JPS63100055A - Alumina base ceramic for cutting tool and manufacture - Google Patents

Alumina base ceramic for cutting tool and manufacture

Info

Publication number
JPS63100055A
JPS63100055A JP61246186A JP24618686A JPS63100055A JP S63100055 A JPS63100055 A JP S63100055A JP 61246186 A JP61246186 A JP 61246186A JP 24618686 A JP24618686 A JP 24618686A JP S63100055 A JPS63100055 A JP S63100055A
Authority
JP
Japan
Prior art keywords
powder
alumina
mixed
sic
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61246186A
Other languages
Japanese (ja)
Other versions
JPH0832584B2 (en
Inventor
昭雄 西山
孝 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61246186A priority Critical patent/JPH0832584B2/en
Publication of JPS63100055A publication Critical patent/JPS63100055A/en
Publication of JPH0832584B2 publication Critical patent/JPH0832584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高硬度と高強度を有し、特にフライス切削
やならい切削などの衝撃や大きな負荷を受けるような条
件下で切削工具として用いた場合に、すぐれた切削性能
を著しく長期にわたって発揮するアルミナ基セラミック
およびそれの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has high hardness and high strength, and can be used as a cutting tool especially under conditions where it is subjected to impact or large loads such as milling or profile cutting. The present invention relates to an alumina-based ceramic that exhibits excellent cutting performance over an extremely long period of time, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、炭化珪素(以下、SiCで示す)ホイスカのもつ
高い硬度と強度を利用して、アルミナ基セラミックの硬
度と強度を向上させることが提案されており、このSi
Cホイスカをアルミナ(以下、At2o3で示す)粉末
、またはAl2O3粉末および焼結性を向上させるため
の酸化マグネシウム(以下、MgOで示す)、窒化アル
ミニウム(以下、AINで示す)、酸化イツトリウム(
以下、Y2O3で示す)のいずれか1種以上に添加混合
して混合粉末を調製し、ついでこの混合粉末を圧粉体に
成形したのち、この圧粉体をホットプレス、あるいは真
空焼結および熱間静水圧プレス(HIP)で焼結するこ
とによって製造された、SiCホイスカを約30容量係
含有する切削工具用アルミナ基セラミックが知られてい
る。
Conventionally, it has been proposed to improve the hardness and strength of alumina-based ceramics by utilizing the high hardness and strength of silicon carbide (hereinafter referred to as SiC) whiskers.
The C whisker is made of alumina (hereinafter referred to as At2o3) powder or Al2O3 powder and magnesium oxide (hereinafter referred to as MgO), aluminum nitride (hereinafter referred to as AIN), or yttrium oxide (hereinafter referred to as AIN) to improve sinterability.
(Hereinafter referred to as Y2O3) is added and mixed to prepare a mixed powder, and then this mixed powder is formed into a green compact, and the green compact is hot pressed or vacuum sintered and heated. Alumina-based ceramics for cutting tools containing approximately 30 volumes of SiC whiskers are known, which are produced by sintering in a hydrostatic press (HIP).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このようなセラミックでも、その強度は、S
iCホイスカの添加によって期待されるほどには向上し
ないという問題があった。
However, even with such ceramics, the strength is
There was a problem in that the addition of iC whiskers did not improve as much as expected.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者等は、上述の問題に鑑みて種々研究を
重ねた結果、 (1)前記のよりなSiCホイスカとAl2O3粉末と
の混合粉末、あるいはこれにMgO粉末、AIIN粉末
およびY2O3粉末のうちの1種以上(以下、これらを
まとめて添加成分粉末という)が添加されている混合粉
末中に、窒化チタン(以下、TiNで示す)粉末を5〜
30容量チ含有させて焼結すると、焼結が活性化されて
緻密な焼結体が生成し、それによって硬度および特に強
度(靭性)の向上したセラミックが得られ、これを切削
工具として用いると、すぐれた切削性能を著しく長期に
わたって発揮すること、および (2)  SICホイスカを他の原料粉末と混合する前
に、このSiCホイスカに、空気中で温度:300〜1
000℃に30分〜5時間加熱保持する処理を予め施す
と、SiCボイスカ自体も活性化されてセラミックの焼
結性が一層向上すること、を見出した。
Therefore, as a result of various studies in view of the above-mentioned problems, the present inventors have found that (1) a mixed powder of the above-mentioned SiC whiskers and Al2O3 powder, or a mixture of MgO powder, AIIN powder and Y2O3 powder with this; Titanium nitride (hereinafter referred to as TiN) powder is added to the mixed powder containing one or more of these (hereinafter collectively referred to as additive component powder).
When sintered with 30% capacitance of nitrogen, the sintering is activated and a dense sintered body is produced, resulting in a ceramic with improved hardness and especially strength (toughness), which can be used as a cutting tool. (2) Before mixing the SIC whiskers with other raw material powders, the SiC whiskers are heated in air at a temperature of 300 to 1
It has been found that if the SiC voice ceramic is heated and held at 000° C. for 30 minutes to 5 hours in advance, the SiC voice core itself is activated and the sinterability of the ceramic is further improved.

TiNが上記のように焼結を活性化するのは、このTi
N中でT1とNとがl:1の割合よりもずれた、活性の
高い°T i No、5〜T1No、98の形で容易に
存在し、このように化学l論的な割合からずれたT1対
N比の状態にあるTiNが、SiCホイスカ中に含゛ま
れる遊離カーボンを固定して、SiCホイスカとAI!
203との焼結性を高めるとともに、この遊離カーボン
が焼結中Oと反応してc”oの空孔を残すことによって
焼結体に欠陥を生ずるという現象を防ぎ、またAl2O
3に対しては、その中の酸素を動き易くさせてAl2O
3を活性化させ、その結果、やはりSiCホイスカとA
l2O3との焼結性を高めるものと考えられる。
It is this Ti that activates sintering as described above.
In N, T1 and N readily exist in the form of highly active TiNo, 5 to T1No, 98, which deviate from the 1:1 ratio, and thus deviate from the stoichiometric ratio. The TiN in the T1:N ratio fixes the free carbon contained in the SiC whiskers, and the SiC whiskers and AI!
In addition to improving sinterability with Al203, this free carbon reacts with O during sintering and prevents defects in the sintered body due to leaving c"o pores.
For 3, the oxygen in it is made more mobile and becomes Al2O.
3 is activated, and as a result, SiC whiskers and A
It is thought that this improves the sinterability with l2O3.

また、SiCホイスカに上記のような前処理を施すと、
その中に含まれている遊離カーボンが酸化されてCo、
Co2として除去されるので、それ自体が活性化され、
それによって焼結性が一層向上するものと考えられる。
In addition, if SiC whiskers are subjected to the above pretreatment,
Free carbon contained in it is oxidized to Co,
Since it is removed as Co2, it is activated itself,
It is thought that this further improves sinterability.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基づいて発明されたもので、従
来のSiCホイスカ含有アルミナ基セラミックの硬度と
強度を向上させ、もって切削性能にすぐれた切削工具用
アルミナ基セラミックおよびその製造方法を提供するこ
とを目的とし、SiCホイスカを空気中、温度:300
〜1000℃において30分〜5時間加熱保持したのち
冷却し、ついでこのように処理したSICホイスカを、
Ae 203粉末とTiN粉末との混合粉末、またはA
l2O3粉末とTiN粉末と、MgO粉末、AeN粉末
およびY2O3粉末のいずれか1種以上との混合粉末と
、平均長さ10〜500μmを有するSiCホイスカ:
5〜40%、 TiN粉末:5〜30チ、 Al2O3粉末、またはM2O3粉末と、MgO粉末、
AQN粉末およびY2O3粉末のうちの1種以上4%以
下:残り、 からなる配合組成に配合し、混合して混合粉末を調製し
たのち、圧粉体に成形し、つぎにこの圧粉体をホットプ
レス、あるいは真空焼結および熱間静水圧プレスで焼結
することによって、平均長さ10〜100μmを有する
SiCホイスカニ5〜40%、 TIN : 5〜30%、 Al2O3と不可避不純物、またはAll 20 、お
よび、MgO1AlN 、 Y2O5のうちの1m以上
4チ以下と不可避不純物:残り、 からなる組成(以上、容量%)を有する切削工具用アル
ミナ基セラミックを製造するところに特徴を有する。
This invention was invented based on the above knowledge, and provides an alumina-based ceramic for cutting tools that improves the hardness and strength of conventional alumina-based ceramics containing SiC whiskers and has excellent cutting performance, and a method for manufacturing the same. For this purpose, SiC whiskers were placed in air at a temperature of 300
After heating and holding at ~1000°C for 30 minutes to 5 hours, the SIC whisker treated in this manner was
Mixed powder of Ae 203 powder and TiN powder, or A
A mixed powder of l2O3 powder, TiN powder, and any one or more of MgO powder, AeN powder, and Y2O3 powder, and a SiC whisker having an average length of 10 to 500 μm:
5-40%, TiN powder: 5-30%, Al2O3 powder or M2O3 powder, MgO powder,
At least 4% of one or more of AQN powder and Y2O3 powder: The remainder is mixed to prepare a mixed powder, which is then molded into a green compact, and then this green compact is hot heated. By pressing or sintering with vacuum sintering and hot isostatic pressing, SiC whiskers with an average length of 10-100 μm 5-40%, TIN: 5-30%, Al2O3 and unavoidable impurities, or All20, The present invention is characterized in that it manufactures an alumina-based ceramic for cutting tools having a composition (volume %) consisting of 1 m or more and 4 cm or less of MgO1AlN, Y2O5, and the remainder unavoidable impurities.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、この発明の構成について具体的に説明する。 Hereinafter, the configuration of the present invention will be specifically explained.

A 成分組成(配合組成) (a)  SiCホイスカ SiCホイスカには、セラミックに硬度と強度を付与し
て、それの切削工具としての性能を向上させる作用があ
るが、それのセラミック中における平均長さがlOμq
Vシあると、そのセラミックは繊維強化型の複合材料と
して十分な強度が得られず、一方、それが100μmを
超えるものは、製造中SiCホイスカが分断されること
によって、製品中に残らなくなるところから、セラミッ
ク中のSiCホイスカの平均長さを10〜100μmと
定め、そしてセラミック中にこのような平均長さを有す
るSiCホイスカを残すためには、原料粉末として平均
長さ110〜500μmを有するSiCボイス力を使用
する必要があることから、原料粉末として使用するSi
Cホイスカの平均長さを10〜500μmと定めた。
A Component composition (mixture composition) (a) SiC whiskers SiC whiskers have the effect of imparting hardness and strength to ceramics and improving their performance as cutting tools, but their average length in ceramics is lOμq
If there is a V, the ceramic will not have sufficient strength as a fiber-reinforced composite material, while if it exceeds 100 μm, the SiC whiskers will be broken during manufacturing and will not remain in the product. Therefore, the average length of SiC whiskers in the ceramic is determined to be 10 to 100 μm, and in order to leave SiC whiskers with such an average length in the ceramic, SiC with an average length of 110 to 500 μm is used as a raw material powder. Since it is necessary to use voice force, Si is used as the raw material powder.
The average length of C whiskers was determined to be 10 to 500 μm.

また、このSiCホイスカの含有−1(配合量)が5%
(容量チ、以下同様)未満ではセラミックの強度向上が
望めず、一方それが40%を超すと、焼結性が低下する
ようになることから、その含有量(配合量)を5〜40
チと定めた。
In addition, the content of this SiC whisker -1 (compounding amount) is 5%
If the capacity is less than 40%, no improvement in the strength of the ceramic can be expected, while if it exceeds 40%, the sinterability will decrease.
It was decided that

(b)  TiN TiNには、焼結を活性化させるとともに、粒成長を抑
制して緻密な焼結体を形成し、もって焼結体の硬度およ
び、特に強度(靭性)を向上させる働きがあるが、その
含有量(配合it)が5%未満ではTiN添加の効果が
十分に現われず、一方それが30%を超すと、かえって
焼結性が低下することから、その含有量(配合量)を5
〜30%と定めた。
(b) TiN TiN has the function of activating sintering and suppressing grain growth to form a dense sintered body, thereby improving the hardness and especially the strength (toughness) of the sintered body. However, if the content (mixture it) is less than 5%, the effect of TiN addition will not be sufficiently exhibited, while if it exceeds 30%, the sinterability will deteriorate, so the content (mixture amount) 5
It was set at ~30%.

(C)  添加成分 MgO%AεNおよびY2O3のうちの16以上からな
る添加成分には、アルミナ基セラミックの焼結性を高め
る作用があるので、基材のアルミナに随意に添加される
が、その含有量(配合りが4%を超えると、セラミック
の硬さが低下し、それによって切削工具としての耐摩耗
性も低下することから、その含有量(配合量)を4%以
下と定めた。
(C) Additive component MgO% The additive component consisting of 16 or more of AεN and Y2O3 has the effect of increasing the sinterability of the alumina-based ceramic, so it is optionally added to the alumina base material, but its content If the amount (compounding amount) exceeds 4%, the hardness of the ceramic decreases, and the wear resistance as a cutting tool decreases accordingly, so the content (compounding amount) was determined to be 4% or less.

B  SiCホイスカの前処理 原料粉末として使用するSiCホイスカに、空気中で加
熱する前処理を施すと、その中に混在している遊離カー
ボンがCOやCO2となって除去されて、SiCホイス
カは活性化されるが、その温度が300℃未満であるか
、あるいは加熱時間が30分未満であると、遊離カーボ
ンと酸素との反応が十分連行しないために、遊離カーボ
ンが十分に除去されず、一方前記温度が1000℃を超
すか、あるいは加熱時間が5時間を超えると、SiCホ
イスカ自体の表面も僅かに酸化されて、その活性が逆に
低下するようになることから、SiCホイスカの前記加
熱温度および加熱時間をそれぞれ300〜1000℃お
よび30分〜5時間と定めた。
B Pretreatment of SiC Whiskers When the SiC whiskers used as raw material powder are pretreated by heating in air, free carbon mixed therein is removed as CO and CO2, and the SiC whiskers become active. However, if the temperature is less than 300°C or the heating time is less than 30 minutes, the free carbon will not be sufficiently removed because the reaction between the free carbon and oxygen will not be sufficiently entrained. If the temperature exceeds 1000°C or the heating time exceeds 5 hours, the surface of the SiC whisker itself will be slightly oxidized, and its activity will decrease. The heating time was determined to be 300 to 1000°C and 30 minutes to 5 hours, respectively.

C混合粉末の調製および成形方法 SiCホイスカは、セラミック製造中、特に混合によっ
て壊れ易いので、これを長時間の強い混合にさらすこと
は避けなければならず、したがってこの発明では、Si
Cホイスカ以外の原料粉末を予め十分混合したのち、そ
の混合粉末にSiCホイスカをできるだけ壊さないよう
に添加、混合するのが肝要である。
Preparation and Forming Method of C Mixed Powder Since SiC whiskers are easily broken during ceramic manufacturing, especially by mixing, it must be avoided to expose them to intense mixing for long periods of time, and therefore in this invention, SiC whiskers are
It is important to thoroughly mix the raw material powders other than the C whiskers in advance, and then add and mix the SiC whiskers to the mixed powder so as not to destroy them as much as possible.

ついで、このようにして調℃された混合粉末はその1ま
ホットプレスてより焼結されるか、あるいは機械プレス
または冷間静水圧プレス法のような通常の成形法によっ
て圧粉体に成形された後、焼結される。
The mixed powder thus adjusted is then sintered by hot pressing, or formed into a green compact by a conventional forming method such as mechanical pressing or cold isostatic pressing. After that, it is sintered.

D 焼結法 前記圧粉体は、一般に、真空中あるいは不活性ガス雰囲
気の下で、温度:1650〜1850℃、圧カニ1〜1
5 k41/myn2に30分〜3時間保持するホット
プレス、あるいは同様な温度に、全体としてやはり同様
な時間保持する真空焼結と圧カニ 1000〜2000
気圧の不活性ガス雰囲気下の熱間静水圧プレス(HIP
)とを組み合わせた方法によって焼結される。
D Sintering method The green compact is generally sintered in a vacuum or under an inert gas atmosphere at a temperature of 1650 to 1850°C and a pressure crab of 1 to 1.
5 Hot press held at k41/myn2 for 30 minutes to 3 hours, or vacuum sintering and pressure crab held at similar temperatures for generally similar times 1000-2000
Hot isostatic pressing (HIP) under an inert gas atmosphere at atmospheric pressure
) is sintered by a method combining

〔実施例〕〔Example〕

ついで、この発明のセラミックおよびその製造方法を実
施例によって説明する。
Next, the ceramic of the present invention and its manufacturing method will be explained with reference to examples.

原料粉末として、平均粒径:0.2μmのA12o5粉
末、同0.8μmのTiN粉末、同0.5μnのMgO
粉末、同2.5pmのAIN粉末、同1.5 p mの
Y2O。
As raw material powders, A12o5 powder with an average particle size of 0.2 μm, TiN powder with an average particle size of 0.8 μm, and MgO with an average particle size of 0.5 μm.
powder, 2.5 pm AIN powder, 1.5 pm Y2O.

粉末、および30〜120μmにわたる種々の長さの結
晶からなるSiCホイスカを用意し、そのSiCホイス
カを超音波振動機でほぐしてから、これに、空気中で、
第1表に示される温度および時間に保持する熱処理を施
す一方、他の原料粉末、すなわちAl2O3粉末、Ti
N粉末、MgO粉末、AQN粉末、Y2O3粉末をボー
ルミルで72時時間式混合し、この混合粉末と、前記熱
処理を施したSiCホイスカとを、ロータリ式回転機に
よシ、SiCボイス力が壊れないように軽(30分間混
合して、第1表に示される配合組成を有する混合粉末を
調製した。
SiC whiskers made of powder and crystals of various lengths ranging from 30 to 120 μm are prepared, the SiC whiskers are loosened with an ultrasonic vibrator, and then, in air,
While performing heat treatment at the temperature and time shown in Table 1, other raw material powders, namely Al2O3 powder, Ti
N powder, MgO powder, AQN powder, and Y2O3 powder are mixed in a ball mill for 72 hours, and this mixed powder and the heat-treated SiC whiskers are put into a rotary rotary machine so that the SiC voice force does not break. The mixture was mixed for 30 minutes to prepare a mixed powder having the composition shown in Table 1.

ついで、このような混合粉末をプレス成形して得た圧粉
体を、第1表に示される方法および条件の下に焼結する
ことによって、本発明法1〜9、比較法1〜3、および
従来法を実施し、それぞれ配合組成と実質的に同一の成
分組成を有する本発明セラミック1〜9、比較セラミッ
ク1〜3、および従来セラミックを製造した。
Next, the green compact obtained by press-molding such a mixed powder is sintered according to the method and conditions shown in Table 1 to obtain methods 1 to 9 of the present invention, comparative methods 1 to 3, and Then, the conventional method was carried out to produce Ceramics 1 to 9 of the present invention, Comparative Ceramics 1 to 3, and Conventional Ceramic, each having substantially the same composition as the compounded composition.

なお、比較法1〜3は、いずれも製造条件のうちのいず
れかの条件(第1表中に※印で示す)がこの発明の範囲
から外れた条件で行ったものである。
In addition, Comparative Methods 1 to 3 were all conducted under conditions in which one of the manufacturing conditions (indicated by * in Table 1) was outside the scope of the present invention.

ついで、この結果得られた各種のセラミックについて、
JIS規格に基づく方法によシ、硬さくロックウェル硬
さ、Aスケール)および抗折力(kg/ff1J+2)
を測定するとともに、これを切削チップとして用い、切
削性能を評価する目的で、チップ形状: 5NGN 1
20408(ISO規格サイズ)被削材:Fe12の角
材、 切削速度:320m/ma。
Next, regarding the various ceramics obtained as a result,
Hardness (Rockwell hardness, A scale) and transverse rupture strength (kg/ff1J+2)
In order to measure and evaluate the cutting performance using this as a cutting tip, the tip shape: 5NGN 1
20408 (ISO standard size) Work material: Fe12 square material, Cutting speed: 320m/ma.

一刀あたりの送り二016驕/刃、 切込み:1u1 の条件の下に鋳鉄角材の単刃によるフライス切削試験を
実施し、逃げ面摩耗幅:vBが0.3朋に達するまでの
時間を測定して、これを各切削チップの寿命とした。こ
れらの測定結果も合わせて第1表に示した。
A milling test was conducted using a single blade on a cast iron square material under the conditions of feed per blade of 2016/tooth and depth of cut: 1u1, and the time required for flank wear width: vB to reach 0.3 mm was measured. This was taken as the lifespan of each cutting tip. These measurement results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜9によって製
造された本発明セラミック1〜9は、いずれも従来法に
よって製造された従来セラミックおよび製造条件のうち
のいずれかの条件がこの発明の範囲から外れた比較法1
〜3によって製造された比較セラミック1〜3よシも高
い硬さと著しく大きい抗折力を有し、その結果切削試験
においては、従来セラミックおよび比較セラミック1〜
3よシも遥かに長い寿命が得られ、しかも従来セラミッ
クおよび比較セラミック1〜3では切刃に欠損を生じた
のに対し、本発明セラミックでは切刃が正常な摩耗を示
すことがわかる。
From the results shown in Table 1, it can be seen that the ceramics 1 to 9 of the present invention manufactured by the methods 1 to 9 of the present invention are the conventional ceramics manufactured by the conventional method and any of the manufacturing conditions of the present invention. Comparative method 1 outside the scope of
Comparative Ceramics 1 to 3 manufactured by Comparative Ceramics 1 to 3 have higher hardness and significantly greater transverse rupture strength, and as a result, in cutting tests, compared to conventional ceramics and Comparative Ceramics 1 to 3.
It can be seen that a much longer life is obtained for the ceramics of the present invention, and that the conventional ceramics and Comparative Ceramics 1 to 3 suffered damage to the cutting edges, whereas the cutting edges of the ceramics of the present invention show normal wear.

以上述べた説明から明らかなように、この発明の方法に
よれば、高い硬さと靭性を有するアルミナ基セラミック
を製造することができ、したがって、このような特性を
有するこの発明のアルミナ基セラミックは、フライス切
削やならい切削などの衝撃や大きな負荷を受けるような
条件下で切削工具として用いても、著しく長期にわたっ
て安定した切削性能を発揮することができる。
As is clear from the above description, according to the method of the present invention, an alumina-based ceramic having high hardness and toughness can be produced. Therefore, the alumina-based ceramic of the present invention having such characteristics is Even when used as a cutting tool under conditions where it is subject to impact or large loads, such as during milling or profile cutting, it can exhibit extremely stable cutting performance over a long period of time.

Claims (2)

【特許請求の範囲】[Claims] (1)平均長さ10〜100μmを有する炭化珪素ホイ
スカ:5〜40%、 窒化チタン:5〜30%、 アルミナと不可避不純物、またはアルミナ および、酸化マグネシウム、窒化アルミニ ウム、酸化イツトリウムのうちの1種以上 4%以下と不可避不純物:残り、 からなる組成(以上、容量%)を有する切削工具用アル
ミナ基セラミック。
(1) Silicon carbide whiskers having an average length of 10 to 100 μm: 5 to 40%, titanium nitride: 5 to 30%, alumina and unavoidable impurities, or alumina and one of magnesium oxide, aluminum nitride, and yttrium oxide. An alumina-based ceramic for cutting tools having a composition (volume %) consisting of 4% or more and the remaining unavoidable impurities.
(2)炭化珪素ホイスカを空気中、温度:300〜10
00℃において30分〜5時間加熱保持したのち冷却し
、ついでこのように処理した炭化珪素ホイスカを、アル
ミナ粉末と窒化チタン粉末との混合粉末、またはアルミ
ナ粉末と窒化チタン粉末と、酸化マグネシウム粉末、窒
化アルミニウム粉末および酸化イットリウム粉末のいず
れか1種以上との混合粉末と、 平均長さ10〜500μmを有する炭化珪素ホイスカ:
5〜40%、 窒化チタン粉末:5〜30%、 アルミナ粉末、またはアルミナ粉末と、酸化マグネシウ
ム粉末、窒化アルミニウム粉末および酸化イットリウム
粉末のうちの1種以上4%以下:残り、 からなる配合組成(以上、容量%)に配合し、混合して
混合粉末を調製したのち、圧粉体に成形し、つぎにこの
圧粉体をホットプレス、あるいは真空焼結および熱間静
水圧プレスにより焼結することを特徴とする、切削工具
用アルミナ基セラミックの製造方法。
(2) Silicon carbide whisker in air, temperature: 300-10
After heating and holding at 00°C for 30 minutes to 5 hours, the silicon carbide whisker thus treated is mixed with a mixed powder of alumina powder and titanium nitride powder, or alumina powder and titanium nitride powder, magnesium oxide powder, Mixed powder with one or more of aluminum nitride powder and yttrium oxide powder, and silicon carbide whiskers having an average length of 10 to 500 μm:
5 to 40%, titanium nitride powder: 5 to 30%, alumina powder, or at least 4% of one or more of alumina powder, magnesium oxide powder, aluminum nitride powder, and yttrium oxide powder: the remainder; After mixing to prepare a mixed powder, it is formed into a green compact, and then this green compact is sintered by hot pressing, vacuum sintering, and hot isostatic pressing. A method for producing an alumina-based ceramic for cutting tools, characterized by:
JP61246186A 1986-10-16 1986-10-16 Alumina-based ceramic cutting tool with high toughness Expired - Lifetime JPH0832584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246186A JPH0832584B2 (en) 1986-10-16 1986-10-16 Alumina-based ceramic cutting tool with high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246186A JPH0832584B2 (en) 1986-10-16 1986-10-16 Alumina-based ceramic cutting tool with high toughness

Publications (2)

Publication Number Publication Date
JPS63100055A true JPS63100055A (en) 1988-05-02
JPH0832584B2 JPH0832584B2 (en) 1996-03-29

Family

ID=17144793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246186A Expired - Lifetime JPH0832584B2 (en) 1986-10-16 1986-10-16 Alumina-based ceramic cutting tool with high toughness

Country Status (1)

Country Link
JP (1) JPH0832584B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433069A (en) * 1987-07-27 1989-02-02 Kobe Steel Ltd Shaft shaped ceramic cutting tool
EP0625130A1 (en) * 1991-12-03 1994-11-23 Advanced Composite Materials Pressureless sintering of whisker reinforced alumina composites.
EP0701978A3 (en) * 1994-09-13 1998-09-09 Advanced Composite Materials Corporation Pressureless sintering of whisker reinforced alumina composites
US7041266B1 (en) 2002-07-10 2006-05-09 Advanced Composite Materials Corp. Silicon carbide fibers essentially devoid of whiskers and products made therefrom
US9688583B2 (en) 2006-03-30 2017-06-27 Advanced Composite Materials, Llc Composite materials and devices comprising single crystal silicon carbide heated by electromagnetic radiation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235266A (en) * 1986-04-02 1987-10-15 日本特殊陶業株式会社 Fiber reinforced composite material for tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235266A (en) * 1986-04-02 1987-10-15 日本特殊陶業株式会社 Fiber reinforced composite material for tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433069A (en) * 1987-07-27 1989-02-02 Kobe Steel Ltd Shaft shaped ceramic cutting tool
EP0625130A1 (en) * 1991-12-03 1994-11-23 Advanced Composite Materials Pressureless sintering of whisker reinforced alumina composites.
EP0625130A4 (en) * 1991-12-03 1995-03-22 Advanced Composite Materials Pressureless sintering of whisker reinforced alumina composites.
EP0701978A3 (en) * 1994-09-13 1998-09-09 Advanced Composite Materials Corporation Pressureless sintering of whisker reinforced alumina composites
US7041266B1 (en) 2002-07-10 2006-05-09 Advanced Composite Materials Corp. Silicon carbide fibers essentially devoid of whiskers and products made therefrom
US9688583B2 (en) 2006-03-30 2017-06-27 Advanced Composite Materials, Llc Composite materials and devices comprising single crystal silicon carbide heated by electromagnetic radiation

Also Published As

Publication number Publication date
JPH0832584B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPS638075B2 (en)
JPS60246268A (en) Sialon base ceramic
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JPH02160674A (en) Inserted cutting blade made of oxide-based ceramic
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JPS59232971A (en) Abrasion resistant sialon base ceramics
JP2778189B2 (en) Fracture resistant silicon nitride based sintered material with high toughness and high strength
JPS6360164A (en) Silicon nitride sintered body for cutting tool and manufacture
JPH0372031B2 (en)
JP2805957B2 (en) Aluminum oxide based ceramic cutting tool with high strength and high toughness
JPS63225574A (en) Ceramic sintered body for cutting tool member and manufacture
JPS6257596B2 (en)
JPH0379308B2 (en)
JPS59232972A (en) Abrasion resistant sialon base ceramics
JPH0764640B2 (en) Method of manufacturing silicon nitride sintered body for cutting tool
JPH07172906A (en) Ceramic sintered compact
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPS59213676A (en) High strength silicon nitride sintered body and manufacture
JPS6197163A (en) Manufacture of zirconium oxide base ceramics for blade tool
JPH0537944B2 (en)
JPH03242380A (en) Sintered body of sialon base and production thereof