JPH11335168A - Highly tough ceramic-based sintered compact - Google Patents

Highly tough ceramic-based sintered compact

Info

Publication number
JPH11335168A
JPH11335168A JP10145226A JP14522698A JPH11335168A JP H11335168 A JPH11335168 A JP H11335168A JP 10145226 A JP10145226 A JP 10145226A JP 14522698 A JP14522698 A JP 14522698A JP H11335168 A JPH11335168 A JP H11335168A
Authority
JP
Japan
Prior art keywords
silicon nitride
mol
sintered body
cutting
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10145226A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Nakaoka
達行 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10145226A priority Critical patent/JPH11335168A/en
Publication of JPH11335168A publication Critical patent/JPH11335168A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic sintered compact having a high hardness and a high toughness and capable of manifesting high abrasion and high fracture resistances especially for cutting cast iron at a high speed. SOLUTION: This highly tough ceramic sintered compact is obtained by including Al in an amount of 1.5-10 mol.% expressed in terms of Al2 O3 , a carbide, a nitride and a carbonitride of Ti in an amount of 30-80 mol.% and the balance of silicon nitride and a group 3a element (RE) of the periodic table in an amount of 1-10 mol.% expressed in terms of RE2 O3 and based on the silicon nitride. Furthermore, the ratio of the peak intensity ITi CN of the (200) face in an X-ray diffraction(XRD) of TiCx Ny [(x)+(y)]<=1; 0<=(x) and (y)<=1} and the peak intensity ISN of the (200) face of the silicon nitride is 0.5<=ITi CN/ ISN<=3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱衝撃性、耐欠
損性、耐摩耗性に優れた切削工具用のセラミック質焼結
体に関し、特に鋳鉄の切削に適した高靱性のセラミック
質焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sintered body having excellent thermal shock resistance, fracture resistance, and wear resistance for cutting tools, and more particularly to a high-toughness ceramic sintered body suitable for cutting cast iron. It is about the body.

【0002】[0002]

【従来の技術】近年、切削工具として用いられるセラミ
ック質焼結体としては、アルミナ、アルミナにZrO2、Ti
C 等を添加したセラミック、窒化珪素に対して各種の焼
結助剤を添加したもの等がある。この中で窒化けい素セ
ラッミクスはセラミックス中最も靭性が高く特に切削工
具として多く使用されている。
2. Description of the Related Art In recent years, ceramic sintered bodies used as cutting tools include alumina, alumina with ZrO 2 , Ti
There are ceramics to which C and the like are added and those obtained by adding various sintering aids to silicon nitride. Among them, silicon nitride ceramics has the highest toughness among ceramics, and is particularly often used as a cutting tool.

【0003】窒化けい素の焼結助剤としては、Y2 3
などの周期律表第3a族元素酸化物と酸化アルミニウム
を含有する系や、酸化マグネシウム、酸化珪素、酸化ア
ルミニウムを含有する系が主に用いられている。
As a sintering aid for silicon nitride, Y 2 O 3
For example, a system containing an oxide of an element belonging to Group 3a of the periodic table and aluminum oxide, and a system containing magnesium oxide, silicon oxide, and aluminum oxide are mainly used.

【0004】また最近ではこれらの焼結助剤を用いた窒
化珪素質焼結体の表面に耐摩耗性を向上させるため窒化
チタン、酸化アルミニウムの薄膜を被覆したものも特公
昭62−13430号、特開平2−116401号等に
て提案されている。
Recently, a silicon nitride based sintered body using these sintering aids coated with a thin film of titanium nitride or aluminum oxide to improve wear resistance has also been disclosed in JP-B-62-13430. It is proposed in Japanese Patent Application Laid-Open No. 2-116401.

【0005】[0005]

【発明が解決しようとする課題】近年、各種切削加工分
野において生産性を向上するために、高速加工、高送り
加工等の重切削に対するする要求が高まっており切削工
具の使用条件も年々、高速化、高送り化が進んでいる。
このため、切削工具にはよりいっそうの耐摩耗性、耐欠
損性が要求されている。
In recent years, demands for heavy cutting such as high-speed machining and high-feed machining have been increasing in order to improve productivity in various cutting fields, and the use conditions of cutting tools have been increasing year by year. And high feed rate are progressing.
For this reason, cutting tools are required to have even higher wear resistance and chipping resistance.

【0006】しかし、従来の窒化珪素質焼結体にCVD 、
PVD 等の手法を用いて表面のみに硬質層を付着させた工
具材料では、鋳鉄を高速、高送り切削する、具体的には
速度400m/min以上、送り0.5mm/rev
(mm/刃)以上の条件で切削した場合には、被膜が剥
離してしまい十分な耐摩耗性、耐欠損性を有しておらず
刃先のチッピング、欠損、異常摩耗等を生じ寿命は短い
ものであった。
However, a conventional silicon nitride sintered body is
In the case of a tool material in which a hard layer is adhered only to the surface using a technique such as PVD, high-speed and high-feed cutting of cast iron is performed, specifically, at a speed of 400 m / min or more and a feed of 0.5 mm / rev.
(Mm / blade) When cutting under the above conditions, the coating peels off and does not have sufficient wear resistance and chipping resistance, resulting in chipping, chipping, abnormal wear, etc. of the cutting edge, resulting in a short life. Was something.

【0007】また、これらの手法を用いると工具の製造
上、被覆行程を必要とするためにコストも高くなる等の
問題があった。
Further, when these methods are used, there is a problem that a coating step is required in the production of a tool, so that the cost is increased.

【0008】従って、本発明は、高硬度および高靱性を
有する、特に鋳鉄を高速切削するのに高い耐摩耗性と耐
欠損性を発揮することのできるセラミック焼結体を提供
することを目的とするものである。
Accordingly, an object of the present invention is to provide a ceramic sintered body having high hardness and high toughness, and particularly, capable of exhibiting high wear resistance and chipping resistance for high-speed cutting of cast iron. Is what you do.

【0009】[0009]

【課題を解決するための手段】本発明者はかかる課題に
対して種々検討した結果、焼結体中にTi化合物の粒子を
分散させることにより焼結体の硬度、靱性が高められる
との知見を得た。また、Ti化合物を30〜80mol% 程度添
加すれば周期律表第3a族元素(RE)酸化物RE2
3 や Al2O3等の添加物をある程度多量に添加しても工具
としての耐摩耗性を向上できることが判明した。さらに
検討を重ねた結果、AlをAl2 3 換算で1.5 〜10
モル%、Tiの炭化物、窒化物、炭窒化物を30〜80mol%、
残部が窒化けい素と周期律表第3a族元素(RE)をR
2 3 換算で窒化けい素に対し1〜10モル%とする
ことにより焼結体の破壊靭性値を飛躍的に向上させるこ
とを見出し、本発明に至った。さらに、このような焼結
体において、TiCxNy(x+y ≦1 、0 ≦x 、y ≦1 )のXR
D の(200) 面のピーク強度ITiCNと窒化けい素の(200)
面のピーク強度ISNが0.5 ≦ITiCN/ ISN≦3 とするこ
とが特に好ましいことを見いだした。
Means for Solving the Problems The present inventor has conducted various studies on such problems and found that the hardness and toughness of the sintered body can be increased by dispersing Ti compound particles in the sintered body. I got When a Ti compound is added in an amount of about 30 to 80 mol%, an oxide of RE 3 O element (RE) of the periodic table, RE 2 O
It has been found that the wear resistance as a tool can be improved even when additives such as 3 and Al 2 O 3 are added in a relatively large amount. As a result of further study, Al was converted to Al 2 O 3 in the range of 1.5 to 10
Mol%, Ti carbide, nitride, carbonitride 30-80mol%,
The remainder is composed of silicon nitride and Group 3a element (RE) of the periodic table.
It has been found that by setting the content to 1 to 10 mol% based on silicon nitride in terms of E 2 O 3 , the fracture toughness value of the sintered body is dramatically improved, and the present invention has been achieved. Furthermore, in such a sintered body, the XR of TiCxNy (x + y ≦ 1, 0 ≦ x, y ≦ 1)
(200) plane peak intensity I TiCN and silicon nitride (200)
It has been found that the peak intensity I SN of the surface is particularly preferably 0.5 ≦ I TiCN / ISN ≦ 3.

【0010】即ち、本発明の高靱性セラミック質焼結体
は、焼結体中にTi化合物の粒子を分散させることにより
焼結体の硬度、靱性が高められるとの知見を得た。さら
に検討を重ねた結果、AlをAl2 3 換算で1.5 〜1
0モル%、Tiの炭化物、窒化物、炭窒化物を30〜80mol
%、残部が窒化けい素と周期律表第3a族元素(RE)
をRE2 3 換算で窒化けい素に対し1〜10モル%
で、TiCxNy(x+y ≦1 、0≦x 、y ≦1 )のXRD の(200)
面のピーク強度ITiCNと窒化けい素の(200) 面のピー
ク強度ISNが0.5 ≦ITiCN/ ISN≦3 とすることを特徴
とする。
That is, it has been found that the high toughness ceramic-based sintered body of the present invention improves the hardness and toughness of the sintered body by dispersing particles of the Ti compound in the sintered body. As a result of further extensive studies, 1.5 to 1 of Al in terms of Al 2 O 3
0 mol%, 30 to 80 mol of Ti carbide, nitride and carbonitride
%, With the balance being silicon nitride and Group 3a elements of the periodic table (RE)
Is 1 to 10 mol% based on silicon nitride in terms of RE 2 O 3.
The XRD of TiCxNy (x + y ≦ 1, 0 ≦ x, y ≦ 1) is (200)
The peak intensity I TiCN of the plane and the peak intensity I SN of the (200) plane of silicon nitride satisfy 0.5 ≦ I TiCN / IS N ≦ 3.

【0011】また製法としては焼成後AlをAl2 3
換算で1.5 〜10モル%、Tiの炭化物、窒化物、炭窒化
物を30〜80mol%、残部が窒化けい素と周期律表第3a族
元素(RE)をRE2 3 換算で窒化けい素に対し1〜
10モル%、でTiCxNy(x+y≦1 、0 ≦x 、y ≦1 )のX
RD の(200) 面のピーク強度ITiCNと窒化けい素の(200)
面のピーク強度ISNが0.15≦ITiCN/ ISN≦3 の組成
物になるように配合した成形体を窒素雰囲気にて焼成す
る事によって得ることを特徴とした高靱性セラミック質
焼結体である。
As a manufacturing method, after firing, Al is changed to Al 2 O 3
1.5 to 10 mol% in terms of a carbide of Ti, a nitride, 30~80Mol% carbonitride, and the balance silicon nitride silicon nitride and the periodic table group 3a elements of the (RE) in terms of RE 2 O 3 1 to
10 mol%, X of TiCxNy (x + y ≦ 1, 0 ≦ x, y ≦ 1)
(200) plane peak intensity I TiCN and silicon nitride (200)
A high-toughness ceramic sintered body characterized by being obtained by firing in a nitrogen atmosphere a molded product blended so that the surface peak intensity I SN becomes a composition of 0.15 ≦ I TiCN / IS N ≦ 3. is there.

【0012】[0012]

【発明の実施の形態】本発明における高靱性セラミック
質焼結体は、Alを酸化物換算で1.5 〜10モル%、特
に2 〜8モル%、残部が窒化けい素と周期律表第3a族
元素を酸化物換算で窒化けい素に対し1〜10モル%、
特に2〜8モル%、で含有する組成物であることが望ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The high-toughness ceramic sintered body according to the present invention contains 1.5 to 10 mol%, particularly 2 to 8 mol%, of Al in terms of oxide, and the balance is silicon nitride and group 3a of the periodic table. Element is 1 to 10 mol% based on silicon nitride in terms of oxide,
In particular, a composition containing 2 to 8 mol% is desirable.

【0013】ここで、焼結体組成を上記のように限定し
たのは、Alが1.5mol%より少ないとTi化合物を添加し
た場合緻密体が得られず、10モル%より多いと焼結体
の高温強度と耐反応性が劣化し工具としての性能が劣る
ためである。また、Tiの炭化物、窒化物、炭窒化物を30
〜80mol%とし、 硬質粒子を分散させるのは表面の硬度、
靭性を向上させ工具としての耐摩耗性、耐欠損性を向上
させるためであり、特に35〜75mol%であるのが望まし
い。これは、Tiの炭化物、窒化物、炭窒化物が30mol%以
下だと粒子分散の効果による焼結体の硬化、高靭化の効
果が小さく80mol%以上では緻密な焼結体が得られず工具
としての特性に欠けるためである。周期律表第3a族元
素が酸化物酸化物換算で10モル%より多いと、焼結体
の硬度が低下し工具としての耐摩耗性が劣化し、周期律
表第3a族元素が酸化物換算で窒化けい素に対し1モル
%より少ないと緻密体が得られず焼結体の強度が低下す
るからである。
Here, the reason why the composition of the sintered body is limited as described above is that if Al is less than 1.5 mol%, a dense body cannot be obtained when a Ti compound is added, and if Al is more than 10 mol%, the sintered body is not formed. This is because the high-temperature strength and the reaction resistance are deteriorated, and the performance as a tool is inferior. In addition, Ti carbides, nitrides and carbonitrides
~ 80 mol%, the hard particles are dispersed on the surface hardness,
This is for improving toughness and improving wear resistance and fracture resistance as a tool, and is particularly preferably 35 to 75 mol%. This is because if Ti carbide, nitride, carbonitride is less than 30 mol%, the effect of particle dispersion hardens the sintered body, the effect of toughening is small, and if it is more than 80 mol%, a dense sintered body cannot be obtained. This is because the characteristics as a tool are lacking. If the Group 3a element of the periodic table is more than 10 mol% in terms of oxide oxide, the hardness of the sintered body is reduced, and the wear resistance as a tool is deteriorated. If the content is less than 1 mol% with respect to silicon nitride, a dense body cannot be obtained and the strength of the sintered body decreases.

【0014】本発明によれば、Tiの炭化物、窒化物、炭
窒化物硬質粒子を分散含有することにより、クラックの
進展を抑制することができると同時に、マトリックスよ
りも硬い粒子を分散させているので硬度が高い。
According to the present invention, the development of cracks can be suppressed and the particles harder than the matrix are dispersed by dispersing and containing Ti carbide, nitride and carbonitride hard particles. So high hardness.

【0015】また、本発明によれば、Tiの炭化物、窒化
物、炭窒化物硬質粒子を分散し窒化珪素結晶とそれら結
晶間に存在する粒界相によって構成され、粒界相には、
少なくとも周期律表第3a族元素が含まれる。この粒界
相は、非晶質である場合もあるが、望ましくは、結晶化
しているのがよく、結晶相としては、アパタイト、YA
M、ヴォラストナイト、ダイシリケート、モノシリケー
トのうちの少なくとも1種を主体とするものであること
が望ましい。
Further, according to the present invention, Ti carbides, nitrides, and carbonitride hard particles are dispersed and composed of silicon nitride crystals and a grain boundary phase existing between the crystals.
It contains at least an element of Group 3a of the periodic table. The grain boundary phase may be amorphous, but is preferably crystallized, and the crystal phase may be apatite, YA
It is preferable that at least one of M, wollastonite, disilicate and monosilicate is mainly used.

【0016】本発明において、用いられる周期律表第3
a族元素としては、Y、Sc、Yb、Er、Dy、H
o、Luなどが挙げられ、これらの中でも、Er、Y
b、Luがよい。
In the present invention, the periodic table 3
Group a elements include Y, Sc, Yb, Er, Dy, H
o, Lu and the like. Among them, Er, Y
b and Lu are good.

【0017】次に、本発明の製造方法としては、窒化珪
素粉末にに対して、添加成分として、周期律表第3a族
元素(RE)酸化物粉末と、Al2 3 を添加し、ボー
ルミルなどで混合する。これらの添加成分は、最終焼結
体組成が前述した範囲になるように調合される。用いる
窒化珪素粉末としては、還元窒化法、直接窒化法等によ
り製造されたα型、β型のいずれでもよく、BET比表
面積が5m2 /g以上、不純物酸素量0.7〜2重量%
の粉末が適当である。上記のようにして混合された混合
物を、所望の成形手段、例えば、金型プレス、冷間静水
圧プレス、押出し成形、鋳込成形、射出成形等により任
意の形状に成形後する。
Next, as a production method of the present invention, a powder of a Group 3a element (RE) oxide of the periodic table and Al 2 O 3 are added as additional components to a silicon nitride powder. And mix. These additional components are prepared so that the final sintered body composition falls within the above-mentioned range. As the silicon nitride powder to be used, any of α-type and β-type manufactured by a reduction nitriding method, a direct nitriding method, or the like may be used. The BET specific surface area is 5 m 2 / g or more, and the amount of impurity oxygen is 0.7 to 2 % by weight.
Is suitable. The mixture mixed as described above is formed into a desired shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion molding, a casting molding, an injection molding or the like.

【0018】焼成は、1600〜2000℃の非酸化性
雰囲気で焼成する。この時の焼成温度が1600℃より
も低いと十分に緻密化することが難しく、2000℃を
越えると、結晶の異常粒成長が生じたり、窒化珪素が分
解し表面が荒れる等の問題が生じる。
The firing is performed in a non-oxidizing atmosphere at 1600 to 2000 ° C. If the firing temperature at this time is lower than 1600 ° C., it is difficult to sufficiently densify. If the firing temperature is higher than 2000 ° C., problems such as abnormal grain growth of crystals and decomposition of silicon nitride and roughening of the surface occur.

【0019】なお、焼成方法としては、窒化珪素が分解
しないようにして、常圧焼成、窒素ガス2気圧以上の窒
素ガス加圧焼成、ホットプレス焼成法の他、これらの焼
成後に1000気圧下で熱間静水圧焼成することにより
さらに緻密化させることができる。特に1700〜19
50℃の2気圧以上の窒素ガス含有非酸化性雰囲気で焼
成することがよい。
The firing method includes normal pressure firing, nitrogen gas pressure firing at 2 atm or more of nitrogen gas, hot press firing, and the like under a pressure of 1,000 atm after these firings so that silicon nitride is not decomposed. It can be further densified by hot isostatic firing. Especially 1700-19
It is preferable to perform firing in a non-oxidizing atmosphere containing nitrogen gas at 50 ° C. and 2 atm or more.

【0020】[0020]

【実施例1】原料粉末として窒化珪素粉末(BET比表
面積10m2 /g、不純物酸素量1.0重量%)と表1
に示した各種周期律表第3a族元素酸化物、SiO2 を
用いて表1の比率で調合し、これに成形用バインダーを
加えて窒化珪素ボールを用いて混合し、2ton/cm
2 の圧力でプレス成形した。
EXAMPLE 1 Silicon nitride powder (BET specific surface area: 10 m 2 / g, impurity oxygen content: 1.0% by weight) as raw material powder and Table 1
The mixture was prepared at a ratio shown in Table 1 using an oxide of an element belonging to Group 3a of the Periodic Table shown in Table 2 and SiO2, and a binder for molding was added thereto and mixed using a silicon nitride ball.
Press molding was performed at a pressure of 2 .

【0021】さらに3ton/cm2 で冷間静水圧成形
し成形体を得た。この成形体を窒素ガス圧力30気圧
下、表1の温度で3時間焼成して焼結体を得た。
Further, cold isostatic pressing was performed at 3 ton / cm 2 to obtain a molded product. The molded body was fired at a nitrogen gas pressure of 30 atm at a temperature shown in Table 1 for 3 hours to obtain a sintered body.

【0022】得られた焼結体に対して、ICP発光分光
分析によって、Si、周期律表第3a族元素(RE)、
Al、Tiの量を求め、SiはSi3 4 として、REは
RE2 3 として、AlはAl2 3 として、TiはTiの
炭化物、窒化物、炭窒化物として換算し組成比を求め
た。さらにTiの炭化物、窒化物、炭窒化物のX線回折測
定から強度を測定し同じくX 線回折から求めた窒化けい
素の強度と比較した。
The obtained sintered body was analyzed by ICP emission spectroscopy to determine Si, Group 3a element of the periodic table (RE),
The amounts of Al and Ti were determined, Si was converted to Si 3 N 4 , RE was converted to RE 2 O 3 , Al was converted to Al 2 O 3 , and Ti was converted to Ti carbides, nitrides and carbonitrides, and the composition ratio was calculated. I asked. Further, the strength was measured by X-ray diffraction measurement of Ti carbides, nitrides, and carbonitrides, and was compared with the strength of silicon nitride similarly obtained by X-ray diffraction.

【0023】また、焼結体特性として、JIS R16
10によるビッカース硬度、JISR1607のIF法
による破壊靭性を求め、その結果を表1に示した。
Further, as the characteristics of the sintered body, JIS R16
Vickers hardness according to No. 10 and fracture toughness according to the IF method according to JIS R1607 were determined, and the results are shown in Table 1.

【0024】また、切削試験として、上記と同様にして
CNGN160412の工具形状に成形し、焼成して作
製した切削工具を下記の切削条件 被削材 FC250 切削速度 600m/min 送り 0.5mm/rev 切り込み 2.0mm にて乾式旋削加工を行い、20分間切削後の摩耗幅を測定
し表1に示した。
Further, as a cutting test, a cutting tool produced by shaping and firing into a CNGN160412 tool shape in the same manner as described above was used. The following cutting conditions were used. Work material FC250 Cutting speed 600 m / min Feed 0.5 mm / rev Depth of cut Dry turning was performed at 2.0 mm 2, and the wear width after cutting for 20 minutes was measured.

【0025】切削試験としてSNGN120408の形状に加工し
た切削工具で下記条件にて正面フライス加工によるテストを
行なった。
As a cutting test, a face milling test was performed using a cutting tool machined into the shape of SNGN120408 under the following conditions.

【0026】 被削材 FCD 450(125×300mmの形状) 切削速度 600m/min 送り 0.5mm/刃 切り込み 2.0mm 上記条件で正面フライス加工を行ない欠損までの切削時間を
表1 に記した。
Work Material FCD 450 (shape of 125 × 300 mm) Cutting speed 600 m / min Feed 0.5 mm / blade Cutting 2.0 mm Face milling was performed under the above conditions, and the cutting time up to chipping is shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように、焼結体組成が本
発明の範囲から逸脱する試料No.8〜13では、硬度が1
4.0GPaより低く、また破壊靭性も8MPam0.5 より
低いものであった。また切削テストにおいて摩耗幅0.
2mm以上となるか、または20pass以内に欠損が生じて
工具寿命となった。
As is clear from Table 1, in Samples Nos. 8 to 13 whose sintered body compositions deviate from the range of the present invention, the hardness is 1 unit.
It was lower than 4.0 GPa and the fracture toughness was lower than 8 MPam 0.5 . In the cutting test, the wear width was set to 0.
It became 2 mm or more, or chipping occurred within 20 passes, resulting in the tool life.

【0029】これに対し本発明の試料は、何れも、硬度
15GPa以上、破壊靭性8.0MPam0.5 以上の高
機械的特性を示し、鋳鉄の高速切削試験においても、摩
耗幅0.15mm以下かつ20passでも未欠損の性能を
示した。このように、本発明の窒化珪素質焼結体は、鋳
鉄の切削において、高い耐摩耗性、耐欠損性を有し工具
の寿命を延長することができる。
On the other hand, all of the samples of the present invention show high mechanical properties with a hardness of 15 GPa or more and a fracture toughness of 8.0 MPam 0.5 or more, and even in a high-speed cutting test of cast iron, a wear width of 0.15 mm or less and a wear width of 20 pass. Undeleted performance was shown. As described above, the silicon nitride sintered body of the present invention has high wear resistance and chipping resistance in cutting cast iron, and can extend the life of the tool.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明のセラミック
質焼結体は、焼結体にTi化合物硬質粒子が分散すること
によって、高い硬度とともに高靱性を有することから、
特に鋳鉄の切削において、優れた耐摩耗性と高い耐欠損
性を有する。これにより、長寿命の鋳鉄切削用工具を安
価に提供することができる。
As described above in detail, the ceramic sintered body of the present invention has high hardness and high toughness by dispersing Ti compound hard particles in the sintered body.
Particularly in cutting cast iron, it has excellent wear resistance and high fracture resistance. Thereby, a long-life cast iron cutting tool can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック質焼結体のX 線回折結果の
例を示す。
FIG. 1 shows an example of an X-ray diffraction result of a ceramic sintered body of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlをAl2 3 換算で1.5 〜10モル
%、Tiの炭化物、窒化物、炭窒化物を30〜80mol%、残部
が窒化けい素と周期律表第3a族元素(RE)をRE2
3 換算で窒化けい素に対し1〜10モル%であること
を特徴とする高靭性セラミック質焼結体。
1. Al is 1.5 to 10 mol% in terms of Al 2 O 3 , 30 to 80 mol% of carbides, nitrides and carbonitrides of Ti, and the remainder is silicon nitride and a group 3a element of the periodic table (RE ) To RE 2
High toughness ceramic sintered body characterized in that it is 1 to 10 mol% based on silicon nitride in terms of O 3 .
【請求項2】TiCxNy(x+y ≦1 、0 ≦x 、y ≦1 )のXR
D の(200) 面のピーク強度ITiCNと窒化けい素の(200)
面のピーク強度ISNが0.5 ≦ITiCN/ ISN≦3 であるこ
とを特徴とする請求項1 記載の高靭性セラミック質焼結
体。
2. The XR of TiCxNy (x + y ≦ 1, 0 ≦ x, y ≦ 1)
(200) plane peak intensity I TiCN and silicon nitride (200)
2. The high toughness ceramic sintered body according to claim 1, wherein the peak intensity I SN of the surface is 0.5 ≦ I TiCN / IS N ≦ 3.
JP10145226A 1998-05-27 1998-05-27 Highly tough ceramic-based sintered compact Pending JPH11335168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145226A JPH11335168A (en) 1998-05-27 1998-05-27 Highly tough ceramic-based sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145226A JPH11335168A (en) 1998-05-27 1998-05-27 Highly tough ceramic-based sintered compact

Publications (1)

Publication Number Publication Date
JPH11335168A true JPH11335168A (en) 1999-12-07

Family

ID=15380270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145226A Pending JPH11335168A (en) 1998-05-27 1998-05-27 Highly tough ceramic-based sintered compact

Country Status (1)

Country Link
JP (1) JPH11335168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160971A (en) * 2000-11-22 2002-06-04 National Institute Of Advanced Industrial & Technology Ceramic sintered compact for tool and its manufacturing method
EP2402098A1 (en) 2004-12-22 2012-01-04 NGK Spark Plug Co., Ltd. Sialon insert, cutting tool equipped therewith, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160971A (en) * 2000-11-22 2002-06-04 National Institute Of Advanced Industrial & Technology Ceramic sintered compact for tool and its manufacturing method
JP4636574B2 (en) * 2000-11-22 2011-02-23 独立行政法人産業技術総合研究所 Ceramic-based sintered material for tool and manufacturing method thereof
EP2402098A1 (en) 2004-12-22 2012-01-04 NGK Spark Plug Co., Ltd. Sialon insert, cutting tool equipped therewith, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR20140005909A (en) Cutting tool made of sialon based material
KR101181548B1 (en) MATERIAL BASED ON SiAlON&#39;s
EP1222149B1 (en) Process for heat treating ceramics and articles of manufacture made thereby
EP1939155A2 (en) Ceramic material and cutting tools made thereof for toughness demanding operations
US5316856A (en) Silicon nitride base sintered body
JPH1087371A (en) Silicon nitride cutting tool material
JP2000044352A (en) Highly tough ceramic-based sintered compact
JPH11335168A (en) Highly tough ceramic-based sintered compact
JP3476504B2 (en) Silicon nitride based sintered body and its coated sintered body
JP2000007441A (en) High toughness ceramic sintered compact
KR960016069B1 (en) Silicon nitride base sintered body
JPH0531514B2 (en)
EP0142771A2 (en) Novel compositions for oxide ceramics
JP2002012473A (en) Ceramic sintered compact and its manufacturing method
JP3051603B2 (en) Titanium compound sintered body
JP2003267787A (en) beta&#39;-SIALON-BASED CERAMIC TOOL AND ITS PRODUCTION METHOD
JP2604155B2 (en) Ceramic tool with coating layer
JP3615634B2 (en) High toughness silicon nitride sintered body and manufacturing method thereof
JPH11217271A (en) Silicon nitride-based sintered compact having high toughness and cutting tool using the same and their production
JP2005212048A (en) Ceramics and cutting tool using the same
JPH07136810A (en) Ceramic tool for cutting very hard material
JP3591799B2 (en) High toughness silicon nitride based sintered body and method for producing the same
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP4798821B2 (en) Cutting tool and manufacturing method thereof