JP2668222B2 - Alumina sintered body - Google Patents

Alumina sintered body

Info

Publication number
JP2668222B2
JP2668222B2 JP62241763A JP24176387A JP2668222B2 JP 2668222 B2 JP2668222 B2 JP 2668222B2 JP 62241763 A JP62241763 A JP 62241763A JP 24176387 A JP24176387 A JP 24176387A JP 2668222 B2 JP2668222 B2 JP 2668222B2
Authority
JP
Japan
Prior art keywords
zro
sintered body
weight
fracture toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62241763A
Other languages
Japanese (ja)
Other versions
JPS6483565A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62241763A priority Critical patent/JP2668222B2/en
Publication of JPS6483565A publication Critical patent/JPS6483565A/en
Application granted granted Critical
Publication of JP2668222B2 publication Critical patent/JP2668222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミナを主成分としてジルコニアを含有
する焼結体の製造方法に関し、特に切削工具用焼結体あ
るいは産業機械構造物用焼結体としての抗折強度および
靭性改良に関する。 〔従来技術〕 セラミックから成る工具は、高度、耐摩耗性、耐熱性
に優れる等の長所を有する反面、チッピングや欠陥を生
じ易いという問題を有し、その用途も仕上げ加工等に限
られていた。しかしながら工作機械の進歩に伴い、切削
速度を上げ、工具交換のサイクルタイムを長くする必要
性が高まり、セラミック工具も、これに対応し、安定か
つ高強度のものが求められている。 アルミナ(Al2O3)は金属との反応性が低く耐摩耗性
に優れることから切削工具として有用な材料として注目
されたが、破壊靭性(K1c)が低いという問題があっ
た。また、ジルコニア(ZrO2)は、抗折強度及び破壊靭
性は高いものの、200〜300℃で急激な強度低下を示し熱
的に不安定であり、しかも鉄と激しく反応するため切削
工具あるいは構造物として実用に耐えないものであっ
た。 そこで、Al2O3中にZrO2を分散含有させることによりA
l2O3の破壊靭性を改善する事が行われている。この破壊
靭性の改善法については従来より2つのタイプが提案さ
れている。 1つはマイクロクラック機構であり、Al2O3質焼結体
中に単斜晶ZrO2を分散させたもので、ZrO2の相転移にと
もなう体積変化によりマイクロクラックを発生させるも
のである。 他の1つは、応力誘起相転移機構であって、Al2O3
焼結体中に正方晶ZrO2或いは立方晶ZrO2を分散させるこ
とによりクラック先端のエネルギーをZrO2の相転移で吸
収させるものである。 〔発明が解決しようとする問題点〕 しかし乍ら、前者の方法ではその機構上、抗折強度の
向上は期待できずむしろ添加したZrO2が破壊源となり強
度低下をもたらす。また、後者の場合では抗折強度は向
上するものの、クラック先端のエネルギーを吸収するゾ
ーンの体積が少ないため、破壊靭性はあまり改善されな
い。 〔発明の目的〕 本発明は上記の問題点を解決することを主たる目的と
するもので、特に応力誘起相転移機構において、その破
壊靭性を改善し、抗折強度および破壊靭性に優れたアル
ミナ質焼結体の製造方法を提供することを目的とする。 〔問題点を解決するための手段〕 本発明者は上記問題点に対し研究を重ねた結果、Al2O
3−ZrO2系に第3成分としてFe,Ni,Coの酸化物のうち少
なくとも1種を特定の範囲で含有させ、これを熱間静水
圧焼成によって高緻密化することにより、破壊靭性を顕
著に向上させることができることを知見した。 即ち、本発明のアルミナ質焼結体の製造方法は、ZrO2
を10乃至20重量%、Fe、Ni、Coの酸化物のうち少なくと
も1種を0.2乃至2重量%、残部がAl2O3と不可避不純物
からなる混合粉末を成形した後、該成形体を1400〜1500
℃で焼成し、さらに1300〜1500℃の温度で熱間静水圧焼
成して強度110kg/mm2以上の焼結体を作製することを特
徴とするものである。 以下、本発明を第1図を参照にして説明する。 第1図は第3成分の添加量と破壊靭性(K1c)および
抗折強度との関係を示した図である。第1図によれば第
3成分の添加によって急激に破壊靭性は向上し、添加量
が増加するとその効果が徐々に低減する。一方、抗折強
度は大きな変化は見られないが、5重量%を超えると急
激に低下する。 よって本発明によれば、第3成分、即ちCo,Ni,Feの酸
化物の少なくとも1種を0.2乃至2.0重量%の割合で含有
させる。即ち、0.2重量%を下回ると破壊靭性の向上効
果が得られず、2重量%を超えると抗折強度が低下す
る。 本発明によれば、焼結体中のZrO2の量が10乃至20重量
%、特に15乃至20重量%の割合で含有されることが望ま
しく、ZrO2の量が10重量%を下回るとZrO2添加によるク
ラック先端のエネルギー吸収が少なく、靭性の改善が少
なく、20重量%を超えると焼結体中のZrO2結晶相のうち
単斜晶ZrO2(m−ZrO2)の量が多くなり、クラック先端
でのエネルギーの吸収に関与するZrO2が実質的に減少
し、破壊靭性が低下する。 また、焼結体中のZrO2結晶相はZrO2全量のうち、単斜
晶ZrO2(m−ZrO2)は50%以下、特に30%以下であるこ
とが好ましく、50%を超えると破壊靭性が著しく低下す
る。その他の結晶相は正方晶ZrO2(t−ZrO2)或いは立
方晶ZrO2(c−ZrO2)であってこれらを50%以上含有す
ることによってt−ZrO2→m−ZrO2或いはc−ZrO2→t
−ZrO2→m−ZrO2に相転移によりクラック先端のエネル
ギーが有効的に吸収される。 さらに焼結体中における各結晶の粒径はAl2O3結晶が
1μm以下、ZrO2結晶が1μm以下、特に0.5μm以下
が良くこれらの数値より大きくなるといずれも抗折強度
が低下する。 本発明のFe,Co,Niの酸化物の添加効果を解析するに焼
結体破壊面を観察したところ、Fe,Co,Niの酸化物を添加
した試料では、それらの酸化物を添加していない試料に
比較して、Al2O3粒子の粒内破壊が多くなっている。こ
のことからFe,Ni,Coの酸化物の添加によってAl2O3粒子
の結合が強固になり粒界での破壊が起こりにくくなって
いると考えられる。 K1cが向上した理由は、Al2O3粒子の結合が強固にな
り、クラックが伸展し難くなるためであろう。 本発明のアルミナ質焼結体の製造方法によれば、平均
粒子径1μm以下のAl2O3に対して、ZrO2を10乃至20重
量%、Co、Ni、Feの酸化物もしくは焼成により酸化物に
変わり得る化合物の酸化物換算で0.2乃至2重量%の割
合で秤量混合し、これらを分散剤および蒸留水等の媒質
とともに混合粉砕する。粉砕後、公知の成形手段で成形
した後、焼成する。 焼成方法としては、まず、大気中で常圧焼成、ホット
プレスによって1400〜1500℃で焼成した後、さらに1300
〜1500℃で熱間静水圧焼成する。 このように、熱間静水圧焼成によって焼結体を高密度
化することにより、Fe、Co、Niの酸化物の添加がAl2O3
粒子間の結合を強固にし、粒界からの破壊を起こりにく
くすることができる結果、焼結体の強度と靭性を高める
ことができるのである。 以下、本発明を次の例で説明する 〔実施例〕 純度98%以上の平均粒子径0.5μmのAl2O3粉末、平均
粒子径0.3μmのZrO2粉末および平均粒子径1.0μm以下
のNiO,CoO,Fe2O3粉末を第1表の量に秤量し、これを分
散剤を添加した蒸溜水に入れ、アトライタで混合粉砕す
る。粉砕後のスラリーを乾燥し、有機バインダーを添加
し、さらに乾燥させて、成形用原料とした。 この原料を用いて所定寸法に成形した後、ポリエチレ
ンの袋に真空パックし、4t/cm2の圧力でCIP処理(冷間
静水圧成形)した。 得られた成形体を脱バインダーし、大気雰囲気中で14
50℃で2時間予備焼成した。その後、焼結体を1400℃で
1時間2000気圧で熱間熱水圧焼成した。 得られた焼結体を3×4×40mmの抗折試験片に研摩
し、JISR1601に従って3点曲げ強度を測定した。また、
前述の方法で同時に3×4×40mmのタブレットを作製
し、焼き上がりの未研磨面でX線回折を測定し、ZrO2
結晶を調べた。 更に、3×4×40mmのタブレットを研摩後、3μmの
ダイヤモンドペーストでポリッシングを行い、ビッカー
ス硬度用ダイヤモンドコーンを用いて荷重20Kgでクラッ
ク長さを測定し、MI法によって破壊靭性を測定した。 第1表の結果のうちNo.4,7〜12のデータに基づいて第
3成分の添加量と破壊靭性および抗折強度との関係を第
1図にプロットした。 以上の結果によれば、第3成分を全く添加しない従来
の組成(No.7)においてK1cが4.5MN/m3/2、抗折強度130
Kg/mm2であることを基準に考えると、まず、ZrO2量が20
重量%を超えるNo.5、6では単斜晶ZrO2が多く、K1c抗
折強度とも劣る。第3成分の量が本発明の範囲を逸脱す
るNo.8、11、12では、靭性が低いか、または強度の低下
が見られた。 これらの比較例に対し、本発明の試料は優れた特性を
示し、破壊靭性5.3MN/m3/2以上、抗折強度110Kg/mm2
上が達成でき、ZrO2量15乃至20重量%、第3成分0.2乃
至2.0重量%では破壊靭性6.6MN/m2/3、抗折強度120Kg/m
m2以上が達成された。 〔発明の効果〕 以上詳述した通り、本発明のアルミナ質焼結体はAl2O
3−ZrO2系組成に対し、Ni,Co,Feの酸化物のうち少なく
とも1種を特定量配合することにより、Al2O3−ZrO2
における抗折強度を低下させることなく、破壊靭性を顕
著に向上させることができる。 それによって、例えば切削工具として利用した場合、
工具のチッピング等を防止し、長寿命を達成することが
できるとともに産業機械構造物用焼結体としての用途を
拡大することができる。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a sintered body containing zirconia with alumina as a main component, and more particularly to a sintered body for a cutting tool or a sintered body for an industrial machine structure. The invention relates to improvement in transverse strength and toughness as a body. [Prior Art] Tools made of ceramics have advantages such as high altitude, excellent wear resistance, and excellent heat resistance, but on the other hand, they have a problem that chipping and defects are likely to occur, and their use is limited to finishing work. . However, with the progress of machine tools, there is a growing need to increase the cutting speed and lengthen the cycle time for tool change, and ceramic tools corresponding to this need are also required to be stable and have high strength. Alumina (Al 2 O 3 ) has attracted attention as a material useful as a cutting tool because of its low reactivity with metals and excellent wear resistance, but has a problem of low fracture toughness (K 1 c). Although zirconia (ZrO 2 ) has high bending strength and fracture toughness, it shows a sharp decrease in strength at 200 to 300 ° C, is thermally unstable, and reacts violently with iron. It was something that could not be put to practical use. Therefore, by dispersing and containing ZrO 2 in Al 2 O 3 , A
Improving the fracture toughness of l 2 O 3 is being carried out. Conventionally, two types of methods for improving the fracture toughness have been proposed. One is a microcrack mechanism, which is a dispersion of monoclinic ZrO 2 in an Al 2 O 3 -based sintered body, in which microcracks are generated by the volume change accompanying the phase transition of ZrO 2 . The other one is a stress-induced phase transition mechanism, in which tetragonal ZrO 2 or cubic ZrO 2 is dispersed in an Al 2 O 3 -based sintered body to disperse the energy at the crack tip in the ZrO 2 phase transition. What is absorbed. [Problems to be Solved by the Invention] However, in the former method, improvement in the transverse rupture strength cannot be expected due to its mechanism, but rather, the added ZrO 2 becomes a breaking source and lowers the strength. Further, in the latter case, although the transverse rupture strength is improved, the fracture toughness is not significantly improved because the volume of the energy absorbing zone at the tip of the crack is small. [Object of the Invention] The present invention has a main object to solve the above problems, and particularly in the mechanism of stress-induced phase transition, its fracture toughness is improved, and alumina having excellent bending strength and fracture toughness is obtained. An object is to provide a method for manufacturing a sintered body. [Means for Solving the Problems] As a result of repeated studies on the above problems, the inventor has found that Al 2 O
By including at least one of Fe, Ni, and Co oxides as a third component in a specific range in the 3- ZrO 2 system, and by densifying this by hot isostatic pressing, the fracture toughness becomes remarkable. It was found that it can be improved to. That is, the method for manufacturing an alumina-based sintered body of the present invention, ZrO 2
After molding a mixed powder comprising 10 to 20% by weight, 0.2 to 2% by weight of at least one of Fe, Ni and Co oxides and the balance being Al 2 O 3 and unavoidable impurities, ~ 1500
Sintering at a temperature of 1300 to 1500 ° C. to produce a sintered body having a strength of 110 kg / mm 2 or more. The present invention will be described below with reference to FIG. FIG. 1 is a graph showing the relationship between the amount of the third component added, the fracture toughness (K 1 c) and the transverse rupture strength. According to FIG. 1, the addition of the third component sharply improves the fracture toughness, and the effect is gradually reduced as the addition amount increases. On the other hand, the transverse rupture strength is not largely changed, but is sharply reduced when it exceeds 5% by weight. Therefore, according to the present invention, the third component, that is, at least one of oxides of Co, Ni, and Fe is contained at a ratio of 0.2 to 2.0% by weight. That is, if it is less than 0.2% by weight, the effect of improving fracture toughness cannot be obtained, and if it exceeds 2% by weight, the transverse rupture strength decreases. According to the present invention, it is desirable that the amount of ZrO 2 in the sintered body is 10 to 20% by weight, particularly 15 to 20% by weight, and when the amount of ZrO 2 is less than 10% by weight, ZrO 2 is used. 2 Addition of small amount of energy absorption at the crack tip and little improvement of toughness. If it exceeds 20% by weight, the amount of monoclinic ZrO 2 (m-ZrO 2 ) in the ZrO 2 crystal phase in the sintered body increases. In addition, ZrO 2 involved in energy absorption at the crack tip is substantially reduced, and fracture toughness is reduced. Further, ZrO 2 crystal phase in the sintered body of the ZrO 2 based on the total amount of monoclinic ZrO 2 (m-ZrO 2) 50% below, preferably particularly at most 30%, destruction and more than 50% The toughness significantly decreases. The other crystal phase is tetragonal ZrO 2 (t-ZrO 2 ) or cubic ZrO 2 (c-ZrO 2 ), and by containing 50% or more of these, t-ZrO 2 → m-ZrO 2 or c- ZrO 2 → t
-ZrO 2 → m-ZrO 2 phase transition by crack tip energy is effectively absorbed. Further, the grain size of each crystal in the sintered body is preferably 1 μm or less for Al 2 O 3 crystal and 1 μm or less for ZrO 2 crystal, particularly 0.5 μm or less. Observation of the fracture surface of the sintered body to analyze the effect of adding the oxides of Fe, Co, and Ni of the present invention revealed that in the sample to which the oxides of Fe, Co, and Ni were added, those oxides were not added. The intragranular fracture of Al 2 O 3 particles is higher than that of the sample without the particles. From this, it is considered that the addition of the oxides of Fe, Ni, and Co strengthens the binding of the Al 2 O 3 particles and makes it less likely to break at the grain boundaries. The reason why the K 1 c has been improved may be that the bond between the Al 2 O 3 particles is strengthened and the cracks are difficult to extend. According to the manufacturing method of the alumina sintered body of the present invention, oxide with respect to the average particle diameter of 1μm or less of Al 2 O 3, the ZrO 2 10 to 20 wt%, Co, Ni, an oxide or firing of Fe A compound which can be converted into a substance is weighed and mixed at a ratio of 0.2 to 2% by weight in terms of oxide, and these are mixed and pulverized together with a dispersant and a medium such as distilled water. After crushing, it is molded by a known molding means and then fired. As the firing method, first, normal pressure firing in the air, firing at 1400 ~ 1500 ° C. by hot press, then further 1300
Hot isostatic firing at ~ 1500 ° C. As described above, by increasing the density of the sintered body by hot isostatic firing, the addition of Fe, Co, and Ni oxides reduces Al 2 O 3
As a result, the bonding between the particles is strengthened and breakage from the grain boundaries is less likely to occur, so that the strength and toughness of the sintered body can be increased. Hereinafter, the invention will be described in the following examples EXAMPLES Al 2 O 3 powder having a purity of 98% or more of the average particle diameter of 0.5 [mu] m, ZrO 2 powder having an average particle diameter of 0.3μm and the average particle diameter 1.0μm or less of NiO , CoO, and Fe 2 O 3 powders are weighed to the amounts shown in Table 1, and the powders are put into distilled water to which a dispersant has been added, and mixed and ground by an attritor. The pulverized slurry was dried, an organic binder was added, and further dried to obtain a raw material for molding. After molding into a predetermined size using this raw material, it was vacuum-packed in a polyethylene bag and subjected to CIP treatment (cold isostatic pressing) at a pressure of 4 t / cm 2 . The resulting molded body is debindered and placed in an atmosphere of 14
It was pre-baked at 50 ° C for 2 hours. Thereafter, the sintered body was subjected to hot-hydraulic sintering at 1400 ° C. for 1 hour at 2000 atm. The obtained sintered body was polished into a bending test piece of 3 × 4 × 40 mm, and the three-point bending strength was measured according to JISR1601. Also,
Tablets of 3 × 4 × 40 mm were simultaneously produced by the above-described method, and X-ray diffraction was measured on the unpolished surface after firing to examine ZrO 2 crystals. Further, after polishing a 3 × 4 × 40 mm tablet, the tablet was polished with a 3 μm diamond paste, the crack length was measured using a diamond cone for Vickers hardness under a load of 20 kg, and the fracture toughness was measured by the MI method. Based on the data of Nos. 4 and 7 to 12 in the results of Table 1, the relationship between the added amount of the third component, the fracture toughness and the bending strength was plotted in FIG. According to the above results, K 1 c was 4.5 MN / m 3/2 and the transverse rupture strength was 130 in the conventional composition (No. 7) in which the third component was not added at all.
Given a reference that is kg / mm 2, first, ZrO 2 amount 20
In Nos. 5 and 6 exceeding 5% by weight, monoclinic ZrO 2 was large and the K 1 c transverse rupture strength was poor. In Nos. 8, 11, and 12 in which the amount of the third component was out of the range of the present invention, the toughness was low or the strength was reduced. In contrast to these comparative examples, the sample of the present invention exhibited excellent properties, a fracture toughness of 5.3 MN / m 3/2 or more, a bending strength of 110 kg / mm 2 or more, a ZrO 2 amount of 15 to 20% by weight, When the third component is 0.2 to 2.0% by weight, the fracture toughness is 6.6 MN / m 2/3 and the bending strength is 120 kg / m.
m 2 or more has been achieved. [Effect of the Invention] As described in detail above, the alumina-based sintered body of the present invention is made of Al 2 O
By blending at least one of Ni, Co, and Fe oxides in a specific amount with respect to the 3- ZrO 2 system composition, the fracture toughness of the Al 2 O 3 -ZrO 2 system can be reduced without lowering the transverse rupture strength. Can be significantly improved. Thereby, for example, when used as a cutting tool,
It is possible to prevent chipping or the like of the tool, achieve a long life, and expand the use as a sintered body for an industrial machine structure.

【図面の簡単な説明】 第1図は添加物の配合量と破壊靭性及び抗折強度との関
係を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the amount of additives and the fracture toughness and the bending strength.

Claims (1)

(57)【特許請求の範囲】 1.ZrO2を10乃至20重量%、Fe、Ni、Coの酸化物のうち
少なくとも1種を0.2乃至2重量%、残部がAl2O3と不可
避不純物からなる混合粉末を成形した後、該成形体を14
00〜1500℃で焼成し、さらに1300〜1500℃の温度で熱間
静水圧焼成して強度110kg/mm2以上の焼結体を作製する
ことを特徴とするアルミナ質焼結体の製造方法。
(57) [Claims] After molding a mixed powder comprising 10 to 20% by weight of ZrO 2 , 0.2 to 2% by weight of at least one of Fe, Ni and Co oxides and the balance being Al 2 O 3 and unavoidable impurities, the compact is formed. A 14
A method for producing an alumina-based sintered body, characterized in that the sintered body has a strength of 110 kg / mm 2 or more by firing at 00 to 1500 ° C and further hot isostatic firing at a temperature of 1300 to 1500 ° C.
JP62241763A 1987-09-26 1987-09-26 Alumina sintered body Expired - Fee Related JP2668222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241763A JP2668222B2 (en) 1987-09-26 1987-09-26 Alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241763A JP2668222B2 (en) 1987-09-26 1987-09-26 Alumina sintered body

Publications (2)

Publication Number Publication Date
JPS6483565A JPS6483565A (en) 1989-03-29
JP2668222B2 true JP2668222B2 (en) 1997-10-27

Family

ID=17079165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241763A Expired - Fee Related JP2668222B2 (en) 1987-09-26 1987-09-26 Alumina sintered body

Country Status (1)

Country Link
JP (1) JP2668222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947579B2 (en) 2012-03-16 2016-07-06 京セラメディカル株式会社 Method for producing medical ceramic material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259565A (en) * 1985-09-06 1987-03-16 第一稀元素化学工業株式会社 High density alumina/zirconia sintered body and its production

Also Published As

Publication number Publication date
JPS6483565A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
AU617693B2 (en) Ceramic cutting tool inserts
JPS6140621B2 (en)
JPS5924751B2 (en) Sintered shaped body
JPS60246268A (en) Sialon base ceramic
JP2668222B2 (en) Alumina sintered body
JPS6265976A (en) Silicon iodide sintered body and its production
CN115010503A (en) Use method of sintering aid for transparent oxide ceramic material
JPS6186466A (en) Spinel ceramics
JP3078430B2 (en) High-strength alumina sintered body
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
US2961325A (en) Cermet bodies
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP3121996B2 (en) Alumina sintered body
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JPH078739B2 (en) Method for manufacturing alumina-based sintered body
JP2581936B2 (en) Alumina sintered body and method for producing the same
JPH06107454A (en) Alumina sintered body and production thereof
JPS63139044A (en) Alumina-zirconia base sintered body and manufacture
JP3211908B2 (en) Silicon nitride sintered body and method for producing the same
CN106631035A (en) Composite ceramic and preparation method thereof
JPH0687650A (en) Alumina-based sintered compact and its production
JPS62143867A (en) Alumina-zirconia base sintered body and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees