JPH05295352A - Abrasive material or tool material comprising al2o3-based composite ceramic, and its production - Google Patents

Abrasive material or tool material comprising al2o3-based composite ceramic, and its production

Info

Publication number
JPH05295352A
JPH05295352A JP4125450A JP12545092A JPH05295352A JP H05295352 A JPH05295352 A JP H05295352A JP 4125450 A JP4125450 A JP 4125450A JP 12545092 A JP12545092 A JP 12545092A JP H05295352 A JPH05295352 A JP H05295352A
Authority
JP
Japan
Prior art keywords
particles
composite ceramic
tool
based composite
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4125450A
Other languages
Japanese (ja)
Inventor
Seiji Shimanoue
誠司 島ノ上
Kenji Oshima
健司 大島
Tsugio Ito
次男 伊藤
Hideyuki Tomita
秀幸 富田
Misao Iwata
美佐男 岩田
Eiichi Hisada
栄一 久田
Koichi Niihara
晧一 新原
Atsushi Nakahira
敦 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP4125450A priority Critical patent/JPH05295352A/en
Publication of JPH05295352A publication Critical patent/JPH05295352A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide the objective material excellent in fracture toughness, hardness, strengths, abrasion resistance, etc. CONSTITUTION:This material essentially comprises 80-99vol.% matrix consisting mainly of alpha-Al2O3 and 1-20vol.% at least one kind of reinforcing particles selected from the group consisting of particles of highly fire-resistant compds. including SiC, Si3N4, TIC, TiN, and TiCN. The particles are dispersed in each particle of alpha-Al2O3. When the matrix is fractured, alpha-Al2O3 particles exhibit intraparticle fracture due to the reinforcing particles dispersed in alpha-Al2O3 particles, thus always generating sharp cutting egdes on abrasive particles and at the tip of a tool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高靱性Al23系複合セ
ラミック研摩材料、工具材料(特に切削工具)、特に高
靱性高硬度、高耐摩耗なAl23系複合セラミック研摩
材料、工具材料及びその製法に関する。
FIELD OF THE INVENTION The present invention relates to a high toughness Al 2 O 3 -based composite ceramic abrasive material, a tool material (particularly a cutting tool), particularly a high toughness, high hardness, high wear resistance Al 2 O 3 -based composite ceramic abrasive material, A tool material and its manufacturing method.

【0002】[0002]

【従来技術および課題】従来よりAl23は電気的性
質、高硬度等の特性的な特徴や寸法安定性、易焼結性、
原料安価等の生産的な特徴により集積回路用の基板やパ
ッケージ、切削工具用チップ、研削工具用砥材、耐摩耗
部品、耐火材料として工業的に広く利用されている。工
具とした場合、その寿命はAl23の高硬度による耐摩
耗性のみに依存するだけでなく、実際には工具の欠け及
び割れに左右され、摩耗が非常に少ない状態でも交換し
なければならないことが多く、強度、特に靱性の一層の
向上が望まれる。しかし、Al23は絶対的な靱性が低
く、さらに幅広く高性能なセラミック工具をAl23
みで提供するには限界の状態である。
2. Description of the Related Art Al 2 O 3 has hitherto been characterized by electrical properties, characteristic features such as high hardness, dimensional stability, easy sinterability,
It is widely used industrially as a substrate and package for integrated circuits, chips for cutting tools, abrasives for grinding tools, wear-resistant parts, and fire-resistant materials because of its productive characteristics such as low cost of raw materials. When used as a tool, its life depends not only on the wear resistance of Al 2 O 3 due to its high hardness, but it is actually affected by chipping and cracking of the tool, and must be replaced even when wear is extremely small. In many cases, the strength, particularly toughness, is desired to be further improved. However, Al 2 O 3 has a low absolute toughness, and it is at the limit of providing a wide and high-performance ceramic tool with only Al 2 O 3 .

【0003】Al23の強度の増加、靱性の向上のため
に第2成分を添加、分散させる試みはなされている。例
えば、特開昭59−3766号公報、同61−2196
4号公報、同61−174165号公報、同63−28
2158号公報等である。これらではAl23の強度の
増加、靱性が述べられているが、添加される第2成分は
主に、マトリックスを形成するAl23の粒子間、即ち
粒界に存在する。このために、破壊時に粒界破壊を生じ
るAl23焼結体にあっては限界があり、これ以上の強
度及び靱性の向上は望めない。さらに、粒界破壊を生じ
るために、粒成長を充分に制御してない焼結体では、チ
ッピングが大きく、工具先端も、粒子の形状の如く丸味
をおび、鋭利な切れ刃は期待できない。
Attempts have been made to add and disperse the second component in order to increase the strength and toughness of Al 2 O 3 . For example, JP-A-59-3766 and JP-A-61-2196.
No. 4, JP 61-174165, and JP 63-28.
No. 2158, etc. In these documents, the increase in strength and toughness of Al 2 O 3 are described, but the second component added is mainly present between the particles of Al 2 O 3 forming the matrix, that is, at the grain boundaries. Therefore, there is a limit to the Al 2 O 3 sintered body that causes grain boundary fracture at the time of fracture, and further improvement in strength and toughness cannot be expected. Further, in a sintered body in which grain growth is not sufficiently controlled because grain boundary destruction occurs, chipping is large, the tool tip is rounded like the shape of the grain, and a sharp cutting edge cannot be expected.

【0004】一方、Al23質研摩材は溶融法または焼
結法により、製造されている。一般的に、上記の方法に
より製造された研摩材は重研削用である。近年、研摩材
に必要とされる項目の中には、精密研削加工があるが、
これは超砥粒であるダイヤモンド、立方晶窒化ほう素
(CBN)が主流であり、Al23質研摩材は適さな
い。
On the other hand, the Al 2 O 3 -based abrasive is manufactured by a melting method or a sintering method. Generally, the abrasive produced by the above method is for heavy grinding. In recent years, precision grinding is one of the items required for abrasives,
This is because super-abrasive grains such as diamond and cubic boron nitride (CBN) are the mainstream, and Al 2 O 3 -based abrasives are not suitable.

【0005】しかし、かかる超砥粒はAl23質研摩材
に対して100〜200倍という高価格であり、大量に
消費される研摩材としては実用的でない。そのため低価
格のAl23質研摩材に種々の改良を加え、精密研削加
工に充分使用できるAl23質研摩材料の製造が試みら
れている。特開昭56−32369号公報、同60−2
31462号公報では、ゾル−ゲル法を用いてなる焼結
体研摩材が提案されているが、一般にゾル−ゲル法は工
程が繁雑であり、大量生産に際しては、不安定な因子が
多い。また精密研削の大半を占める湿式研削においては
充分な効果が得られていない。また、焼結法により製造
された研摩材の破損及び、摩耗時には、前述のように、
Al23の粒界により生じ、焼成の際の粒成長が充分に
抑えられていないと、チッピング量が大きく、さらに研
摩材の先端は粒子の形状の如く、丸味を呈する。このた
めに、研摩材の損傷が著しくかつ、切れ味も悪くなる。
However, such superabrasive grains are 100 to 200 times as expensive as the Al 2 O 3 -based abrasive, and are not practical as abrasives consumed in large quantities. Therefore, various improvements have been made to low-priced Al 2 O 3 -based abrasives, and production of Al 2 O 3 -based abrasives that can be sufficiently used for precision grinding has been attempted. JP-A-56-32369 and JP-A-60-2
Japanese Patent No. 31462 proposes a sintered body abrasive material using a sol-gel method. However, the sol-gel method generally involves complicated steps, and there are many unstable factors in mass production. Moreover, sufficient effects have not been obtained in wet grinding, which occupies most of precision grinding. Further, when the abrasive material produced by the sintering method is damaged or worn, as described above,
If grain growth of Al 2 O 3 caused by grain boundaries of Al 2 O 3 is not sufficiently suppressed during firing, the amount of chipping is large, and the tip of the abrasive is rounded like the shape of the grain. For this reason, the abrasive material is significantly damaged and the sharpness becomes poor.

【0006】さらに一般的構造材料としてのAl2O基
焼結体としては、アルミナ結晶粒子内にTiN、Si
C、TiC、Si34等の粒内分散粒子を含むことによ
り、靱性及び強度を向上させることは一般にナノ複合材
料として知られている(特願昭64−87552、特開
平1−188454、2−229756、2−2297
57及び NIKKEI MECHANICAL 1990.6.25号1〜8頁 新
原論文等)。しかし構造材としての靱性強化は、従来研
摩材に必要な特殊な特性とは一般には合致しないことが
知られている。
Further, as an Al 2 O-based sintered body as a general structural material, TiN and Si are contained in alumina crystal grains.
It is generally known as a nanocomposite material to improve the toughness and strength by containing intragranularly dispersed particles such as C, TiC and Si 3 N 4 (Japanese Patent Application No. 64-87552, JP-A-1-188454, 2-229756, 2-2297
57 and NIKKEI MECHANICAL 1990.6.25 No. 1-8 new original papers). However, it is known that toughness enhancement as a structural material generally does not match the special properties required for conventional abrasives.

【0007】本発明の目的は、従来のAl23質研摩
材、工具における上述の欠点を克服し、耐摩耗性、耐チ
ッピング性に優れ、常に安定な切れ味を提供可能なAl
23系複合セラミック研摩材料及び工具材料と、その製
法を提供することである。
An object of the present invention is to overcome the above-mentioned drawbacks of conventional Al 2 O 3 -based abrasives and tools, to provide excellent wear resistance and chipping resistance, and to always provide stable sharpness.
An object is to provide a 2 O 3 -based composite ceramic polishing material and a tool material, and a method for producing the same.

【0008】[0008]

【問題点を解決するための手段】本発明のAl23系複
合セラミック研摩材料はα−Al23を主成分とするマ
トリックス80vol%〜99vol%と、Si、Tiの炭化
物、窒化物及び炭窒化物中の1種以上の分散強化粒子1
〜20vol%とから本質上なり、該分散強化粒子はα−
Al23粒子内に分散し粒子内破壊性であることを特徴
とする。本発明の工具材料(特に切削工具として使用可
能)は、上述の「Si、Ti」を「Si」としたもので
ある。
The Al 2 O 3 -based composite ceramic polishing material of the present invention comprises a matrix containing α-Al 2 O 3 as a main component in an amount of 80 vol% to 99 vol%, and a carbide or nitride of Si or Ti. And one or more dispersion strengthening particles in carbonitride 1
.About.20 vol%, and the dispersion-strengthening particles are α-
It is characterized in that it is dispersed in Al 2 O 3 particles and is destructible within the particles. The tool material (particularly usable as a cutting tool) of the present invention is the above-mentioned "Si, Ti" replaced with "Si".

【0009】上記分散強化粒子がマトリックスを形成す
るα−Al23粒子内に分散する効果により、破壊靱性
値が4.5MPam1/2以上、硬度17GPa以上(好ましくは
20GPa以上)を有する、耐チッピング性、耐摩耗性に
優れる。分散強化粒子は典型的にはナノ粒子(粒径1μ
m未満)であるが、本発明の目的にはAl23マトリッ
クス結晶粒子の寸法に対応して約2μm以下とすること
ができる。
The dispersion toughening particles have a fracture toughness value of 4.5 MPam 1/2 or more and a hardness of 17 GPa or more (preferably 20 GPa or more) due to the effect of being dispersed in α-Al 2 O 3 particles forming a matrix. Excellent chipping resistance and wear resistance. Dispersion-enhancing particles are typically nanoparticles (particle size 1 μm
but less than about 2 μm for the purposes of the present invention, depending on the size of the Al 2 O 3 matrix crystal grains.

【0010】すなわち、Al23と(好ましくはある程
度の熱膨張差を持つ)高耐火性分散強化粒子が、α−A
23粒子内に分散することにより、充分に強度、靱性
ともに増大がなされ、材料破損時に、α−Al23粒子
が粒子内破壊を起こすために、工具先端に常に鋭利な切
れ刃を提供することにより、安定な切れ味を提供できる
Al23系複合セラミック研摩材料及び工具材料が提供
される。
That is, the high refractory dispersion strengthening particles (which preferably have a certain thermal expansion difference) with Al 2 O 3 are mixed with α-A.
By dispersing in 1 2 O 3 particles, both strength and toughness are sufficiently increased, and at the time of material breakage, α-Al 2 O 3 particles cause intra-particle fracture, so that the tool tip always has a sharp cutting edge. By providing the above, an Al 2 O 3 -based composite ceramic polishing material and a tool material capable of providing stable sharpness are provided.

【0011】また、本発明の製造法では粒径1μm以下
の上記分散強化粒子を1vol%〜20vol%含み、残部が
粒径1μm以下のAl23粉末である調合粉末を調製
し、1400゜〜1800℃で焼結して粒子内分散強化
されかつ粒子内破壊性のAl23系複合セラミック研摩
材料を得ることを特徴とする。
In the production method of the present invention, a compounded powder containing 1 vol% to 20 vol% of the above dispersion-strengthening particles having a particle size of 1 μm or less and the balance being Al 2 O 3 powder having a particle size of 1 μm or less is prepared, and 1400 °. It is characterized in that it is sintered at ˜1800 ° C. to obtain an intra-particle dispersion strengthened and intra-particle destructible Al 2 O 3 -based composite ceramic abrasive material.

【0012】[0012]

【好適な実施の態様】本発明でAl23結晶粒子内の分
散強化粒子としては、Al23よりも本質上十分高い耐
火度及び硬度を有するセラミック粒子を用いる。この強
化分散粒子としては、研摩材料としては、Si、Tiの
炭化物、窒化物、炭窒化物等が挙げられ、SiC、Si
34、TiC、TiN、TiCN等がある。但し、工具
材料としてはSiの炭化物、窒化物、炭窒化物等が挙げ
られる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as the dispersion-strengthening particles in the Al 2 O 3 crystal particles, ceramic particles having substantially higher refractory and hardness than Al 2 O 3 are used. Examples of the reinforced dispersed particles include abrasive materials such as Si and Ti carbides, nitrides, and carbonitrides, and SiC and Si.
3 N 4 , TiC, TiN, TiCN and the like. However, examples of the tool material include Si carbide, nitride, and carbonitride.

【0013】強化分散粒子の量は好ましくは2〜10vo
l%とする。強化分散粒子の粒子径は約2μm以下と
し、アルミナマトリックス結晶粒子の寸法に比し凡そ5
分の1〜20分の1とすることが好ましく、典型的には
0.2μm〜0.7μm程度のものが得られる。アルミ
ナ結晶粒子の寸法は0.5〜100μmの範囲にあるこ
とが本発明の目的上好ましい。
The amount of the reinforcing dispersed particles is preferably 2-10 vo.
l% The particle size of the reinforced dispersed particles should be about 2 μm or less, and should be about 5 compared to the size of the alumina matrix crystal particles.
It is preferably 1/20 to 1/20, and typically, a thickness of about 0.2 μm to 0.7 μm can be obtained. For the purpose of the present invention, it is preferable that the size of the alumina crystal particles is in the range of 0.5 to 100 μm.

【0014】[0014]

【作用】本発明のAl23系複合セラミック材料をさら
に詳しく説明する。
The function of the Al 2 O 3 -based composite ceramic material of the present invention will be described in more detail.

【0015】Al23は本来、異方性粒子であり、焼成
後の冷却時に、熱膨張の異方性により粒界に剪断応力が
発生する。このため、焼結体の破損時に常に粒界破壊を
生じる。この粒界破壊を防ぐために、Al23粒子中に
Al23よりも高耐火性或いは熱膨張の異なる粒子を分
散させ、Al23の焼成後の冷却過程においてAl23
粒子内に局所的な残留応力ないしは空隙効果を発生させ
て、これを利用する。この局部応力により、分散させた
粒子の周りに転移が発生する。この転移はAl23より
高温まで硬い分散粒子によりピニングされ、サブ粒界を
形成し、マトリックスの粒内を分割、実質的に微細粒化
する。これにより破壊源の寸法が小さくなる。また、A
23粒子内に存在する分散粒子によって、破壊時のク
ラックを偏向させたりトラップする。このような機構に
より、Al23系複合セラミック材料は実質的に大幅に
強度増大、破壊靱性向上が達成される。即ち、高強度か
つ特に高靱性の該Al23系複合セラミック材料を使用
することにより、工具材料の欠け及び割れを低減するこ
とが可能であり、各材料本来の性能を発揮させ、かつ、
長寿命化でき、無用な工具の交換を省くことができる。
また、本発明のAl23系複合セラミック材料を研摩粒
子に使用すれば、従来のAl23系の研摩粒子に比較し
て、格段に優れた強度かつ特に靱性により研削時の研摩
粒子の破損を激減でき、材料そのものの性能を発揮でき
る。
Al 2 O 3 is originally an anisotropic particle, and a shear stress is generated at a grain boundary due to anisotropy of thermal expansion during cooling after firing. Therefore, grain boundary destruction always occurs when the sintered body is damaged. To prevent the grain boundary fracture, Al 2 O 3 than the Al 2 O 3 in the particles are dispersed highly refractory or different particle thermal expansion, Al 2 O 3 in the cooling process after firing of Al 2 O 3
A local residual stress or a void effect is generated in the particles and used. This local stress causes a transition around the dispersed particles. This transition is pinned by dispersed particles that are harder than Al 2 O 3 at a temperature higher than that of Al 2 O 3 , forming sub-grain boundaries, dividing the inside of the grains of the matrix, and substantially refining. This reduces the size of the fracture source. Also, A
The dispersed particles present in the l 2 O 3 particles deflect or trap the cracks at break. With such a mechanism, the Al 2 O 3 -based composite ceramic material is substantially significantly increased in strength and fracture toughness. That is, by using the Al 2 O 3 -based composite ceramic material having high strength and particularly high toughness, it is possible to reduce chipping and cracking of the tool material, exhibit the original performance of each material, and
The life can be extended and unnecessary tool replacement can be omitted.
In addition, when the Al 2 O 3 -based composite ceramic material of the present invention is used for abrasive particles, the abrasive particles during grinding are remarkably excellent in strength and particularly toughness as compared with conventional Al 2 O 3 -based abrasive particles. The damage of can be drastically reduced and the performance of the material itself can be demonstrated.

【0016】なお、熱膨張係数についてみると、Al2
3の8×10-6cm/℃に対し、SiC4.3〜4.5
×10-6、Si344.8×10-6、TiC7.61×
10-6、TiN9.35×10-6cm/℃であり、熱膨張
の差はそれほど大きくない場合でも同様の効果がある。
Regarding the coefficient of thermal expansion, Al 2
SiC 4.3-4.5 for 8 × 10 −6 cm / ° C. of O 3.
X10 -6 , Si 3 N 4 4.8 x 10 -6 , TiC 7.61 x
10 −6 , TiN 9.35 × 10 −6 cm / ° C., and the same effect is obtained even when the difference in thermal expansion is not so large.

【0017】これに加え、前述のように分散粒子の添加
によりマトリックスであるAl23粒子内に形成された
サブ粒界が本発明のAl23系複合セラミック研摩材料
及び工具材料を非常に特徴付けるものとする。これにつ
いて以下に詳細に説明する。
In addition to the above, the sub-grain boundaries formed in the Al 2 O 3 particles which are the matrix by the addition of the dispersed particles as described above make the Al 2 O 3 -based composite ceramic polishing material and tool material of the present invention extremely Shall be characterized as This will be described in detail below.

【0018】Al23質の切削工具や焼結砥粒が摩耗す
る状態を微視的に観察すると、Al23粒子そのものが
削れるように摩耗する場合のみではなく、Al23粒子
が粒界より脱落する場合が多い。これは前述のようにA
23が異方性であるために、粒界に残留応力を有する
ためである。このために、Al23が本来有する高硬度
を充分に活かし切っていない場合が多い。粒子の脱落を
軽減するためには焼成時の粒成長を充分に抑制する必要
があるが、これは、不安定な要素が多く大量に生産する
際には不適当であり、確率論的に存在する粗大粒は不可
避である。一方、Al23に何らかの添加物を導入して
複合材を焼成し、添加物により粒成長を抑制する試みも
なされているが、いずれの方法にしても粒界よりの脱落
は不可避であった。粒界よりの脱落が生じると、工具又
は研摩粒子の先端には常に粒界が存在し、粒子の形状の
ままであるため微視的には丸味を帯びた形状を呈する。
一方、本発明によるAl23系複合セラミック研摩材料
及び工具材料によれば、分散粒子によりAl23の粒界
には残留応力が無くなり、粒界よりの破壊を抑制でき
る。このために、該材料が本来有する硬度を活用可能で
ある。また、サブ粒界を粒子内に形成することから、実
質的に粒成長を抑制した効果がある。破壊はサブ粒界よ
り生じるため、従来のAl23質工具に比較して破壊時
の脱落量は圧倒的に少ないものとなる。即ち摩耗量が低
減でき、工具寿命に効果がある。加えてサブ粒界よりの
粒内破壊であるために、工具又は研摩粒子の先端は鋭利
な形状を有し、切れ味を良好にする効果がある。本発明
のAl23系複合工具材料又は研摩材料によれば、切れ
味が良好、長寿命であり欠け割れの少ない工具又は、切
れ味が良く、寿命の長い研摩粒子が得られる。
Microscopically observing the state of wear of the Al 2 O 3 -based cutting tool and the sintered abrasive grains, not only when the Al 2 O 3 particles themselves are worn so as to be scraped, but also when the Al 2 O 3 particles are worn. Is often dropped from the grain boundaries. This is A as mentioned above
This is because l 2 O 3 has anisotropy and thus has residual stress at the grain boundaries. For this reason, the high hardness inherent to Al 2 O 3 is often not fully utilized. Grain growth during firing must be sufficiently suppressed in order to reduce the loss of particles, but this is unsuitable for large-scale production due to many unstable factors, and it exists stochastically. It is inevitable to use coarse particles. On the other hand, attempts have been made to suppress the grain growth by adding some additives to Al 2 O 3 and firing the composite material, but in any case, it is unavoidable that they fall from the grain boundaries. It was When falling off from the grain boundary, there is always a grain boundary at the tip of the tool or the abrasive grain, and since it remains the shape of the grain, it has a microscopically rounded shape.
On the other hand, according to the Al 2 O 3 -based composite ceramic polishing material and the tool material according to the present invention, residual particles are eliminated from the Al 2 O 3 grain boundaries due to the dispersed particles, and the destruction from the grain boundaries can be suppressed. For this reason, the inherent hardness of the material can be utilized. In addition, since the sub-grain boundaries are formed within the grains, there is an effect of substantially suppressing grain growth. Since the fracture occurs from the sub-grain boundary, the amount of dropout at the time of fracture is overwhelmingly smaller than that of the conventional Al 2 O 3 -based tool. That is, the amount of wear can be reduced, which is effective for the tool life. In addition, because of the intragranular fracture from the sub-grain boundaries, the tip of the tool or the abrasive grain has a sharp shape, and has the effect of improving the sharpness. According to the Al 2 O 3 -based composite tool material or abrasive material of the present invention, it is possible to obtain a tool having good sharpness, a long life and less chipping, or abrasive particles having a good sharpness and a long life.

【0019】本発明のAl23系複合セラミック材料に
ついて、さらに説明する。
The Al 2 O 3 composite ceramic material of the present invention will be further described.

【0020】該複合材料のマトリックスは、α−Al2
3よりなり、分散粒子はSiC、Si34、TiC、
TiN、およびTiCNのうちの一種よりなり、切削工
具用材料としては好ましくはSiC、Si34の一種以
上よりなる。焼成後のAl23の粒子径は0.5〜10
0μmであり(但し、平均粒子径は数十μmのオーダ以
下とすることが好ましい)、分散粒子の粒子径はAl2
3の粒子径に対応して約2.0μm以下の数値をと
り、分散粒子はAl23粒子内に分散する。これらの粒
子径および粒子の分散状態は透過型電子顕微鏡により、
観察される。分散粒子の量は1vol%〜20vol%、好ま
しくは2vol%〜10vol%である。1vol%以下では、
粒子の粒内分散効果が充分に出ない。20vol%以上で
は焼結が進行しにくく、焼成温度を高くすると不経済的
なばかりか、異常粒成長の恐れがあるためである。Al
23の粒子径は0.5〜100μmにおいて、強度、靱
性の特性が良好な値を示す。(より好ましくは0.5〜
5μmとする)
The matrix of the composite material is α-Al 2
O 3 , and the dispersed particles are SiC, Si 3 N 4 , TiC,
It is made of one of TiN and TiCN, and is preferably made of one or more of SiC and Si 3 N 4 as a material for cutting tools. The particle size of Al 2 O 3 after firing is 0.5 to 10
0 μm (however, the average particle size is preferably on the order of several tens of μm or less), and the particle size of the dispersed particles is Al 2
A value of about 2.0 μm or less is taken corresponding to the particle diameter of O 3 , and the dispersed particles are dispersed in the Al 2 O 3 particles. The particle diameter and the dispersion state of the particles are determined by a transmission electron microscope.
To be observed. The amount of dispersed particles is 1 vol% to 20 vol%, preferably 2 vol% to 10 vol%. Below 1 vol%,
The effect of dispersing the particles within the particles is not sufficiently obtained. This is because if it is 20 vol% or more, the sintering is difficult to proceed, and if the firing temperature is raised, not only is it uneconomical, but abnormal grain growth may occur. Al
When the particle diameter of 2 O 3 is 0.5 to 100 μm, the strength and toughness characteristics show good values. (More preferably 0.5-
5 μm)

【0021】本発明のAl23系複合セラミック材料の
製法についてさらに説明する。
The method for producing the Al 2 O 3 -based composite ceramic material of the present invention will be further described.

【0022】該複合材料の出発原料は、1μm以下の平
均結晶粒径を有するα−Al23もしくはγ−Al23
粉と、1μm以下の平均結晶粒径を有するSiC、Si
34、TiC、TiN、およびTiCNのうち一種の分
散強化粒子を混合したものよりなる。Al23が1μm
以下の平均結晶粒径が好ましいのは、焼結が進行し易
く、焼成中に分散粒子をマトリックス粒子内に取り込む
必要があるためである。分散強化粒子の粒径が1μm以
下であるのは、マトリックスのAl23粒子に取り込ま
れ易くするためである。原料のAl23は焼成後α型に
なるものであればαもしくはγでも構わないが、可能な
限り高純度であることが望ましい。これは、焼結後の特
性に大きく影響を与えるためである。(例えば純度9
9.8%以上、より好ましくは99.9%以上)高純度
Al23の使用により、複合焼結体のAl23結晶粒子
の粒界相成分を最低限に抑えることができる。
The starting material of the composite material is α-Al 2 O 3 or γ-Al 2 O 3 having an average crystal grain size of 1 μm or less.
Powder, SiC having an average crystal grain size of 1 μm or less, Si
3 N 4 , TiC, TiN, and TiCN are mixed with one kind of dispersion strengthening particles. Al 2 O 3 is 1 μm
The following average crystal grain size is preferable because sintering easily proceeds and it is necessary to incorporate dispersed particles into matrix particles during firing. The reason why the particle size of the dispersion strengthening particles is 1 μm or less is to facilitate the incorporation into the Al 2 O 3 particles of the matrix. The raw material Al 2 O 3 may be α or γ as long as it becomes an α type after firing, but it is desirable that the purity is as high as possible. This is because the characteristics after sintering are greatly affected. (Eg purity 9
The use of high-purity Al 2 O 3 (9.8% or more, more preferably 99.9% or more) can minimize the grain boundary phase component of the Al 2 O 3 crystal grains of the composite sintered body.

【0023】原料粉末の混合は、湿式または乾式のいず
れかまたは双方により行なえば良いが、充分に混合され
ている必要がある。混合が不充分であると、焼成密度が
向上しないばかりか、焼成温度を高くする必要が生じ、
焼成後の特性を劣化させる原因となる。
The raw material powders may be mixed by either a wet method or a dry method, or both, but it is necessary that they are sufficiently mixed. If the mixing is insufficient, not only the firing density is not improved, but it is necessary to raise the firing temperature,
It causes deterioration of the characteristics after firing.

【0024】焼成は分散粒子の酸化を防ぐために、分散
粒子に応じて真空雰囲気、N2、Ar等の不活性雰囲
気、H2等の還元雰囲気のいずれかが好ましい。焼成が
充分に行なえ、焼結体の緻密化が進行すれば、常圧炉、
ホットプレス炉、HIP炉のいずれの方法でも良いが、
緻密化と粒成長の制御のため、焼成温度は1400゜〜
1800℃が好ましい。焼結に際しては必要に応じ予成
形を行うことが好ましい。
In order to prevent the dispersed particles from being oxidized, firing is preferably carried out in a vacuum atmosphere, an inert atmosphere such as N 2 or Ar, or a reducing atmosphere such as H 2 depending on the dispersed particles. If the firing can be performed sufficiently and the densification of the sintered body progresses, an atmospheric furnace,
Either a hot press furnace or a HIP furnace may be used,
To control densification and grain growth, the firing temperature is 1400 ° ~
1800 ° C is preferred. Pre-molding is preferably performed as necessary during sintering.

【0025】研摩粒子の製法について特に記述する。混
合粉末はCIP成形により圧粉体とする。圧粉体を圧潰
し、その後、所望の粒径に揃う様に篩分けを行なう。焼
成時の粒子同志の固着を防ぐために耐火性粉末媒体とし
て六方晶窒化ほう素粉末(hBN)を予じめ混ぜる。焼
成後はこのhBNを洗浄した後、再篩分けを行ない、所
望の粒径とする。
The method for producing the abrasive particles will be particularly described. The mixed powder is made into a green compact by CIP molding. The green compact is crushed and then sieved so as to obtain a desired particle size. Hexagonal boron nitride powder (hBN) is premixed as a refractory powder medium in order to prevent particles from sticking together during firing. After firing, this hBN is washed and then re-sieved to obtain a desired particle size.

【0026】以下本発明をさらに例示的に実施例に基づ
いて説明する。
The present invention will be described in more detail based on examples.

【0027】[0027]

【実施例】【Example】

(実施例1) 混合粉体調製 市販のγ−Al23(純度99.9%以上、平均粒径
0.4μm以下)とβ−SiC(純度98%以上、平均
粒径0.3μm以下)を出発原料に用いた。γ−Al2
3 95vol%、β−SiC 5vol%となるように、
全量100gとした。これを500mlポリエチレン製の
広口びんに、Al23玉石約100gと、エタノールを
共に入れ、湿式混合を10時間行なった。混合粉体は充
分に乾燥した後、Al23玉石約100gと共に再度、
乾式混合24時間を行なった。
Example 1 Preparation of Mixed Powder Commercially available γ-Al 2 O 3 (purity 99.9% or more, average particle size 0.4 μm or less) and β-SiC (purity 98% or more, average particle size 0.3 μm or less). ) Was used as the starting material. γ-Al 2
O 3 95 vol%, β-SiC 5 vol%,
The total amount was 100 g. This was put in a 500 ml polyethylene wide-mouthed bottle together with about 100 g of Al 2 O 3 boulders and ethanol, and wet-mixed for 10 hours. After the mixed powder has been dried sufficiently, it is reused together with about 100 g of Al 2 O 3 boulders,
Dry mixing was carried out for 24 hours.

【0028】(実施例2) 焼成 混合粉体をカーボン製のダイス(内寸法直径50mm)に
充填し、1600℃、30MPa N2雰囲気中にて1時間
ホットプレス焼成(焼成後厚み5mm)を行なった。これ
を供試材として以下の試験を行なった。
(Example 2) Firing The powder mixture was filled in a carbon die (inner diameter 50 mm), and hot-press firing (thickness 5 mm after firing) was performed at 1600 ° C. in an atmosphere of 30 MPa N 2 for 1 hour. It was The following test was performed using this as a test material.

【0029】(実施例3) 特性評価 焼結体の密度をアルキメデス法により測定した結果、
3.89g/cm3であった。これは95vol%−αAl23
および5vol%−βSiCの理論密度より算術的に求め
た理論比重に対して、99.0%であり、焼結の緻密化
が進行していることが確認できた。微細組織について、
TEM観察を行なったところ、α−Al23の平均結晶
粒子径は10μm、β−SiCについては0.5μmで
あり、β−SiC粒子は、マトリックスであるα−Al
23粒子中に分散していることが確認できた。次に、供
試材よりJIS R1601に準じて、3点曲げ試験片
を作製した。これについてJIS R1601に準じ
て、室温における3点曲げ強度を測定した。この結果、
曲げ強度の平均値は935.1MPaであり充分に高強度
化されていることが確認できた。破壊靱性値について
は、曲げ強度測定後の試験片を用いて、IM法により測
定した。
Example 3 Characteristic Evaluation As a result of measuring the density of the sintered body by the Archimedes method,
It was 3.89 g / cm 3 . This is 95 vol% -αAl 2 O 3
It was 99.0% of the theoretical specific gravity arithmetically determined from the theoretical density of 5 vol% -βSiC, and it was confirmed that the densification of sintering was progressing. Regarding the microstructure,
As a result of TEM observation, the average crystal grain size of α-Al 2 O 3 was 10 μm and that of β-SiC was 0.5 μm.
It was confirmed that the particles were dispersed in 2 O 3 particles. Next, a three-point bending test piece was prepared from the test material according to JIS R1601. Regarding this, the three-point bending strength at room temperature was measured according to JIS R1601. As a result,
The average bending strength was 935.1 MPa, and it was confirmed that the strength was sufficiently high. The fracture toughness value was measured by the IM method using the test piece after measuring the bending strength.

【0030】その結果、本供試材の破壊靱性値は4.8
MPam1/2であり、同時に測定したビッカース硬度は2
0.1GPaであった。以上の結果より分散強化粒子がマ
トリックスであるAl23粒子中に分散し、これにより
本材料が充分に高強度、高靱性化されたことが確認でき
た。
As a result, the fracture toughness value of this test material was 4.8.
MPam 1/2 , Vickers hardness measured at the same time is 2
It was 0.1 GPa. From the above results, it was confirmed that the dispersion-strengthening particles were dispersed in the Al 2 O 3 particles that were the matrix, and that this material had sufficiently high strength and high toughness.

【0031】(実施例4) 砥石の作製、および評価 1.混合粉体の調製にて、作製した混合粉体を、冷間静
水圧成形(CIP)用のビニール袋の中に入れ脱気し
て、真空パック処理した。この袋ごと約1.5Ton/cm2
の圧力により、CIPを行なった後、圧粉体を取り出
し、乳鉢で圧潰した。これを所望の粒径に篩分けし、六
方晶窒化ほう素(hBN)粉末200gとビニール袋中
で軽く混合した。この粉体を黒鉛型に充填した後、ホッ
トプレスにて1600℃ 30MPa、窒化雰囲気中で1
時間焼成した。焼成物は圧力媒体のhBN粉と篩分けさ
れその後、超音波洗浄器にて完全に分離、洗浄を繰り返
した。洗浄した本焼結体は乾燥器にて乾燥して充分、水
分を除去し、再び#60の篩分けして研摩粒子とした。
これについて、特性を測定したところ、密度:3.89
g/cm3、ビッカース硬度、20.0GPaであり、TEM観
察結果から、マトリックスであるα−Al23の粒子径
は平均10μmであり、このAl23の粒子中に平均粒
子径0.5μmのβ−SiC粒子が分散していることが
観察された。以上より、3の特性評価にて評価した試験
片とほぼ同等の特性が、本成形、焼結方法により得るこ
とが確認できた。
Example 4 Production and Evaluation of Grinding Stone 1. In the preparation of the mixed powder, the prepared mixed powder was put in a vinyl bag for cold isostatic pressing (CIP), deaerated, and vacuum-packed. About 1.5 Ton / cm 2 per bag
After performing CIP with the pressure of 1, the green compact was taken out and crushed in a mortar. This was sieved to a desired particle size and lightly mixed with 200 g of hexagonal boron nitride (hBN) powder in a vinyl bag. After filling this powder in a graphite mold, hot press it at 1600 ° C and 30MPa in a nitriding atmosphere.
Burned for hours. The calcined product was sieved with hBN powder as a pressure medium and then completely separated and washed with an ultrasonic cleaner. The washed main sintered body was dried in a drier to sufficiently remove water, and sieved again with # 60 to obtain abrasive particles.
When the characteristics of this were measured, the density was 3.89.
g / cm 3 , Vickers hardness, 20.0 GPa, and from the TEM observation results, the particle size of α-Al 2 O 3 as a matrix was 10 μm on average, and the average particle size was 0 in the particles of Al 2 O 3. It was observed that β-SiC particles of 0.5 μm were dispersed. From the above, it was confirmed that the characteristics substantially the same as those of the test piece evaluated by the characteristic evaluation of 3 were obtained by the main forming and sintering methods.

【0032】この研摩粒子を用いて、ビトリファイド砥
石を次の様に作製した。研摩粒子89.7重量部、ビト
リファイド結合剤10.3重量部、デキストリン(有機
バインダー)3.1重量部を添加、混合後、加圧して成
形密度2.20g/cm3に成形することにより、製造し
た。次にこれらの生砥石を電気炉に入れ、50℃/hr
の昇温速度で1100℃まで加熱し、同温で6時間焼成
した。その後加熱を止め、炉内で密閉放冷した。ビトリ
ファイド結合剤としては長石、粘土及びフリットガラス
(ホウケイ酸ガラス)から、成るものを用いた。得られ
た研削砥石は、研摩粒子が46.9vol%、結合剤8.
1vol%、気孔45vol%であり、密度は2.07g/cm3
であった。
A vitrified grindstone was produced in the following manner using the abrasive particles. By adding 89.7 parts by weight of abrasive particles, 10.3 parts by weight of vitrified binder, and 3.1 parts by weight of dextrin (organic binder), mixing and pressing to form a molding density of 2.20 g / cm 3 , Manufactured. Next, put these raw whetstones in an electric furnace and heat at 50 ° C / hr.
It was heated up to 1100 ° C. at a heating rate of and was baked at the same temperature for 6 hours. Thereafter, the heating was stopped and the mixture was allowed to cool in the furnace. The vitrified binder used was made of feldspar, clay and frit glass (borosilicate glass). The obtained grinding wheel contained 46.9 vol% of abrasive particles and 8.
1vol%, pores 45vol%, density 2.07g / cm 3
Met.

【0033】尚、研削砥石の寸法は、外径200mm×厚
み19mm×内径76.2mmとした。これを試験用砥石と
した。
The dimensions of the grinding wheel were 200 mm outer diameter × 19 mm thickness × 76.2 mm inner diameter. This was used as a test grindstone.

【0034】次にこの砥石を用いて研削試験を行なっ
た。この砥石の比較のため、溶融型アルミナ単結晶を使
用研摩粒子を用いた研削砥石を使用した。この比較用砥
石は、試験用砥石と、研摩粒子が異なる以外はすべて試
験砥石と同様に製造した。研削試験の条件は次の通りで
あった。
Next, a grinding test was performed using this grindstone. For comparison with this grindstone, a grinding grindstone using abrasive particles using a fused alumina single crystal was used. This comparative grindstone was manufactured in the same manner as the test grindstone except that the abrasive particles were different from the test grindstone. The conditions of the grinding test were as follows.

【0035】機械 :岡本平研 CFG−52AN 砥石周速:2000m/min 切込み :△R20μm/passの乾式プランジ Down Cut 被削材 :SKD−1(硬度HRC−60) 寸法 :長さ100×高さ50×幅10(mm) 被削幅 :10mm ドレス :単石ドレッサーMachine: Okamoto Heiken CFG-52AN Grindstone peripheral speed: 2000 m / min Cutting depth: ΔR 20 μm / pass dry plunge Down Cut Work material: SKD-1 (hardness H RC- 60) Dimension: Length 100 × high 50 x width 10 (mm) Work width: 10 mm Dress: Single stone dresser

【0036】[0036]

【表1】 [Table 1]

【0037】研削試験の結果を表1に示す。なお、最大
電力値は砥石幅10mm当りの値である。表1から明らか
なように、本実施例の試験用研削砥石は、溶融型Al2
3単結晶を用いた比較用砥石に対して、研削比が約4
倍と極めて優れており、面粗さ、最大電力値はほぼ同等
であり、低騒音である性能を示した。さらに、研削焼け
も少ないことが認められた。
The results of the grinding test are shown in Table 1. The maximum power value is the value per 10 mm width of the grindstone. As is apparent from Table 1, the test grinding wheel of the present example is a molten Al 2
Grinding ratio is about 4 compared with the comparative grindstone using O 3 single crystal
The surface roughness and the maximum power value are almost the same, and the performance is low noise. Further, it was confirmed that grinding burn was small.

【0038】(実施例5) 切削用バイトの作製及び評価 1.混合粉体の調製および2.焼成により得られた、S
iC−Al23系複合セラミック工具材料を使用して切
削工具を作製した。工具形状はSNGN433であり、
これを以下の試験に供した。比較試料として高純度Al
23系の市販のSNGN433形状のものを、用いた。
(Example 5) Preparation and evaluation of cutting tool 1. Preparation of mixed powder and 2. S obtained by firing
to prepare a cutting tool using the iC-Al 2 O 3 composite ceramic tool materials. The tool shape is SNGN433,
This was subjected to the following tests. High purity Al as a comparative sample
A 2 O 3 type commercially available SNGN433 shape was used.

【0039】切削試験には、精密旋盤を、逃げ面摩耗幅
(VB)の測定には工具顕微鏡をそれぞれ用いた。切削
試験の条件は次の通りであった。
A precision lathe was used for the cutting test, and a tool microscope was used for measuring the flank wear width (VB). The conditions of the cutting test were as follows.

【0040】切削速度 :400m/min 送り量 :0.2mm/rev 切り込み量 :1.5mm 工具付き出し長さ :40mm 心押し台突き出し量:35mm 被削材 :鋳鉄FC20(硬度HB250) 被削材寸法 :φ110×600mm丸棒Cutting speed: 400 m / min Feed rate: 0.2 mm / rev Depth of cut: 1.5 mm Length with tool: 40 mm Tailstock protrusion: 35 mm Work material: Cast iron FC20 (hardness H B 250) Workpiece Cutting material size: φ110 × 600mm round bar

【0041】次に逃げ面摩耗幅(VB)の測定は、チッ
プホルダーにより5℃の傾きで被削材を削り取っている
ため、工具顕微鏡に対して、チップを5゜傾け、工具逃
げ面が平行となるように取付けて行なった。切削試験は
乾式外周旋削とし、また、工具寿命判定基準として逃げ
面摩耗幅VB=0.2mmを設定して行なった。
Next, the flank wear width (VB) was measured. Since the work material was scraped off with a tip holder at an inclination of 5 ° C., the tip was tilted 5 ° with respect to the tool microscope, and the tool flank was parallel. It was installed so that The cutting test was performed by dry type outer turning, and the flank wear width VB = 0.2 mm was set as a tool life judgment standard.

【0042】試験結果を表2に示す。The test results are shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】表2から明らかなように、本実施例のSi
C−Al23系複合セラミック工具材料を使用した切削
用バイトは比較用に使用したバイトに対して約1.7倍
の工具寿命を確認することができた。また、工具の摩耗
面を、試験後観察したが、異常摩耗、チッピング等は認
められず、本実施例の工具用バイトの寿命は工具の純粋
な摩耗のみに依存することが確認できた。
As is clear from Table 2, the Si of this embodiment is
It was confirmed that the cutting tool using the C-Al 2 O 3 composite ceramic tool material had a tool life of about 1.7 times that of the cutting tool used for comparison. Further, the wear surface of the tool was observed after the test, but no abnormal wear, chipping, etc. were observed, and it was confirmed that the tool life of the tool of this example depends only on the pure wear of the tool.

【0045】[0045]

【発明の効果】以上の如く本発明のAl23基複合セラ
ミック研摩材料によれば、マトリックスであるα−Al
23粒子よりも高い耐火性を有するSiC、Si34
TiC、TiN、TiCN等のうちの1種以上の分散強
化粒子が、α−Al23粒子内に分散した微細組織を持
ち、粒子内破壊性を有する研摩材料ないし工具材料(但
し、分散強化粒子はSiC、Si34等とする)を得る
ことが可能である。この材料は強度、破壊靱性値が従来
のAl23質材料に比較して格段に向上すること、破壊
時に粒子内破壊を生じることの特徴を持つ。かかる材料
を切削工具、研摩用粒子に使用すれば、高破壊靱性値の
ため、チッピング異常摩耗の低減による長寿命化(切削
工具)、粒子内破壊のため、脱落粒子の減少による摩耗
の低減(切削工具、研摩粒子)、粒子内破壊による切れ
味の向上(切削工具、研摩粒子)が可能となる。このよ
うに本発明によるAl23系複合セラミック研摩材料、
工具材料を使用することにより、切削用工具、研摩粒子
等の種々の工具ばかりでなく一般に耐摩耗用材料の性能
を大幅に向上させるものであり、構造材料としても利用
可能である(以上請求項1〜5、8〜10について)。
請求項6、7により、上記複合セラミック研摩材料の工
業的製造方法が実現される。
As described above, according to the Al 2 O 3 -based composite ceramic polishing material of the present invention, the matrix α-Al is used.
SiC, Si 3 N 4 , which has higher fire resistance than 2 O 3 particles,
One or more dispersion-strengthened particles of TiC, TiN, TiCN, etc. have a fine structure dispersed in α-Al 2 O 3 particles and have an intragranular fracture property. The particles can be SiC, Si 3 N 4, etc.). This material is characterized in that its strength and fracture toughness value are remarkably improved as compared with conventional Al 2 O 3 -based materials, and that intra-particle fracture occurs at the time of fracture. When such a material is used as a cutting tool or abrasive particles, it has a high fracture toughness value, which results in a longer life due to the reduction of abnormal chipping wear (cutting tool), and a reduction in wear due to the reduction of particles that have fallen out due to intra-particle fracture ( Cutting tools, abrasive particles) and improved sharpness due to internal particle destruction (cutting tools, abrasive particles). Thus, the Al 2 O 3 -based composite ceramic abrasive material according to the present invention,
By using the tool material, not only various tools such as cutting tools and abrasive particles but generally the performance of wear-resistant materials is greatly improved, and it can be used as a structural material (the above claims) 1-5, 8-10).
According to claims 6 and 7, the industrial manufacturing method of the composite ceramic abrasive material is realized.

【0046】又、著しく高価である超高度材料(ダイヤ
モンド、立方晶窒化ほう素CBN)に対して格段に安価
であるため、大量に使用する場合の多い、工具に非常に
好適である。
Further, since it is much less expensive than extremely expensive ultra-high-grade materials (diamond, cubic boron nitride CBN), it is very suitable for tools that are often used in large quantities.

【0047】即ち、本発明によれば、高性能、長寿命か
つ安価な研摩材料、工具材料が提供される。
That is, according to the present invention, a high-performance, long-life and inexpensive abrasive material and tool material are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al23系複合セラミック研摩材料、工具材料
の一実施例の結晶構造を示す写真であり、SiC−Al
23系の微細組織を透過型電子顕微鏡(TEM)により
観察したものである。マトリツクスであるAl23結晶
粒子中にSiC粒子が分散している。
FIG. 1 is a photograph showing a crystal structure of an example of an Al 2 O 3 -based composite ceramic polishing material and a tool material, SiC-Al.
It is a microstructure of 2 O 3 system observed by a transmission electron microscope (TEM). SiC particles are dispersed in the Al 2 O 3 crystal particles that are the matrix.

【図2】本発明のAl23系複合セラミック工具材料を
用いて工具(例えば切削用バイト)を作製し、これを使
用した際に生じる摩耗の様子をモデル的に示す図であ
る。マトリックスであるAl23粒子は粒界破壊せず、
本発明の材料の特徴である粒子内のサブ粒界より粒子内
破壊する。このため、通常のAl23特有の粒界破壊に
比べ、脱落量が低下し、鋭利な切れ刃が生じる。
FIG. 2 is a model view showing a state of wear that occurs when a tool (for example, a cutting tool) is produced using the Al 2 O 3 -based composite ceramic tool material of the present invention and is used. The matrix Al 2 O 3 particles do not undergo grain boundary destruction,
Intra-particle fracture occurs from the sub-grain boundaries within the particles, which is a feature of the material of the present invention. For this reason, the amount of falling off is reduced and sharp cutting edges are generated as compared with the usual grain boundary breakage peculiar to Al 2 O 3 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 健司 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 伊藤 次男 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 富田 秀幸 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 岩田 美佐男 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 久田 栄一 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 新原 晧一 大阪府枚方市香里ヶ丘9−7−1142 (72)発明者 中平 敦 大阪府吹田市青山台1−2 C33−307号 室 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Oshima 3-36 Noritake Shincho, Nishi-ku, Nagoya-shi, Aichi Noritake Company Limited Limited 36 (72) Inventor Tsuguo Ito 3-chome, Noritake Shin-cho, Nishi-ku, Nagoya, Aichi No. 36 Noritake Company Limited (72) Inventor Hideyuki Tomita 1-3-1 Noritake Shinmachi, Nishi-ku, Nagoya-shi Aichi Prefecture No. 36 Noritake Company Limited (72) Inventor Misao Iwata Sanori Noritake Nishi-ku, Nagoya, Aichi Prefecture No. 1-36 Noritake Company Limited (72) Inventor Eiichi Kuda No. 1-336 Noritake Shinmachi, Nishi-ku, Nagoya-shi, Aichi Prefecture Noritake Company Limited (72) Inventor Shinichi Shinbara Kaori Hirakata, Osaka Prefecture 9-7-1142 (72) Inventor Atsushi Nakahira Suita, Osaka Prefecture Aoyama stand 1-2 C33-307 Room No.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】α−Al23を主成分とするマトリックス
80vol%〜99vol%とSi及びTiの炭化物、窒化物
及び炭窒化物中の1種以上の分散強化粒子1〜20vol
%とから本質上なり、該分散強化粒子はα−Al23
子内に分散し、粒子内破壊性であることを特徴とする、
Al23系複合セラミック研摩材料。
1. A matrix containing α-Al 2 O 3 as a main component in an amount of 80 vol% to 99 vol% and at least one dispersion strengthening particle in a carbide, nitride or carbonitride of Si or Ti in an amount of 1 to 20 vol.
%, And the dispersion-strengthened particles are dispersed in α-Al 2 O 3 particles and are characterized by being intra-particle destructible.
Al 2 O 3 based composite ceramic polishing material.
【請求項2】破壊靱性値が4.5MPam1/2以上、硬度1
7GPa以上を有する、耐チッピング性、耐摩耗性に優れ
た請求項1に記載のAl23系複合セラミック研摩材
料。
2. A fracture toughness value of 4.5 MPam 1/2 or more and a hardness of 1
The Al 2 O 3 -based composite ceramic polishing material according to claim 1, which has a chipping resistance and wear resistance of 7 GPa or more.
【請求項3】硬度が20GPa以上である請求項2に記載
のAl23系複合セラミック研摩材料。
3. The Al 2 O 3 -based composite ceramic polishing material according to claim 2, which has a hardness of 20 GPa or more.
【請求項4】請求項1〜3の一に記載の研摩材料を用い
た研削砥石。
4. A grinding wheel using the abrasive material according to claim 1.
【請求項5】請求項1〜3の一に記載の研摩材料を用い
た研摩布紙。
5. An abrasive cloth paper using the abrasive material according to claim 1.
【請求項6】1μm以下の平均結晶粒径を有するα−A
23もしくはγ−Al23粉と、1μm以下の平均結
晶粒径を有するSi及びTiの炭化物、窒化物及び炭窒
化物のうち1種以上の分散強化粒子1vol%〜20vol%
を混合しこれを1400〜1800℃で焼結して粒子内
分散強化されかつ粒子内破壊性のAl23系複合セラミ
ック研摩材料をうることを特徴とするAl23系複合セ
ラミック研摩材料の製法。
6. An α-A having an average crystal grain size of 1 μm or less.
and l 2 O 3 or γ-Al 2 O 3 powder, carbides of Si and Ti having an average grain size below 1 [mu] m, nitrides and dispersion strengthening particles 1 vol% of one or more of the carbonitride ~20Vol%
Al 2 O 3 -based composite ceramic abrasive material which is mixed with and sintered at 1400 to 1800 ° C. to obtain intra-particle dispersion strengthened and intra-particle destructible Al 2 O 3 -based composite ceramic abrasive material. Manufacturing method.
【請求項7】前記混合物を予成形し、耐火性粉末媒体中
で焼結して粒状焼結体を得ることを特徴とする請求項6
に記載のAl23系複合セラミック研摩材料の製法。
7. A granular sintered body is obtained by preforming the mixture and sintering it in a refractory powder medium.
The method for producing the Al 2 O 3 -based composite ceramic polishing material as described in 1.
【請求項8】α−Al23を主成分とするマトリックス
80vol%〜99vol%とSiの炭化物、窒化物及び炭窒
化物中の1種以上の分散強化粒子1〜20vol%とから
本質上なり、該分散強化粒子はα−Al23粒子内に分
散し、粒子内破壊性であることを特徴とする、研削工具
として使用可能なAl23系複合セラミック工具材料。
8. An essentially 80 vol% to 99 vol% matrix containing α-Al 2 O 3 as a main component and 1 to 20 vol% of one or more dispersion strengthening particles in carbides, nitrides and carbonitrides of Si. The Al 2 O 3 -based composite ceramic tool material usable as a grinding tool, characterized in that the dispersion-strengthened particles are dispersed in α-Al 2 O 3 particles and have intra-particle destructive properties.
【請求項9】破壊靱性値が4.5MPam1/2以上、硬度1
7GPa以上を有する耐チッピング性、耐摩耗性に優れた
請求項8に記載の工具材料。
9. A fracture toughness value of 4.5 MPam 1/2 or more and a hardness of 1
The tool material according to claim 8, which has a chipping resistance and wear resistance of 7 GPa or more.
【請求項10】硬度が20GPa以上である請求項9に記
載の工具材料。
10. The tool material according to claim 9, which has a hardness of 20 GPa or more.
JP4125450A 1992-04-20 1992-04-20 Abrasive material or tool material comprising al2o3-based composite ceramic, and its production Withdrawn JPH05295352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125450A JPH05295352A (en) 1992-04-20 1992-04-20 Abrasive material or tool material comprising al2o3-based composite ceramic, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125450A JPH05295352A (en) 1992-04-20 1992-04-20 Abrasive material or tool material comprising al2o3-based composite ceramic, and its production

Publications (1)

Publication Number Publication Date
JPH05295352A true JPH05295352A (en) 1993-11-09

Family

ID=14910391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125450A Withdrawn JPH05295352A (en) 1992-04-20 1992-04-20 Abrasive material or tool material comprising al2o3-based composite ceramic, and its production

Country Status (1)

Country Link
JP (1) JPH05295352A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157237A (en) * 1997-08-19 1999-03-02 Matsushita Electric Works Ltd Ceramic knife
JP2002160971A (en) * 2000-11-22 2002-06-04 National Institute Of Advanced Industrial & Technology Ceramic sintered compact for tool and its manufacturing method
WO2008026641A1 (en) * 2006-08-30 2008-03-06 Ngk Spark Plug Co., Ltd. Aluminum oxide-based composite sintered material and cutting insert
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus
WO2018155374A1 (en) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
WO2018181130A1 (en) * 2017-03-30 2018-10-04 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
CN109305819A (en) * 2018-10-26 2019-02-05 青岛尊龙耐火材料有限公司 A kind of special heat insulating refractory material and its preparation process
US11345639B2 (en) 2018-03-22 2022-05-31 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157237A (en) * 1997-08-19 1999-03-02 Matsushita Electric Works Ltd Ceramic knife
JP2002160971A (en) * 2000-11-22 2002-06-04 National Institute Of Advanced Industrial & Technology Ceramic sintered compact for tool and its manufacturing method
JP4636574B2 (en) * 2000-11-22 2011-02-23 独立行政法人産業技術総合研究所 Ceramic-based sintered material for tool and manufacturing method thereof
WO2008026641A1 (en) * 2006-08-30 2008-03-06 Ngk Spark Plug Co., Ltd. Aluminum oxide-based composite sintered material and cutting insert
US7951737B2 (en) 2006-08-30 2011-05-31 Ngk Spark Plug Co., Ltd. Aluminum oxide-based composite sintered body and cutting insert
US11387132B2 (en) 2016-01-27 2022-07-12 Sumitomo Osaka Cement Co., Ltd. Ceramic material and electrostatic chuck device
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus
JP2017206436A (en) * 2016-01-27 2017-11-24 住友大阪セメント株式会社 Ceramic material, and electrostatic chuck device
JP6237954B1 (en) * 2016-01-27 2017-11-29 住友大阪セメント株式会社 Ceramic materials, electrostatic chuck device
WO2018155374A1 (en) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
JPWO2018155374A1 (en) * 2017-02-23 2019-02-28 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
CN110461797A (en) * 2017-03-30 2019-11-15 住友大阪水泥股份有限公司 The manufacturing method of composite sinter, electrostatic chuck component, electrostatic chuck apparatus and composite sinter
JPWO2018181130A1 (en) * 2017-03-30 2020-02-06 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method of manufacturing composite sintered body
WO2018181130A1 (en) * 2017-03-30 2018-10-04 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
US11345639B2 (en) 2018-03-22 2022-05-31 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
CN109305819A (en) * 2018-10-26 2019-02-05 青岛尊龙耐火材料有限公司 A kind of special heat insulating refractory material and its preparation process

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JPH10330734A (en) Silicon carbide composited silicon nitride abrasive and its preparation
JP2779252B2 (en) Silicon nitride sintered abrasive and its manufacturing method
EP0414910B1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JP5485999B2 (en) Cubic boron nitride ceramic composite and method for producing the same
JPH10113875A (en) Super abrasive grain abrasive grindstone
WO2018167022A1 (en) Sintered polycrystalline cubic boron nitride material
WO1995003370A1 (en) Silicon carbide grain
JP2008239476A (en) Diamond-silicon carbide-silicon composite
KR20170108457A (en) Composite sintered body for cutting tools and cutting tools using the same
EP1100654B1 (en) Vitreous bond compositions for abrasive articles
JPH05295352A (en) Abrasive material or tool material comprising al2o3-based composite ceramic, and its production
JPH1087371A (en) Silicon nitride cutting tool material
WO2014126178A1 (en) Cutting tool
JP2972487B2 (en) Sintered composite abrasive grits, their production and use
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JPS61146762A (en) Antiabrasive silicon nitride base product
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPH06122563A (en) Ceramic composite material and its production
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP2779041B2 (en) Alumina sintered abrasive with microcrystalline structure to which chromium oxide is added and its manufacturing method
JP2581936B2 (en) Alumina sintered body and method for producing the same
EP1116703B1 (en) Nanocomposite dense sintered alumina based ceramic cutting tool
Ezugwu Manufacturing methods of ceramic cutting tools
KR100667356B1 (en) Method of manufacturing a porous vitrified tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706