JPH10330734A - Silicon carbide composited silicon nitride abrasive and its preparation - Google Patents

Silicon carbide composited silicon nitride abrasive and its preparation

Info

Publication number
JPH10330734A
JPH10330734A JP9160602A JP16060297A JPH10330734A JP H10330734 A JPH10330734 A JP H10330734A JP 9160602 A JP9160602 A JP 9160602A JP 16060297 A JP16060297 A JP 16060297A JP H10330734 A JPH10330734 A JP H10330734A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon carbide
abrasive
wt
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9160602A
Other languages
Japanese (ja)
Inventor
Kenji Ito
Misao Iwata
Hideyuki Tomita
健二 伊藤
秀幸 富田
美佐男 岩田
Original Assignee
Noritake Co Ltd
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, 株式会社ノリタケカンパニーリミテド filed Critical Noritake Co Ltd
Priority to JP9160602A priority Critical patent/JPH10330734A/en
Publication of JPH10330734A publication Critical patent/JPH10330734A/en
Application status is Withdrawn legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost silicon carbide composite silicon nitride abrasive having high hardness and being useful in high performance precision grinding. SOLUTION: This material is prepared by mixing 60-92 wt.% silicon nitride powder having a mean crystal grain diameter of 1 μm or below with 3-10 wt.% Al2 O3 having a mean crystal grain diameter of 1 μm or below and, at least one rare earth oxide and Y2 O3 , and 5-30 wt.% silicon carbide powder having a mean crystal grain diameter of 1 μm or below and firing the mixture and has a Vickers hardness of above 22 GPa.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】 BACKGROUND OF THE INVENTION

【0002】本発明は、研削砥石、研磨布紙等として利用される炭化珪素複合窒化珪素質研磨材及びその製法に関するものである。 [0002] The present invention relates to a grinding wheel, silicon carbide composite silicon nitride abrasives and their preparation is used as a coated abrasive and the like.

【0003】 [0003]

【従来の技術】窒化珪素焼結体は、耐熱性、耐摩耗性、 BACKGROUND OF THE INVENTION Silicon nitride sintered bodies, thermal resistance, abrasion resistance,
耐食性、破壊靭性等に優れていることから、金属材料に代わる構造材料として期待され目覚ましい発展を遂げている。 Corrosion resistance and is superior in fracture toughness, etc., is expected as a structural material to replace metal materials have made remarkable development. 例えば、構造材料として使用することを目的として、破壊靱性の向上を目的に窒化珪素特有の柱状結晶を成長させる技術に注力され、柱状結晶を制御することで高強度、高靱性を実現した窒化珪素が開発されている(「組織制御によるSi 34セラミックスの多様化」窒化珪素セラミックス(2)135〜146頁)。 For example, for the purpose of use as a structural material, it is focused on technologies for growing improvement purposes columnar crystals of silicon nitride specific to the fracture toughness, high strength by controlling the columnar crystals, silicon nitride that achieves high toughness There has been developed ( "tissue control by Si 3 N 4 diversification of ceramics" silicon nitride ceramic (2), pp 135-146).

【0004】しかし、研磨材として必要な硬度に注目すると、結晶粒の成長は結晶間距離を遠ざけて結晶間結合力を低下させるため、他の特性値程優れた値となっていない。 However, focusing on the necessary hardness as an abrasive, grain growth to reduce the intercrystalline bonding strength away crystals distance, not a good value as the other characteristic values. ビッカース硬度はせいぜい18GPa程度であり、アルミナ焼結体より若干低い。 Vickers hardness is at most about 18 GPa, slightly lower than the alumina sintered body. そのため、研削砥石や研磨布紙等に使用される高硬度の研磨材としては、従来の窒化珪素焼結体では性能が不十分で、アルミナ質、 Therefore, as the polishing material having high hardness used in the grinding wheel or coated abrasive and the like, in the conventional silicon nitride sintered body performance is insufficient, alumina,
炭化珪素質が使用されている。 Silicon carbide is used.

【0005】また、近年のより高精度の精密研削加工に対応するための超硬度研磨材として、ダイヤモンド、立方晶窒化ホウ素(cBN)の使用が増加してきている。 Further, as the ultrahard abrasive to accommodate precision grinding of recent higher precision, diamond, use of cubic boron nitride (cBN) is increasing.

【0006】アルミナ質の研磨材の硬度は、精密研削加工に対応するには不十分であり、炭化珪素質の研磨材は、鉄と反応し易いため鉄を含んだ被削材に使用できないという重大な欠点がある。 [0006] The hardness of the abrasive alumina is insufficient to correspond to the precision grinding, abrasive silicon carbide may not be used for the work material including the iron liable to react with iron there is a serious drawback. 一方、ダイヤモンド、立方晶窒化ホウ素(cBN)は、超硬度研磨材としての性能は十分であるが、アルミナ質、炭化珪素質といった一般研磨材に比ベ価格が100〜200倍と非常に高価である。 On the other hand, diamond, cubic boron nitride (cBN) is the performance of the ultrahard abrasive is sufficient, alumina, generally abrasive such silicon carbide obtained comparing prices 100-200 times and very expensive is there. そのため、精密研削加工にも十分対応できる一般研磨材の改良、開発が熱望されている。 Therefore, the improvement of general abrasive can be sufficiently correspond to the precision grinding, the development is aspired.

【0007】かかる状況において、本願発明者はすでに、窒化けい素粉末にアルミナ、希土類酸化物から選択される焼結助剤粉末を添加して、これを成形、圧潰、焼成した研摩材を開発し、これを研削砥石等に利用した場合、精密研削加工特に湿式研削において従来の一般砥粒では到底達成できない著しく高い研削比を実現できる旨を開示している(特開平3−287687)。 [0007] In such a situation, the present inventors have already, alumina silicon nitride powder, the addition of sintering aid powder selected from rare earth oxides, this molding to develop crushing the calcined abrasive when using this grinding wheel, etc., disclose that can realize very high grinding ratio in the conventional general abrasive grains not be achieved in the precision grinding particularly wet grinding (JP 3-287687).

【0008】 [0008]

【発明が解決しようとする課題】本発明は、上記の発明(特開平3−287687)をさらに改良して、高硬度を有することにより高性能な精密研削加工に有用で、かつ低コストを実現する炭化珪素複合窒化珪素質研磨材、 [0008] The present invention is to further improve the above invention (Japanese Patent Laid-Open 3-287687), useful for high performance precision ground by having a high hardness, and achieve cost silicon carbide composite silicon nitride abrasive comprising,
及びその製造方法を提供することを課題とする。 And it is an object to provide a manufacturing method thereof.

【0009】 [0009]

【課題を解決するための手段】本発明者は、上記の発明(特開平3−287687)を改良するために鋭意検討を重ねた結果、窒化珪素粉末に、A1 23粉末及び希土類酸化物粉末の1種類以上と、Y 23粉末と、さらに炭化珪素粉末とを混合、焼成した焼結体が、高い硬度を有することを見出し、これを発明として完成させた。 The present inventors Means for Solving the Problems], the above invention (Japanese Patent Laid-Open 3-287687) As a result of intensive studies in order to improve, the silicon nitride powder, A1 2 0 3 powder and rare earth oxides and one or more powder, and Y 2 O 3 powder, further mixing a silicon carbide powder, calcined sintered body, found to have a high hardness, thereby completing it as the invention.

【0010】すなわち、本発明による炭化珪素複合窒化珪素質研磨材は、窒化珪素を主体とし、補助成分としてA1 23及び希土類酸化物の1種類以上とY 23とを含み、さらに炭化珪素を構成成分として本質上有し、ビッカース硬度が22GPaより大きいことを特徴とする。 [0010] Namely, the present invention according carbide composite silicon nitride abrasive silicon nitride as a main component, and a one or more and Y 2 O 3 of A1 2 0 3 and rare earth oxide as an auxiliary component, further carbonized has essentially the silicon as a constituent component, a Vickers hardness is equal to or greater than 22 GPa.
特に、1μm以下の平均結晶粒径を有する窒化珪素粉末が60〜92重量%、1μm以下の平均結晶粒径を有するA1 23及び希土類酸化物の1種類以上とY 23が3 In particular, 60 to 92 wt% silicon nitride powder having an average grain size below 1 [mu] m, A1 2 0 3 and one or more rare earth oxides having an average grain size below 1 [mu] m and Y 2 O 3 is 3
〜10重量%、1μm以下の平均結晶粒径を有する炭化珪素粉末が5〜30重量%(好ましくは10〜20重量%)、の成分比で混合され焼成されたことを特徴とする。 10 wt%, a silicon carbide powder having an average grain size below 1μm is 5 to 30 wt% (preferably 10 to 20% by weight), characterized in that calcined mixed with component ratios.

【0011】この場合、焼成温度は1500〜1800 [0011] In this case, the firing temperature is 1500 to 1800
℃で焼成でき、さらに1550〜1750℃が好ましく、より好ましくは1700℃以下、1600℃以上が好ましい。 ° C. In can be fired, more preferably from 1550 to 1,750 ° C., more preferably 1700 ° C. or less, preferably at least 1600 ° C.. 焼成条件は加圧焼成によって行われることが好ましい。 Firing conditions is preferably carried out by pressure sintering.

【0012】さらに、炭化珪素複合窒化珪素質研磨材は1μm以下の微細組織を有することを特徴とする。 Furthermore, silicon carbide composite silicon nitride abrasive is characterized by having the following microstructure 1 [mu] m.

【0013】 [0013]

【発明の実施の形態】本発明の新規な炭化珪素複合窒化珪素質研磨材を得るにあたり、補助成分、即ち焼結助剤としてAl 23 (アルミナ)及び希土類酸化物から選択される成分一種以上と、Y 23 (イットリア)とを合わせて3重量%(以下「%」という)以上となるように添加する。 Novel in obtaining a silicon carbide composite silicon nitride abrasive auxiliary component, i.e. component one selected from Al 2 O 3 (alumina) and a rare earth oxide as a sintering aid of the embodiment of the present invention above and is added in an amount of Y 2 O 3 (yttria) and 3 wt% combined (hereinafter referred to as "%") or more. 希土類酸化物としては、Nd、Pr、Ce、 Examples of the rare earth oxide, Nd, Pr, Ce,
Gdその他の希土類酸化物(原子番号57〜71のランタノイド)の酸化物ないしこれらの混合物を用いることができる。 Gd oxides of other rare earth oxides (lanthanide atomic number 57 to 71) to be able to use these mixtures. 一方、この助剤の添加によっても精密研削加工用の研磨材として充分な高温高強度、高硬度を有し得ることが必要である。 On the other hand, sufficient high temperature and high strength as an abrasive for precision grinding with the addition of the aid, it is necessary to be able have a high hardness. そのため、補助成分(焼結助剤) Therefore, the auxiliary component (a sintering aid)
の合計量は10%以下とする。 The total amount of 10% or less. 特に、アルミナ対イットリアの比は約1対1とすることが好ましい。 In particular, the ratio of alumina to-yttria is preferably about 1: 1. アルミナ対イットリア1:1とすることが好ましく、(Si 34 Alumina-to yttria 1: preferably to 1, (Si 3 N 4 +
Al 23 +Y 23 )3成分内の比において、夫々1〜1 Al 2 O 3 + Y 2 O 3) 3 in the ratio of the components, respectively 1 to 1
0%が好ましく、3〜8%がより好ましく、4〜5%が最も好ましい。 0%, more preferably 3-8%, and most preferably 4-5%.

【0014】さらに本発明の炭化珪素複合窒化珪素質研磨材を得るために、炭化珪素を5%以上添加することが好ましい。 [0014] In order to obtain a silicon carbide composite silicon nitride abrasive of the present invention, it is preferable to add silicon carbide 5% or more. 炭化珪素の有意量の添加によって、焼結体の硬度を増大させることができ、ビッカース硬度22GP By the addition of significant amounts of silicon carbide, it is possible to increase the hardness of the sintered body, the Vickers hardness 22GP
aより大とすることができる。 It can be larger than a. 一方、炭化珪素の量が多すぎると、窒化珪素との熱膨張率の違いの影響から構造欠陥が生じるため、炭化珪素の量は30%以下とする。 On the other hand, if the amount of silicon carbide is too large, the thermal expansion coefficient structural defects from the effects of differences in the silicon nitride occurs, the amount of silicon carbide is 30% or less.
炭化珪素は10〜25%が好ましく、10〜20%が特に好ましい。 Silicon carbide is preferably 10% to 25%, particularly preferably 10 to 20%. 窒化珪素は、Si 34 +Al 23 +Y 23 Silicon nitride, Si 3 N 4 + Al 2 O 3 + Y 2 O 3
三成分の比において、80〜98%が好ましく、より好ましくは84〜94%、最も好ましくは88〜90%の比とする。 In the ratio of the three components, preferably 80-98%, more preferably 84-94%, most preferably 88 to 90% ratio.

【0015】この原料粉末の平均結晶粒径は、主成分たる窒化珪素、副成分たるAl 23及び希土類酸化物、Y The average crystal grain size of the raw material powder is composed mainly serving silicon nitride, subcomponent serving Al 2 O 3 and rare earth oxide, Y
23 、炭化珪素のいずれについても1μm以下とされる。 2 O 3, are 1μm or less for any of silicon carbide. これによって得られる炭化珪素複合窒化珪素質焼結粒が1μm以下の微細結晶構造となり、これが研摩材として高い研削比を発現する。 This silicon carbide composite silicon nitride sintered grains obtained becomes less fine crystalline structure 1 [mu] m, which exhibits high grinding ratio as an abrasive. 原料粉末の平均粒径は、好ましくは 0.2〜 0.4μmがよい。 The average particle size of the raw material powder is preferably from 0.2 to 0.4 .mu.m.

【0016】原料混合後の成形は、公知の種々の方法、 The molding after the raw material mixing, various known methods,
例えば加圧成形、スリップキャスティングを目的に応じて選択して使用できる。 For example pressing, to select can be used depending on the purpose of slip casting. 冷間成形品はその後かつ焼成前に圧潰される。 Cold molded article is subsequently and crushing before firing. 従って、成形物の形状についても塊状、 Thus, massive also the shape of the molded product,
シ―ト状更にはひも状など特に問わない。 Sheet - door-like addition is not particularly limited, such as string-like.

【0017】成形物は、研磨材として適した粒径に略相当する粒径まで粉砕(圧潰)される。 The molding is ground to a particle size substantially corresponding to a particle size suitable as abrasive (crush). 鋼の精密研削の場合、例えば250μm〜350μm(#60〜#80)程度にすることが好ましい。 For precision grinding of steel, it is preferable to example 250μm~350μm (# 60~ # 80) degrees.

【0018】この粉砕物を焼成するにあたり、各粉末に均一な圧力をかけ、かつ砥粒として所期の粒度の焼結粒を得るため、固体の圧媒を混在させる。 [0018] Upon firing the pulverized product, applying a uniform pressure to the powder, and to obtain a sintered grains of the desired particle size as abrasives, mix medium solid. この固体圧媒としては低硬度で反応性が低くかつ安価な六方晶窒化ホウ素(hBN) が好ましく、その平均粒径は特に限定されないが1〜5μm(さらには3.5μm以下、ないし2μm以下)が好ましく、その混在量は上記粉砕物に対して80〜120重量%程度にするとよい。 And low reactivity at a low hardness as a solid medium inexpensive hexagonal boron nitride (hBN) are preferred, the average particle size is not particularly limited 1 to 5 [mu] m (more 3.5μm or less, to 2μm or less) preferably, the mixed amount may be about 80 to 120 wt% with respect to the pulverized product. 焼成方法としては常圧焼結、加圧焼結のいずれでもよいが、焼結性を高めて高密度、高硬度の研磨材を得るためには、加圧焼結即ちホットプレス(HP)焼結、静水圧ホットプレス(HIP) 焼結、或いは所定の窒素分圧(例えば9 As the firing method pressureless sintering may be either pressure sintering, dense to enhance the sintering property, in order to obtain an abrasive having a high hardness is pressure sintering i.e. hot press (HP) sintering sintering, isostatic hot pressing (HIP) sintering, or a predetermined nitrogen partial pressure (e.g., 9
kg/cm 2以上)で行なう雰囲気加圧焼結が好ましい。 atmosphere pressure sintering performed in kg / cm 2 or higher) it is preferred.
焼成温度は窒化珪素の粒成長を防止する見地から170 The firing temperature is from the standpoint of preventing the grain growth of silicon nitride 170
0℃以下とすることが好ましい。 It is preferable to 0 ℃ or less.

【0019】こうして得られた炭化珪素複合窒化珪素質焼結粒は1μm以下、特に0.2〜0.5μm程度の極微細な平均結晶粒径を有する多結晶体であり、液相焼結によって助剤を主たる構成成分とする粒界相が存在する。 The silicon carbide composite nitride sintered Yuitsubu so obtained 1μm or less, a polycrystalline substance, especially having an extremely fine mean grain size of about 0.2 to 0.5 [mu] m, the liquid phase sintering the grain boundary phase to the auxiliary and main constituent is present. この粒界相は例えばSi 34 −nY 23 −mAl 2 The grain boundary phase, for example Si 3 N 4 -nY 2 O 3 -mAl 2
3で表わされる化合物からなる結晶相や、窒化ガラス等のガラス相となって存在する。 Crystalline phase and consisting of compounds represented by O 3, present in a glass phase, such as glass nitride.

【0020】なお、本発明では成形物を焼結する前に予め圧潰し、固体圧媒の存在下で焼結させるため、焼結体を、例えば200〜300μm程度の粒径の極めて緻密な焼結粒として得ることができる。 [0020] In the present invention previously crushing before sintering the molded product, in order to sinter in the presence of a solid medium, the sintered body, for example a very dense sintered particle size of about 200~300μm it can be obtained as sintered grain. そのため、高破壊エネルギを要する焼結体の粉砕を、別途行う必要はない。 Therefore, the pulverization of the sintered body requiring high breakdown energy, there is no need to perform separately.

【0021】かかる炭化珪素複合窒化珪素質研磨材を用い、慣用の方法に従って研削砥石、研摩布紙を製造する。 [0021] Such silicon carbide composite silicon nitride abrasive grinding wheel according to conventional methods, to produce the abrasive cloth paper. 本発明の目的である精密研削加工用の研削砥石として一般的なビトリファイド砥石を製造する場合、焼成温度約1000℃のガラス質結合剤を使用するとよい。 When manufacturing a typical vitrified grindstone as the grindstone for precision grinding is an object of the present invention, it is preferable to use the sintering temperature of about 1000 ° C. of vitreous bond. こうして得られた研削砥石は、従来の一般研摩材(アルミナ質、炭化珪素質)を用いてなる研削砥石に比して同等以上の研削性能を有する。 Grinding wheel thus obtained, conventional general abrasive (alumina, silicon carbide) having equal or higher grinding performance in comparison with the grinding wheel made using. 被削材としては金属一般に適用でき、特に耐熱合金や超工具鋼に対して有効である。 The workpiece can be applied to the metal typically is particularly effective for high temperature alloys and super tool steel.
炭化珪素を成分として含んでいるが、鉄に対しても本研磨材が溶着しにくいことは勿論である。 Has included silicon carbide as a component, the abrasive is a matter of course be difficult to weld against iron.

【0022】 [0022]

【実施例】 【Example】

[第1実施例]第1実施例として、以下の原料を、以下の調合割合で混合した。 As First Embodiment The first embodiment, the following ingredients were mixed in compounding proportions below. 使用原料 窒化珪素:宇部興産(株)E−10(平均粒径0・3μm) 焼結助剤:住友化学(株)A1 23 (平均粒径0・4μm) 三菱化成(株)Y 23 (平均粒径0・8μm) 炭化珪素:イビデン(株)UltraFine(平均粒径0.3μm) 原料の調合割合 Si 34 :A1 23 : Y 23 :SiC =81: 4.5:4.5:10(重量%) Using raw silicon nitride: (Ube Industries, Ltd.) E-10 (average particle size 0 · 3 [mu] m) Sintering: Sumitomo Chemical (Co.) A1 2 0 3 (average particle size 0 · 4 [mu] m) Mitsubishi Chemical (Co.) Y 2 0 3 (average particle size 0 · 8 [mu] m) silicon carbide: Ibiden (Ltd.) UltraFine (average particle size 0.3 [mu] m) blended proportion of the raw material Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 81: 4 .5: 4.5: 10 (% by weight)

【0023】上記の原料組成からなる混合物40gを、 [0023] A mixture 40g consisting of the above raw material composition,
直方体金型(底面60mm×25mm)に入れ面圧30 Rectangular mold (bottom 60 mm × 25 mm) put surface pressure 30
0kg/cm 2で一軸プレスして予備成形し、該成形物を冷間静水圧加圧成形(C.I.P.)用のビニ―ル袋の中につめ、脱気して真空パックを施した。 Preformed was uniaxially pressed at 0 kg / cm 2, the molded product vinylene for cold isostatic pressing (C.I.P.) - claw into the plastic bag, the vacuum pack by degassing gave. そして、真空パックの袋ごと2000kg/cm 2の圧力をかけC. Then, C. multiplied by the pressure of the bag every 2000kg / cm 2 of the vacuum pack
I. I. P. P. した。 did.

【0024】C. [0024] C. I. I. P. P. 後、当該成形物をビニ―ル袋より取り出し、アルミナ乳鉢等で圧潰し、所望の粒径にふるい分けた。 After, the molded product vinyl - taken out of the plastic bag, crushed in an alumina mortar and the like and sieved to the desired particle size. 選別する粒径は、250〜350μmとした。 The particle size for sorting, was 250~350μm. 最終的に200〜300μm程度の粒径の研磨材を得るため、焼成による収縮を見込んだものである。 To obtain an abrasive grain size of the final order of 200-300 [mu] m, in which expectation of shrinkage due to sintering.

【0025】この所望の粒径にふるい分けた成形粉末と、圧媒としての平均粒径3.5μmの六方晶窒化ホウ素(hBN)粉末とを、各100gづつ混合した。 [0025] a shaping powder sieved to the desired particle size, and a mean particle size 3.5μm of hexagonal boron nitride (hBN) powder as medium were mixed each 100g increments. この混合粉体を直方体黒鉛型(底面90mm×50mm)に充てんし、これをホットプレス焼成炉(富士電波工業 The mixed powder was filled in a rectangular parallelepiped graphite mold (bottom 90 mm × 50 mm), which hot-press sintering furnace (Fuji Telecommunications Industry
(株)製)にセットして13℃/minの昇温速度で160 Ltd.) to be set 160 at a heating rate of 13 ° C. / min
0℃迄加熱し、同温度で一軸機械加圧力 400kg/c It was heated to 0 ° C., uniaxial mechanical pressure 400 kg / c at the same temperature
m 2をかけ、60分間加圧焼成した。 multiplied by m 2, and form 60 minutes pressure sintering. その後、5℃/min Then, 5 ℃ / min
の降温速度で1000℃迄降温し、以降室温まで放冷した。 It was lowered at a cooling rate up to 1000 ° C., allowed to cool to room temperature and later.

【0026】次いで、当該焼成体をアルミナ乳鉢で軽く粉砕した。 [0026] Then, the sintered body was lightly ground in a alumina mortar. 六方晶窒化ホウ素(hBN)は反応性が低いため、粉砕は容易である。 For hexagonal boron nitride (hBN) is less reactive, grinding is easy. その後、ふるい分けによって、さらに超音波洗浄器での洗浄によって、六方晶窒化ホウ素(hBN)を完全に除去した。 Thereafter, by sieving, by further washing with ultrasonic cleaner, hexagonal boron nitride (hBN) was completely removed. 洗浄には水を用いてもよいが、洗浄剤を用いるのが好ましい。 The washing water may be used, but preferable to use cleaning agent. 洗浄した焼結粒は、乾燥機にて乾燥して完全に水分を除去し、ふるい分けによって平均250μm(#60程度)の粒子を選別して第1実施例の研磨材とした。 Washed sintered grains and dried in a dryer to remove moisture completely, as an abrasive material in the first embodiment by selecting particles having an average 250 [mu] m (about # 60) by sieving.

【0027】この研磨材は、平均結晶粒径0.5μmの微結晶の構造組織(微細組織)を有し、ビッカ―ス硬度は24GPaであった。 [0027] The abrasive has a microcrystalline structure organization of average grain size 0.5 [mu] m (fine structure), Vickers - scan hardness was 24 GPa. 比較のため、炭化珪素を含まない組成(重量%比で、Si 34 :A1 23 :Y 23 =9 For comparison, a composition (weight% ratio that does not contain silicon carbide, Si 3 N 4: A1 2 0 3: Y 2 0 3 = 9
0:5:5)について、上記工程に従って作製された研磨材を比較例1とし、さらに比較例1と同様の組成であって焼成温度を変えた研磨材を比較例2として、これらのビッカース硬度を表1に示す。 0: 5: 5), abrasive made according to the process as Comparative Example 1, as a further Comparative Example 1 Comparative Example abrasives changed the firing temperature be the same composition as 2, these Vickers hardness It is shown in Table 1.

【0028】 [0028]

【表1】 [Table 1]

【0029】上記第1実施例の研磨材を用いてビトリファイド研削砥石(第1研削砥石とする)を作製し、一方、上記比較例1、比較例2、さらに従来より公知の溶融型アルミナ単結晶研磨材(太平洋ランダム(株)製;32 [0029] Using the abrasive of the first embodiment to produce a vitrified grinding wheel (a first grinding wheel), whereas, in Comparative Example 1, Comparative Example 2, further known melt-type alumina single crystal conventionally made of abrasive material (Pacific Ocean random (Ltd.); 32
A)、焼結型アルミナ多結晶研磨材(3M製;Cubitron A), sintered alumina polycrystalline abrasive (3M Ltd.; CUBITRON
321)を用いた研削砥石(比較研削砥石1〜4とする)をも作成した。 321) was also created a grinding wheel (a comparative grinding wheel 1-4) that was used. 具体的には、研削砥石は、砥粒8 Specifically, grinding wheel, abrasive grains 8
8.1重量部にセラミック結合剤成分11.9重量部、 Ceramic binder component 11.9 parts by weight 8.1 parts by weight,
デキストリンを3.1重量部加え混合した後、加圧して成形密度1.88g/cm 3に成形した。 After mixing added 3.1 parts by weight of dextrin, and molded into molded density of 1.88 g / cm 3 pressurized. 次に、この焼成前の生の砥石を電気炉において50℃/Hrで1000℃ Next, 1000 ° C. at 50 ° C. / Hr raw grinding wheel before the firing in an electric furnace
迄加熱した。 It was heating up. セラミック質結合剤は長石と粘土とフリットガラスで成るものを用いた。 Ceramic membrane binding agent was used consisting of feldspar and clay and the frit glass. 焼成後の研削砥石は、研磨材(砥粒)47.2体積%、結合剤8.9体積%であった。 Grinding wheel after firing, the abrasive (abrasive grains) 47.2 vol%, was binders 8.9 vol%. 表2に研削試験用砥石の性状を示す。 The properties for the grinding test grindstone in Table 2. 尚、砥石の寸法は外径178mm×厚み12.7mm×内径76. The size of the grinding wheel outer diameter 178 mm × thickness 12.7 mm × inner diameter 76.
2mmとした。 It was 2mm.

【0030】 [0030]

【表2】 [Table 2]

【0031】次に、この表2の研削砥石について、研削試験を行なった。 [0031] Next, the grinding wheel Table 2 were subjected to grinding tests. 研削試験条件は次の通りである。 Grinding test conditions are as follows. 機械 : 岡本平研CFG−52AN 砥石周速: 2000m/min 切込み : Δ R 20μm/pass の乾式プランジダウンカット 被削材 : SKD−1(HRC60:工具鋼) (寸法 ): 長さ100×高さ50×幅10(mm) (被削幅): 100mm ドレス : 単石ドレッサー Machine: Okamoto TairaKen CFG-52AN grindstone peripheral speed: 2000 m / min cut: Δ R 20μm / pass dry plunge cut down Workpiece: SKD-1 (HRC60: tool steel) (dimension): Length 100 × height 50 × width 10 (mm) (workpiece width): 100mm dress: a single-stone dresser

【0032】この結果を表3に示す。 [0032] The results are shown in Table 3.

【0033】 [0033]

【表3】 [Table 3]

【0034】表3から明らかな様に、炭化珪素を添加しない以外は実施例と同一の成分比として作製した窒化珪素質研磨材(比較例1)を使用した比較研削砥石1と比較しても1.7倍の研削比が得られる。 [0034] In 3 As is apparent from Table, even compared except for not adding the silicon carbide and Comparative grinding wheel 1 using the produced silicon nitride abrasive (Comparative Example 1) as the same component ratio as in Example 1.7 times the grinding ratio can be obtained.

【0035】さらに、構造材料を目的に結晶粒を成長させた従来の窒化珪素質研磨材、公知の溶融型アルミナ単結晶研磨材(32A)、焼結型アルミナ多結晶研磨材(Cubitron 321)を使用した比較研削砥石2〜4と比べると、4〜10倍もの研削比が得られる。 Furthermore, conventional silicon nitride was grown grain structure material processing quality abrasive, known melt-type alumina single crystal abrasive (32A), sintered alumina polycrystalline abrasive and (CUBITRON 321) compared with comparative grinding wheel 2-4 was used, grinding ratio be 4 to 10 times is obtained.

【0036】[第2〜4実施例]さらに、上記第1実施例と同様の原料を、以下の調合割合で混合して第2実施例、第3実施例、及び第4実施例を作成した。 [0036] Second 2-4 Embodiment] Further, the same raw materials as in the first embodiment, the second embodiment were mixed at compounding ratio below the third embodiment, and to create a fourth embodiment . 第2実施例の原料の調合割合 Si 34 :A1 23 :Y 23 :SiC=85.5:4. Formulation ratio of the raw material of the second embodiment Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 85.5: 4.
75:4.75:5重量% 第3実施例の原料の調合割合 Si 34 :A1 23 :Y 23 :SiC=72:4:4: 75: 4.75: 5 wt% third formulation ratio of the raw material of Example Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 72: 4: 4:
20重量% 第4実施例の原料の調合割合 Si 34 :A1 23 :Y 23 :SiC=63:3.5: Formulation proportion of 20 wt% raw materials fourth embodiment Si 3 N 4: A1 2 0 3: Y 2 0 3: SiC = 63: 3.5:
3.5:30重量% 3.5: 30% by weight

【0037】上記の原料組成からなる混合物40gを、 [0037] A mixture 40g consisting of the above raw material composition,
第1実施例と同様の方法で、成形、圧潰、焼成、粉砕、 In the first embodiment and the same method, molding, crushing, calcination, grinding,
洗浄して研磨材とし、ビトリファイド研削砥石を作成して、研削試験を行った。 Washed to a polishing material, create a vitrified grinding wheel was subjected to grinding tests. 各条件は、上記した第1実施例の場合と同様である。 Each condition is the same as that in the first embodiment described above. 研磨材の硬度について表4に、研削砥石の研削比について表5に、それぞれ第1実施例の結果と併せて示す。 Table 4 for the hardness of the abrasive, Table 5 for grinding ratio of the grinding wheel, shown together with the results of the first embodiment, respectively.

【0038】 [0038]

【表4】 [Table 4]

【0039】 [0039]

【表5】 [Table 5]

【0040】表4、表5から明らかな様に、第2実施例、第3実施例、及び第4実施例はいずれも、第1実施例と同様に研磨材として高い性能を実現している。 [0040] Table 4, as apparent from Table 5, the second embodiment, third embodiment, and both the fourth embodiment realizes high performance as the first embodiment similarly to the abrasive .

【0041】[第5実施例]SiC添加量とビッカース硬度の関係を調べるため、Si 34 、Al 23 、Y 23 [0041] [Fifth Embodiment] To examine the relationship between the SiC addition amount and Vickers hardness, Si 3 N 4, Al 2 O 3, Y 2 O 3
の比を90:5:5wt%に保ち、その混合物に、0〜 The ratio of 90: 5: kept 5 wt%, to the mixture, 0
33wt%のSiCを表6に示すとおり配合して、その他第1実施例と同様にして研磨材を製造し、ビッカース硬度を測定した。 The 33 wt% of SiC were blended as shown in Table 6, the abrasive was prepared in a manner similar to the other first embodiment was measured Vickers hardness. その結果を表6に示す。 The results are shown in Table 6.

【0042】 [0042]

【表6】 [Table 6]

【0043】 [0043]

【発明の効果】本発明によって、高硬度で微細な結晶をもつ緻密な炭化珪素複合窒化珪素質研磨材が得られる。 The present invention, dense silicon carbide composite silicon nitride abrasive material having a fine crystal with a high hardness can be obtained.
かかる研磨材を用いてなる研削砥石は、耐熱合金等から成る工具、ダイス等の精密研削に好適に利用でき、従来の研削砥石と比較してきわめて優れた性能を示す。 Grinding wheel made with such abrasive tool comprising a heat-resistant alloy or the like, suitably be used for precision grinding of the die, etc., showing a very superior performance compared to conventional grinding wheel. 従って、精密研削において、大変高価な超硬度研磨材に代われる研磨材として極めて有用である。 Accordingly, in precision grinding, it is very useful as abrasive Kawareru a very expensive ultrahard abrasive. 特に本発明はSi In particular, the present invention is Si
C成分を含有するにも拘わらず、工具鋼等の難削性鉄基鋼の研削に有効であることが判明した。 Despite containing component C, it has been found to be effective for grinding difficult-to-cut iron-based steel such as tool steel. このことは驚くべきことである。 This is surprising.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】図1は本発明の実施例の製法を示すフロ―チャ―トである。 FIG. 1 shows the preparation of embodiments of the present invention flow - a DOO - tea.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 健二 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Kenji Ito Nagoya, Aichi Prefecture, Nishi-ku, Noritakeshin-cho, three-chome No. 36 Co., Ltd. Noritake Company, Limited in

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】窒化珪素を主体とし、補助成分としてA1 1. A silicon nitride as a main component, A1 as auxiliary component
    23及び希土類酸化物の1種類以上とY 23とを含み、 2 0 3 and includes a one or more and Y 2 O 3 of a rare earth oxide,
    さらに炭化珪素を構成成分として本質上有し、ビッカース硬度が22GPaより大きいことを特徴とする炭化珪素複合窒化珪素質研磨材。 Further comprising essentially silicon carbide as a constituent, silicon carbide composite silicon nitride abrasive Vickers hardness is equal to or greater than 22 GPa.
  2. 【請求項2】1μm以下の平均結晶粒径を有する窒化珪素粉末が60〜92重量%、1μm以下の平均結晶粒径を有するA1 23及び希土類酸化物の1種類以上とY 2 2. A 1μm or less in average crystal grain size of silicon nitride powder 60 to 92 wt% with one or more A1 2 0 3 and rare earth oxide having an average grain size below 1μm and Y 2
    3が3〜10重量%、1μm以下の平均結晶粒径を有する炭化珪素粉末が5〜30重量%、である成分比で混合され、焼成されたことを特徴とする炭化珪素複合窒化珪素質研磨材。 O 3 is 3 to 10 wt%, is mixed with component ratio of silicon carbide powder is 5 to 30 wt%, having an average grain size below 1 [mu] m, silicon carbide composite silicon nitride, characterized in that fired abrasive.
  3. 【請求項3】1μm以下の微細組織を有する請求項1または請求項2に記載の炭化珪素複合窒化珪素質研磨材。 3. A silicon carbide composite silicon nitride abrasive material according to claim 1 or claim 2 having a 1μm following microstructure.
  4. 【請求項4】請求項1から3のいずれかの研磨材を用いてなることを特徴とする研磨砥石または研磨布紙。 4. A grindstone or abrasive cloth paper and characterized by using any of the abrasive material of claims 1 to 3.
  5. 【請求項5】1μm以下の平均結晶粒径を有する窒化珪素粉末が60〜92重量%、1μm以下の平均結晶粒径を有するA1 23及び希土類酸化物の1種類以上とY 2 5. 1μm or less in average crystal grain size of silicon nitride powder 60 to 92 wt% with one or more A1 2 0 3 and rare earth oxide having an average grain size below 1μm and Y 2
    3が3〜10重量%、1μm以下の平均結晶粒径を有する炭化珪素粉末が5〜30重量%、の成分比で混合し、該混合物を焼成することを特徴とする炭化珪素複合窒化珪素質研磨材の製造方法。 O 3 is 3 to 10 wt%, a silicon carbide powder having an average grain size below 1μm is 5 to 30 wt%, were mixed in ratio of components, silicon carbide composite silicon nitride and firing the mixture method of manufacturing a quality abrasive.
  6. 【請求項6】焼成温度が、1700℃以下であることを特徴とする請求項5に記載の炭化珪素複合窒化珪素質研磨材の製造方法。 6. A firing temperature is, the method for manufacturing the silicon carbide composite silicon nitride abrasive material according to claim 5, characterized in that at 1700 ° C. or less.
  7. 【請求項7】焼成を、加圧焼成によって行うことを特徴とする請求項5または請求項6に記載の炭化珪素複合窒化珪素質研磨材の製造方法。 7. fired, a method for manufacturing a silicon carbide composite silicon nitride abrasive material according to claim 5 or claim 6, characterized in that the pressure sintering.
JP9160602A 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation Withdrawn JPH10330734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9160602A JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9160602A JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Publications (1)

Publication Number Publication Date
JPH10330734A true JPH10330734A (en) 1998-12-15

Family

ID=15718500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9160602A Withdrawn JPH10330734A (en) 1997-06-03 1997-06-03 Silicon carbide composited silicon nitride abrasive and its preparation

Country Status (1)

Country Link
JP (1) JPH10330734A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
JP2016026903A (en) * 2011-12-30 2016-02-18 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article, and forming method therefor
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9567505B2 (en) 2012-01-10 2017-02-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10364383B2 (en) 2012-01-10 2019-07-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9428681B2 (en) 2012-05-23 2016-08-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US10351745B2 (en) 2014-12-23 2019-07-16 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10358589B2 (en) 2015-03-31 2019-07-23 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same

Similar Documents

Publication Publication Date Title
US5282875A (en) High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
EP1007599B1 (en) Abrasive articles comprising a blend of abrasive particles
US5863308A (en) Low temperature bond for abrasive tools
CN1295368C (en) Method for producing an abrasive product containing diamond
CA2585439C (en) Cubic boron nitride compact
US5203886A (en) High porosity vitrified bonded grinding wheels
JP2875038B2 (en) Vitrified grinding wheels containing a mixture of the sol-gel alumina abrasive grains and silicon carbide
JP5110600B2 (en) Fixed abrasive tool and method of manufacturing the same
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
JP2567475B2 (en) Grinding wheel coupled with frit
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
EP0598140B1 (en) Cubic boron nitride-base sintered ceramics for cutting tool
US20100000159A1 (en) Abrasive Slicing Tool for Electronics Industry
US6702867B2 (en) Vitrified bonded abrasive tools
US5094672A (en) Vitreous bonded sol-gel abrasive grit article
KR101233129B1 (en) Bonded abrasive article and method of making
JP2991728B2 (en) Method for producing infiltrated with silicon porous polycrystalline diamond compact
JP2857626B2 (en) High fracture toughness of the self-reinforced silicon nitride ceramic and its manufacturing method
US6485533B1 (en) Porous grinding stone and method of production thereof
CA2683100C (en) Vitrified superabrasive tool and method of manufacture
JP2704044B2 (en) Bonded abrasive articles for shrinkage reducing composition
US4563433A (en) Ceramic material and method of manufacture
JP2671945B2 (en) Superplastic silicon carbide sintered body and manufacturing method thereof
US2318360A (en) Abrasive
US4770673A (en) Ceramic cutting tool inserts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803