obtained as described above was processed into a predetermined cutting tool (JIS: SPGN120304SN) shape. And using this cutting tool, it cut with respect to a to-be-cut material on the following cutting conditions.
[0034]
Cutting conditions
Workpiece: Niresist cast iron with an outer diameter of 110 mm (JIS: FCA-NiCuCr1562 Hardness: Hv163)
Cutting speed: 220 m / min
Feed: 0.3mm / rev
Cutting depth: 4.5mm
Cutting oil: Chemicool SR ~ 1
Then, the wear amount (VB) of the flank face of the tool when the cutting length was 10 km was measured, and this was evaluated as a standard of the life of the ceramic-based sintered material for the cutting tool. The cutting results are also shown in Table 1. The density of the sintered body shown in Table 1 means the ratio to the true density. As Comparative Example 1, SiCN was not included as a starting material.3N4, Al2O3, CrxN, and SiC were used to form a ceramic-based sintered material under the conditions shown in Table 1.
[0035]
Further, as Conventional Example 1, Al that has been conventionally used2O3A cutting tool formed of a TiC-based commercially available ceramic-based sintered material was evaluated in the same manner. Also, as Conventional Example 2, Al that has been used conventionally2O3A cutting tool formed of a commercially available ceramic-based sintered material based on SiC whisker was also evaluated in the same manner.
[0036]
Further, as Conventional Example 3 and Conventional Example 4, cutting tools formed of a sintered body containing cBN were evaluated by the same method. Conventional Example 3 is a cutting tool obtained by a sintered body formed by a volume ratio of cBN of 80% and WC-Co of 20%. Conventional Example 4 has a volume ratio of cBN of 60%, Al2O3-A cutting tool formed of a sintered body obtained by obtaining TiC at a ratio of 40%. The cutting performance for Comparative Example 1 and Conventional Examples 1 to 4 is also shown in Table 1.
[0037]
As can be seen from Table 1, No. corresponding to the examples. 1-No. No. 12 showed a good cutting test result with no chipping and little tool wear. In particular, No. 1 containing SiC as a starting material. 3, no. 4, No. 6, no. 7, no. 10, no. For No. 12, the wear amount of the tool was small and the wear resistance was improved.
[0038]
On the other hand, as can be understood from Table 1, defects occurred in Comparative Example 1, Conventional Example 1, and Conventional Example 2. Further, in Conventional Example 3 and Conventional Example 4 in which cBN is employed, the amount of wear was large, exceeding 0.28 mm, although it was not lost.
[0039]
(Other)
In the above-described embodiment, Niresist cast iron is used as the material to be cut, and the Niresist cast iron is cut. However, the present invention is not limited to this, and difficult-to-cut materials such as high-grade cast iron represented by austempered spheroidal graphite cast iron. Needless to say, the present invention can also be applied to cutting materials such as general cast irons such as general spheroidal graphite cast iron and flake graphite cast iron, carbon steels, and alloy steels. In addition, the ceramic-based sintered body according to the above-described embodiment is suitable for high-speed cutting with a high cutting speed and heavy cutting with a large cutting allowance, but is not limited thereto, and is not limited to this. Of course, the present invention can also be applied to cutting forms other than cutting and heavy cutting, for example, cutting forms in which the cutting speed and the cutting allowance per time are normal.
[0040]
The above-described embodiment is applied to a cutting tool, but is not necessarily limited to a cutting tool, and can be applied to a tool such as a reference metal, an anvil, an anvil, an excavation bit, and the like.
[0041]
In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and it is needless to say that the present invention can be appropriately modified and implemented without departing from the scope of the invention. The words and phrases described in the examples are merely examples, and some of the words can be described in the claims.
[0042]
【The invention's effect】
According to the present invention, starting materials TiCN, Si3N4, Al2O3, CrXA product having a crystal structure changed with respect to N (x = 1 to 2.7) is recognized, and the hardness and strength of the high temperature region in the ceramic-based sintered material can be increased. Therefore, it is possible to ensure good wear resistance and fracture resistance in an environment where the material contacts with the counterpart material such as cutting, which is advantageous in improving durability and extending the life. As a result, when the present invention is applied to a cutting tool, it is possible to cut a material to be cut such as difficult-to-cut high-grade cast iron typified by Ni-resist cast iron or austempered spheroidal graphite cast iron, which is difficult to process among cast irons. However, high-speed cutting and heavy cutting can be performed satisfactorily, the durability of the cutting tool can be improved, and a long life can be realized.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a mixed powder state (before sintering) and a sintered material (after sintering).
FIG. 2 is a configuration diagram showing an example of a cutting tool.
Claims (5)
次いで前記混合粉末を焼結して焼成体を形成する焼結工程とを順に実施することを特徴とする工具用セラミック基焼結材の製造方法。 When the entire mixed powder is 100%, TiCN is 15% to 40% by volume , Si 3 N 4 is 5% to 25% by volume , Al 2 O 3 is 15% to 40% by volume, Cr in X N (x = 1~2.7) proportion of from 5% to 30% by volume blend, TiCN, Si 3 N 4, Al 2 O 3 and Cr X N of (x = 1 to 2.7) Producing a mixed powder containing each powder ;
Method for producing then in the mixed powder is sintered to form a sintered body sintering step and the tool ceramic-based sintered sintered material which comprises carrying out in sequence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000356614A JP4636574B2 (en) | 2000-11-22 | 2000-11-22 | Ceramic-based sintered material for tool and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000356614A JP4636574B2 (en) | 2000-11-22 | 2000-11-22 | Ceramic-based sintered material for tool and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002160971A JP2002160971A (en) | 2002-06-04 |
JP4636574B2 true JP4636574B2 (en) | 2011-02-23 |
Family
ID=18828827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000356614A Expired - Lifetime JP4636574B2 (en) | 2000-11-22 | 2000-11-22 | Ceramic-based sintered material for tool and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4636574B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117473A (en) * | 1985-05-17 | 1986-01-25 | 三菱マテリアル株式会社 | Silicon nitride base sintering material for cutting tool |
JPH05295352A (en) * | 1992-04-20 | 1993-11-09 | Noritake Co Ltd | Abrasive material or tool material comprising al2o3-based composite ceramic, and its production |
JPH0797255A (en) * | 1993-09-24 | 1995-04-11 | Toshiba Tungaloy Co Ltd | Composite sintered body of aluminum oxide base |
JPH11335168A (en) * | 1998-05-27 | 1999-12-07 | Kyocera Corp | Highly tough ceramic-based sintered compact |
-
2000
- 2000-11-22 JP JP2000356614A patent/JP4636574B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117473A (en) * | 1985-05-17 | 1986-01-25 | 三菱マテリアル株式会社 | Silicon nitride base sintering material for cutting tool |
JPH05295352A (en) * | 1992-04-20 | 1993-11-09 | Noritake Co Ltd | Abrasive material or tool material comprising al2o3-based composite ceramic, and its production |
JPH0797255A (en) * | 1993-09-24 | 1995-04-11 | Toshiba Tungaloy Co Ltd | Composite sintered body of aluminum oxide base |
JPH11335168A (en) * | 1998-05-27 | 1999-12-07 | Kyocera Corp | Highly tough ceramic-based sintered compact |
Also Published As
Publication number | Publication date |
---|---|
JP2002160971A (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5680567B2 (en) | Sintered body | |
JP5974048B2 (en) | Method for producing cubic boron nitride molded body | |
JP2002226273A (en) | Sintered compact | |
JP2017165637A (en) | Composite sintered body for cutting tool and cutting tool using the same | |
JPH10182234A (en) | Cubic boron nitride-base sintered material and its production | |
JP6048522B2 (en) | Sintered body and cutting tool | |
JP5157056B2 (en) | Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same | |
JP2002167639A (en) | Cermet based sintered material for tool and its production method | |
JP2523452B2 (en) | High strength cubic boron nitride sintered body | |
JP4560604B2 (en) | Cubic boron nitride based sintered material and method for producing the same | |
JP6048521B2 (en) | Sintered body and cutting tool | |
JP2000044348A (en) | High-hardness sintered compact for cutting working of cast iron | |
JP2004026555A (en) | Cubic boron nitride-containing sintered compact and method for producing the same | |
JP4636574B2 (en) | Ceramic-based sintered material for tool and manufacturing method thereof | |
JPS644989B2 (en) | ||
JPS6056783B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JP3092887B2 (en) | Surface-finished sintered alloy and method for producing the same | |
JPH10226575A (en) | High-pressure form of boron nitride sintered compact for cutting tool | |
JP2782524B2 (en) | High density phase boron nitride based reaction sintered body and method for producing the same | |
JP2024088184A (en) | Composite material, cut insert, and cutting tool | |
JPH05194032A (en) | Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool | |
JPH07172906A (en) | Ceramic sintered compact | |
JP2954996B2 (en) | Sintered materials for tools | |
JPH0463607A (en) | Cutting tool having cutting edge part formed of cubic boron nitride sintered substance | |
JPS6177670A (en) | Manufacture of cubic boron nitride base sintered body for cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4636574 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |