JP2581936B2 - Alumina sintered body and method for producing the same - Google Patents

Alumina sintered body and method for producing the same

Info

Publication number
JP2581936B2
JP2581936B2 JP62304131A JP30413187A JP2581936B2 JP 2581936 B2 JP2581936 B2 JP 2581936B2 JP 62304131 A JP62304131 A JP 62304131A JP 30413187 A JP30413187 A JP 30413187A JP 2581936 B2 JP2581936 B2 JP 2581936B2
Authority
JP
Japan
Prior art keywords
zro
sintered body
alumina
toughness
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62304131A
Other languages
Japanese (ja)
Other versions
JPH01145367A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62304131A priority Critical patent/JP2581936B2/en
Publication of JPH01145367A publication Critical patent/JPH01145367A/en
Application granted granted Critical
Publication of JP2581936B2 publication Critical patent/JP2581936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミナを主成分としてジルコニアを含有す
る焼結体とその製造方法に関し、特に切削工具或いは高
温用材料あるいは産業用機械材料として有用な焼結体の
改良に関する。
Description: TECHNICAL FIELD The present invention relates to a sintered body containing alumina and zirconia as a main component and a method for producing the same, and particularly useful as a cutting tool, a high temperature material, or an industrial machine material. It relates to improvement of a sintered body.

〔従来技術〕(Prior art)

セラミックから成る工具は、硬度、耐摩耗性、耐熱性
に優れる等の長所を有する反面、チッピングや欠損を生
じ易いという問題を有し、その用途も仕上げ加工等に限
られていた。
A tool made of ceramic has advantages such as excellent hardness, wear resistance, and heat resistance, but has a problem that chipping and chipping easily occur, and its use has been limited to finishing and the like.

しかし、近年、窒化珪素など高強度セラミックスの出
現により、セラミック工具で中〜重切削を行う事が増し
ている。このような高強度セラミックスとしては窒化珪
素やジルコニアが代表的であるが、ともに耐摩耗性が悪
いため切削加工の一部の分野にしか用いられていない。
However, recently, with the advent of high-strength ceramics such as silicon nitride, medium to heavy cutting with a ceramic tool has been increasingly performed. As such high-strength ceramics, silicon nitride and zirconia are typical, but both have poor wear resistance and are therefore used only in some fields of cutting.

アルミナ(以下、Al2O3という)は金属との反応性が
低く耐摩耗性に優れることから、切削工具として有用な
材料として注目され、使用されているが破壊靭性(K
1c)が低いという問題があった。またジルコニア(以
下、ZrO2という)は、抗折強度および破壊靭性は高いも
のの200〜300℃で急激な強度低下を示し、熱的に不安定
であり、しかも硬度が低く変形が大きいため切削工具と
して実用に耐えないものであった。
Alumina (hereinafter referred to as Al 2 O 3 ) has been attracting attention as a useful material for cutting tools because of its low reactivity with metals and excellent wear resistance.
1 c) there has been a problem that low. Zirconia (hereinafter referred to as ZrO 2 ) has high bending strength and fracture toughness, but shows a sharp decrease in strength at 200 to 300 ° C, is thermally unstable, and has low hardness and large deformation, so cutting tools Was unsuitable for practical use.

そこで、Al2O3中にZrO2を分散含有させることによ
り、Al2O3の破壊靭性を改善する事がおこなわれてい
る。この破壊靭性の改善法については従来より2つのタ
イプが提案されている。1つは、Al2O3質焼結体中に単
斜晶ZrO2を分散させたもので、ZrO2の相転移によりマイ
クロクラックを発生させるものである。他の1つはAl2O
3質焼結体中に正方晶ZrO2を分散させることによりクラ
ック先端のエネルギーをZrO2の相転移で吸収させるもの
である。
Therefore, by dispersing containing ZrO 2 in Al 2 O 3, it has been made to improve the fracture toughness of the Al 2 O 3. Conventionally, two types of methods for improving the fracture toughness have been proposed. One is a material in which monoclinic ZrO 2 is dispersed in an Al 2 O 3 -based sintered body, which generates microcracks due to the phase transition of ZrO 2 . The other one is Al 2 O
3 by dispersing in quality sintered tetragonal ZrO 2 is intended to absorb the energy of the crack tip at the phase transition of ZrO 2.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の従来技術によれば、分散されるZrO2の粒径が1
μm以下では前述の靭性改善の効果は弱まることが指摘
されている。これはZrO2の正方晶から単斜晶への相転移
が起こりにくくなるためである。
According to the above prior art, the particle size of the dispersed ZrO 2 is 1
It is pointed out that the effect of improving the toughness described above weakens below μm. This is because the phase transition from tetragonal to monoclinic of ZrO 2 hardly occurs.

一方、抗折強度の観点からは、ZrO2が微粒の方がよ
く、ZrO2粒子が1μmより大きいと2〜3μmのZrO2
子が破壊源となり抗折強度が低下するためである。この
ようにAl2O3−ZrO2系材料では、破壊靭性と抗折強度を
ともに向上させる事はできなかった。
On the other hand, from the viewpoint of the transverse rupture strength, ZrO 2 is more preferably fine, and if the ZrO 2 particles are larger than 1 μm, ZrO 2 particles of 2 to 3 μm serve as breaking sources and the transverse rupture strength is reduced. As described above, with the Al 2 O 3 -ZrO 2 material, both the fracture toughness and the bending strength could not be improved.

〔発明の目的〕[Object of the invention]

本発明は上述のAl2O3−ZrO2系焼結体の欠点を解消
し、破壊靭性、抗折強度の双方に優れた焼結体及びその
製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned disadvantages of the Al 2 O 3 —ZrO 2 based sintered body, and to provide a sintered body excellent in both fracture toughness and bending strength and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者等は上記問題点に対し、研究を重ねた結果、
ZrO2を分散したAl2O3質焼結体に対し、機械的或いは熱
的衝撃を与えると焼結体の表面付近に破壊靭性が中心部
より大きい高靭性の層が生成され、ZrO2粒子が小さい場
合でもZrO2の相転移が容易となり、抗折強度を低下させ
ることなく破壊靭性を向上させることができることを知
見した。
The present inventors have conducted studies on the above problems, and as a result,
When a mechanical or thermal shock is applied to the Al 2 O 3 sintered body in which ZrO 2 is dispersed, a high toughness layer having a fracture toughness larger than the center is generated near the surface of the sintered body, and ZrO 2 particles It was found that the phase transition of ZrO 2 becomes easy even when the value is small, and the fracture toughness can be improved without lowering the bending strength.

即ち、本発明はジルコニアが1乃至30重量%、残部が
アルミナを主体として成るアルミナ質焼結体であり、そ
の表面部の破壊靭性が中心部に比較して高いことを特徴
とするもので、その製造方法としてはジルコニアを1乃
至30重量%含有するアルミナ質焼結体に機械的或いは熱
的衝撃を与えることを特徴とするものである。
That is, the present invention is an alumina-based sintered body comprising 1 to 30% by weight of zirconia and the remainder mainly composed of alumina, wherein the fracture toughness of the surface is higher than that of the center. The production method is characterized in that a mechanical or thermal shock is applied to an alumina sintered body containing 1 to 30% by weight of zirconia.

以下、本発明をさらに詳述する。 Hereinafter, the present invention will be described in more detail.

通常、粒径1μm以下のZrO2を分散したAl2O3質焼結
体ではZrO2粒子のまわりのAl2O3粒子の存在によってZrO
2の相転移が起こり難い状態にある。
Normally, in an Al 2 O 3 sintered body in which ZrO 2 having a particle diameter of 1 μm or less is dispersed, ZrO 2 particles are present around the ZrO 2 particles due to the presence of Al 2 O 3 particles.
2 is in a state where the phase transition is unlikely to occur.

ところが、このような焼結体に対し、適度な機械的あ
るいは熱的衝撃を与えておくと、ZrO2の相転移が容易と
なる。このように相転移が容易となる機構については明
確でないが、本発明者は与えた衝撃によってZrO2粒子内
に歪みが生じ、或いは粒子内に転移等の欠陥が増加する
ことによって、相転移に至るまでのエネルギー量が低減
されたためと推測する。
However, if a suitable mechanical or thermal shock is given to such a sintered body, the phase transition of ZrO 2 becomes easy. Although the mechanism that facilitates the phase transition is not clear, the present inventor has found that the applied shock causes distortion in the ZrO 2 particles or increases defects such as transitions in the particles, thereby causing the phase transition. It is presumed that the amount of energy up to that point was reduced.

このような処理により、焼結体の表面部には破壊靭性
が中心部より大きい高靭性な層が形成され、表面部から
中心部になるに従いその靭性値はほぼ連続的に低下する
ような靭性勾配を有する。なお、この高靭性な層と中心
部の靭性差は後述する実施例からも明らかなように抗折
強度と関連が有り、その差が大きい程、抗折強度も大き
くなる傾向にある。よって本発明の焼結体によれば、表
面から具体的には5μmの位置(測定限界)の破壊靭性
値が中心部の破壊靭性値より10%以上、特に20%以上大
きいことが望ましい。
By such a treatment, a high toughness layer having a fracture toughness larger than the central portion is formed on the surface of the sintered body, and the toughness value decreases almost continuously from the surface portion to the central portion. It has a gradient. The difference in toughness between the high toughness layer and the central portion is related to the transverse rupture strength, as is clear from the examples described later, and the larger the difference, the higher the transverse rupture strength. Therefore, according to the sintered body of the present invention, it is desirable that the fracture toughness value at a position (measurement limit) specifically at 5 μm from the surface is larger than the fracture toughness value at the center by 10% or more, particularly 20% or more.

また、本発明によれば、焼結体の組成においてZrO2
1乃至30重量%、特に10乃至25重量%、残部がAl2O3
主体として成ることが重要であり、ZrO2の量が1重量%
を下回ると靭性が低下し、30重量%を越えると抗折強
度、靭性が低下する。
Further, according to the present invention, ZrO 2 is 1 to 30 wt% in the composition of the sintered body, in particular 10 to 25 wt%, it is important that the balance being mainly of Al 2 O 3, the amount of ZrO 2 Is 1% by weight
If the amount is less than 30%, the toughness decreases. If the amount exceeds 30% by weight, the bending strength and the toughness decrease.

さらに、本発明の焼結体中のZrO2粒子は1.5μm以
下、特に0.5μmの微細な粒子としてAl2O3中に分散され
ていることが望ましく、ZrO2の粒径が1.5μmより大き
くなると表面の高靭性化の効果が期待できなくなる傾向
にある。このZrO2粒子は焼結体中では、正方晶あるいは
立方晶として存在していることが望ましいが,特にCuK
α線解析チャートにおいて2θが62.0〜63.5゜の間のZr
O2のピーク(H63)、2θが27.5〜29゜の間のZrO2のピ
ーク(H28)、2θが59.5〜61゜の間のZrO2のピーク(H
60)、2θが42.5〜44゜の間にあるZrO2のピーク
(H43)の各強度(ピーク高さ)がH63/H28>0.1 H60/H
43>0.07を満たすことが望ましい。
Further, the ZrO 2 particles in the sintered body of the present invention are preferably 1.5 μm or less, particularly preferably dispersed in Al 2 O 3 as fine particles of 0.5 μm, and the particle size of ZrO 2 is larger than 1.5 μm. In such a case, the effect of increasing the surface toughness tends not to be expected. It is desirable that these ZrO 2 particles exist in the sintered body as tetragonal or cubic.
Zr between 22.0 and 63.5 ° in the α-ray analysis chart
O 2 peak (H 63 ), 2θ peak of ZrO 2 between 27.5-29 ° (H 28 ), 2θ peak of 59.5-61 °, ZrO 2 peak (H
60 ) Each intensity (peak height) of the ZrO 2 peak (H 43 ) whose 2θ is between 42.5 and 44 ° is H 63 / H 28 > 0.1 H 60 / H
It is desirable to satisfy 43 > 0.07.

本発明の焼結体の製造にあたり、焼結体の表面部に高
靭性な層を形成するために機械的或いは熱的衝撃を与え
る方法としては (1)500番以下の粒度のダイヤモンド砥石で表面を研
削する方法(この場合、砥石の材質、目詰まりの程度に
より効果に若干のバラツキを生じることがある) (2)焼結体を300〜400℃に熱した後、水中投下する方
法 (3)ショットピーニング法 等が挙げられる。
In producing the sintered body of the present invention, a method of applying a mechanical or thermal shock to form a tough layer on the surface of the sintered body is as follows. (In this case, the effect may vary slightly depending on the material of the grindstone and the degree of clogging.) (2) A method of heating the sintered body to 300 to 400 ° C. and then dropping it in water (3) ) Shot peening method and the like.

なお、上記の処理を行う前の焼結体はZrO2粉末を1乃
至30重量%、残部がAl2O3粉末を主体としてなる原料粉
末を用いることを必須とする他は、公知の方法により製
造され、具体的には、まず、上記のAl2O3、ZrO2微粉体
を前述の割合で混合した混合粉末をプレス成形、冷間成
形(CIP)、射出成形、泥漿鋳込み成形等で成形した
後、1250乃至1600℃、望ましくは1350乃至1500℃の大気
中或いは不活性ガス中で常圧焼成、ホットプレス等によ
り1〜6時間焼成する。さらに高密度化するためにはこ
のようにして得られた焼結体を1200〜1500℃の温度で熱
間静水圧焼成することも可能である。
In addition, the sintered body before performing the above-mentioned processing is 1 to 30% by weight of ZrO 2 powder, and the rest is required to use a raw material powder mainly composed of Al 2 O 3 powder. Manufactured, specifically, first, the mixed powder obtained by mixing the above Al 2 O 3 and ZrO 2 fine powders in the above ratio is formed by press molding, cold molding (CIP), injection molding, slurry casting molding, etc. After that, sintering is performed in the atmosphere at 1250 to 1600 ° C., preferably 1350 to 1500 ° C. or in an inert gas by normal pressure sintering, hot pressing or the like for 1 to 6 hours. In order to further increase the density, the sintered body thus obtained can be subjected to hot isostatic firing at a temperature of 1200 to 1500 ° C.

なお、この処理前の焼結体としては特にZrO2が1.5μ
m以下の正方晶、立方晶あるいはこれらに類似の結晶形
態で残存していることが望ましく、そのためには例えば
特開昭57−100976号にて開示されている通り、粒径が1.
5μm以下の高純度のZrO2粉末及びAl2O3粉末を用いると
ともにMgO、Y2O3、Cr2O3、NiO等の添加剤を加えるか、
添加剤を加えない系では本発明者が特願昭62−247413号
にて提案した通り微細な原料粉末を高エネルギー粉砕す
ることによってZrO2を正方晶、立方晶として分散させる
ことができる。特に機械的特性の面からは後者が望まし
い。
In addition, as a sintered body before this treatment, ZrO 2 is particularly 1.5 μm.
m or less, and preferably in the form of a cubic or cubic crystal similar to these.For this purpose, for example, as disclosed in JP-A-57-100976, the particle size is 1.
Using high purity ZrO 2 powder and Al 2 O 3 powder of 5 μm or less and adding additives such as MgO, Y 2 O 3 , Cr 2 O 3 , NiO,
In a system to which no additives are added, ZrO 2 can be dispersed as tetragonal and cubic by grinding fine raw material powder with high energy as proposed by the present inventors in Japanese Patent Application No. 62-247413. The latter is particularly desirable from the viewpoint of mechanical properties.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 平均粒径1μm以下、純度99%以上のAl2O3粉末及びZ
rO2を第1表に示す割合で調合し、ボールミルにて36時
間調合した。混合後の原料にバインダーを添加し、4t/c
m2の圧力でCIP(冷間静水圧プレス)処理して試験片を
成形した。得られた成形体を350℃で脱バインダーした
後、1450℃で2時間大気中で予備焼成した後、1500Kg/c
m2のArガス雰囲気で熱間静水圧処理を行った。
(Example) Al 2 O 3 powder having an average particle size of 1 μm or less and a purity of 99% or more and Z
rO 2 was blended at the ratios shown in Table 1 and blended for 36 hours in a ball mill. Add binder to raw material after mixing, 4t / c
A test piece was formed by a CIP (Cold Isostatic Press) treatment at a pressure of m 2 . After debinding the obtained molded body at 350 ° C., it was preliminarily calcined at 1450 ° C. for 2 hours in the air, and then 1500 kg / c.
Hot isostatic pressure treatment was performed in an m 2 Ar gas atmosphere.

得られた焼結体から3×4×40mmの試験片を切出し、
分析を行ったところ、Al2O3平均粒径0.5μm、ZrO2平均
粒径0.3μmでZrO2は全量のうち正方晶ZrO2に対し5%
が単斜晶で、残部が正方晶及び立方晶から成ることが認
められた。
A 3 × 4 × 40 mm test piece was cut out from the obtained sintered body,
Was analyzed, Al 2 O 3 Average particle size 0.5 [mu] m, ZrO 2 in ZrO 2 mean particle size 0.3μm whereas tetragonal ZrO 2 out of the total amount 5%
Was monoclinic and the rest consisted of tetragonal and cubic.

試験片に対し、第1表に示す処理を行った後にJIS 3
点曲げ抗折試験を行った。なお、処理のうちダイヤモン
ド砥石による研削処理は抗折試験時、引っ張り応力の加
わる面のみ行った。
After performing the treatment shown in Table 1 on the test piece,
A point bending bending test was performed. Note that, among the treatments, the grinding treatment using a diamond grindstone was performed only on the surface to which a tensile stress was applied during the bending test.

各処理において研削は切込み10μm、送り6m/minで5
分間行い、水中投下は各試料をさらに325番のダイヤモ
ンド砥石で表面研磨した後、所定の温度に熱し20℃の水
中に投下した。またショットピーニングは325番のダイ
ヤモンド砥石で表面研磨した後、直径1mmの鋼製の球を
用いて、1分間行った。
In each process, grinding is performed at a depth of cut of 10 μm and a feed of 6 m / min.
The samples were dropped in water, and the surfaces of the samples were further polished with a No. 325 diamond grindstone, heated to a predetermined temperature, and dropped into water at 20 ° C. In addition, shot peening was performed for 1 minute using a steel ball having a diameter of 1 mm after polishing the surface with a No. 325 diamond grindstone.

第1表から明らかなように何ら処理を施さないNo.8で
は抗折強度65Kg/mm2で、5μmの位置から中心まで破壊
靭性はほとんど変わりがないが、処理にあたり、衝撃が
過小なNo.1では高靭性の層が形成されず、衝撃が過大な
No.4では試料に割れが生じた。適度の処理を行ったもの
はいずれも高靭性の層が形成されたが、ZrO2の量が30重
量%を越えるNo.12では抗折強度が極端に低くなる。
As is clear from Table 1, in No. 8 where no treatment was applied, the bending toughness was 65 kg / mm 2 and the fracture toughness hardly changed from the position of 5 μm to the center. In the case of 1, no tough layer is formed and the impact is excessive.
In No. 4, the sample cracked. All of the specimens which had been subjected to appropriate treatments formed high toughness layers. However, in the case of No. 12 in which the amount of ZrO 2 exceeded 30% by weight, the transverse rupture strength was extremely low.

本発明の試料No.2,3,5,6,7,9,10,11はいずれも抗折強
度65Kg/mm2以上で、表面部の靭性改善効果が見られた
が、水中投下において200℃からの投下ではその効果は
あまり顕著ではない。またZrO2が3重量%の場合(No.
9)では抗折強度が低い傾向にあることが理解される。
Sample Nos. 2 , 3, 5, 6, 7, 9, 10, and 11 of the present invention all had a transverse rupture strength of 65 kg / mm 2 or more, and an effect of improving the toughness of the surface was observed. The effect is not so significant when dropped from ° C. When ZrO 2 is 3% by weight (No.
In 9), it is understood that the bending strength tends to be low.

〔発明の効果〕〔The invention's effect〕

以上詳述した通り、本発明によればAl2O3−ZrO2系焼
結体の表面に対して、機械的あるいは熱的な衝撃を与え
ることにより、表面部に高靭性の層が形成されるととも
に抗折強度までも向上させることができ、これを例えば
工具等へ応用した場合、靭性向上により刃先の欠損を防
止することができ工具の長寿命化を図ることができる。
Described above in detail streets, to the surface of the Al 2 O 3 -ZrO 2 based sintered body according to the present invention, by providing a mechanical or thermal shock, high toughness of the layer is formed on the surface portion In addition, when this is applied to, for example, a tool or the like, the toughness can be improved to prevent chipping of the cutting edge and extend the life of the tool.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジルコニアが1乃至30重量%、残部がアル
ミナを主体として成るアルミナ質焼結体において、表面
部の破壊靭性が中心部より高いことを特徴とするアルミ
ナ質焼結体。
1. An alumina-based sintered body comprising 1 to 30% by weight of zirconia and a balance mainly composed of alumina, wherein the surface portion has a higher fracture toughness than a central portion.
【請求項2】ジルコニアが1乃至30重量%、残部がアル
ミナを主体として成るアルミナ質焼結体に機械的或いは
熱的衝撃を加え、表面部を中心部よりも高靭性化したこ
とを特徴とするアルミナ質焼結体の製造方法。
2. A mechanical or thermal shock is applied to an alumina-based sintered body containing 1 to 30% by weight of zirconia and the remainder mainly composed of alumina to make the surface part tougher than the center part. For producing an alumina sintered body.
JP62304131A 1987-11-30 1987-11-30 Alumina sintered body and method for producing the same Expired - Fee Related JP2581936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304131A JP2581936B2 (en) 1987-11-30 1987-11-30 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304131A JP2581936B2 (en) 1987-11-30 1987-11-30 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01145367A JPH01145367A (en) 1989-06-07
JP2581936B2 true JP2581936B2 (en) 1997-02-19

Family

ID=17929413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304131A Expired - Fee Related JP2581936B2 (en) 1987-11-30 1987-11-30 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2581936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652872C2 (en) * 1996-12-18 2000-07-06 Fraunhofer Ges Forschung Process for increasing the surface layer strength on surfaces of workpieces made of brittle hard materials
CN116768607A (en) * 2023-06-01 2023-09-19 广东佛山市陶瓷研究所控股集团股份有限公司 Wear-resistant zirconium-aluminum composite ceramic ball with gradient structure and preparation method thereof

Also Published As

Publication number Publication date
JPH01145367A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
EP0311264B1 (en) Ceramic cutting tool inserts and production thereof
EP0333776B1 (en) Improved cutting tool
JPH06298573A (en) Ceramic cutting tool material
JP2581936B2 (en) Alumina sintered body and method for producing the same
JP2810922B2 (en) Alumina-zirconia composite sintered body and method for producing the same
US5106788A (en) Process for producing highly tough ceramics
JPH05295352A (en) Abrasive material or tool material comprising al2o3-based composite ceramic, and its production
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JPH0531514B2 (en)
US5324693A (en) Ceramic composites and process for manufacturing the same
JPH02160674A (en) Inserted cutting blade made of oxide-based ceramic
JP2604155B2 (en) Ceramic tool with coating layer
JPS61242956A (en) High tenacity ceramic alloy
US11697609B2 (en) Mold for glass forming and methods for forming glass using a mold
JP2000070745A (en) Member for pulverizer
JPH06666B2 (en) Ceramic material with excellent precision workability
JP2922713B2 (en) Zirconia sintered body for tools
JPH0813702B2 (en) Composite ceramics
Ezugwu Manufacturing methods of ceramic cutting tools
JP2581940B2 (en) High-strength alumina sintered body and method for producing the same
JP2668222B2 (en) Alumina sintered body
JPH05319910A (en) Ceramic composite material and its production
JPH03126659A (en) Superhard ceramics
JPH078739B2 (en) Method for manufacturing alumina-based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees