JPS59213676A - High strength silicon nitride sintered body and manufacture - Google Patents

High strength silicon nitride sintered body and manufacture

Info

Publication number
JPS59213676A
JPS59213676A JP58088060A JP8806083A JPS59213676A JP S59213676 A JPS59213676 A JP S59213676A JP 58088060 A JP58088060 A JP 58088060A JP 8806083 A JP8806083 A JP 8806083A JP S59213676 A JPS59213676 A JP S59213676A
Authority
JP
Japan
Prior art keywords
sintered body
sintering
silicon nitride
nitrides
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088060A
Other languages
Japanese (ja)
Inventor
幹夫 福原
前川 善孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58088060A priority Critical patent/JPS59213676A/en
Priority to EP19840104449 priority patent/EP0123292B1/en
Priority to DE8484104449T priority patent/DE3483588D1/en
Priority to CA000452515A priority patent/CA1223013A/en
Priority to US06/602,555 priority patent/US4609633A/en
Publication of JPS59213676A publication Critical patent/JPS59213676A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、耐熱性構造用材料、機械工作用材料特に切削
工具、耐摩耗材料及び耐食性材料に適する高強度窒化硅
素焼結体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength silicon nitride sintered body suitable for heat-resistant structural materials, machining materials, particularly cutting tools, wear-resistant materials, and corrosion-resistant materials, and a method for producing the same.

窒化硅素は、共有結合性の強い化合物であり、高温で分
解及び蒸発したり、溝成原子の自己拡散係数が小さいた
めに反応性が低かったり、更にはイオン結晶及び金属結
晶に比べて粒界エネルギーと表面エネルギーの比が大き
いことから非常暑こ焼結し難い材料である。このために
窒化硅素を無加圧普通焼結法で焼結しても緻密な焼結体
が得られず一般にはIvigO、Y2O:1 、Al 
203 、AIN等の焼結助剤を添加して反応焼結もし
くは液相焼結を利用した加圧焼結又は熱間静水圧加圧法
(HIP )等によって緻密な焼結体を得ている。この
ようにMg02Y203 、Al 203 、 AI 
N等の焼結助剤を添加したSi3N4焼結体は、5is
N4の粒界相に低級硅酸塩が生じ、この低級硅酸塩が低
温で液相となって5LIN4の焼結を促進させる反面焼
結後も粒界相に残存して焼粘体の高温強度を低下させる
という欠点がある。
Silicon nitride is a compound with strong covalent bonds, and it decomposes and evaporates at high temperatures, has low reactivity due to the small self-diffusion coefficient of grooved atoms, and is more sensitive to grain boundaries than ionic crystals and metal crystals. It is a material that is extremely difficult to sinter due to its large ratio of energy to surface energy. For this reason, even if silicon nitride is sintered by the pressureless ordinary sintering method, a dense sintered body cannot be obtained, and generally IvigO, Y2O:1, Al
No. 203, a dense sintered body is obtained by adding a sintering aid such as AIN and pressure sintering using reaction sintering or liquid phase sintering, or hot isostatic pressing (HIP). In this way, Mg02Y203, Al203, AI
The Si3N4 sintered body to which a sintering aid such as N is added is 5is
Lower silicates are generated in the grain boundary phase of N4, and this lower silicate becomes a liquid phase at low temperatures and promotes the sintering of 5LIN4. On the other hand, it remains in the grain boundary phase even after sintering and reduces the high temperature strength of the sintered viscous material. It has the disadvantage of lowering the

この欠点を改良したものにSi3N4粒界相に残存して
いる低級硅酸塩を熱処理によって結晶化して焼結体の強
度を高める方法も提案されている。しかし、これらの低
級硅酸塩又はこの低級硅酸塩を熱処理によって結晶化し
た焼結助剤を主体とする第2相は、Si3N4焼結体が
小さい形状で試験的に焼結するときにはSi3N4粒界
相に割合均一に分散しているために大きな問題が生じな
かったが工業化を進めるために復り(iな形状又は大型
の形状のものを力′ε結するとSi3N4が焼結し丹い
材料のために焼結助剤との反応性が悪かったり、焼結炉
の大型化によって生じる冷却速度の問題から酸化物系焼
結助剤を主体とする第2相がSi3N4粒界相に不均一
に分布して偏析するという問題が生じる。このようにS
i3N4と焼結助剤との反応性の悪さ及び焼結助fii
Jを主体とする第2相の偏析のために5i3N4jすT
、粘体内の諸4’、r性のバラツキが大きくなったり、
強度低下の原因になることから工業化し雑いという技術
的問題がある。
In order to improve this drawback, a method has also been proposed in which lower silicates remaining in the Si3N4 grain boundary phase are crystallized by heat treatment to increase the strength of the sintered body. However, when the Si3N4 sintered body is experimentally sintered in a small shape, the second phase, which is mainly composed of these lower silicates or a sintering aid made by crystallizing these lower silicates by heat treatment, becomes Si3N4 grains. This did not cause any major problems because it was dispersed relatively uniformly in the interfacial phase, but in order to promote industrialization, it was changed (if a shape or a large shape is force-sintered, Si3N4 will sinter and become a tough material). Due to the poor reactivity with the sintering aid, and the problem of cooling speed caused by the enlargement of the sintering furnace, the second phase mainly composed of the oxide-based sintering aid is non-uniform in the Si3N4 grain boundary phase. The problem arises that S is distributed and segregated.
Poor reactivity between i3N4 and sintering aid and sintering aid fii
5i3N4j due to the segregation of the second phase mainly composed of J
, variations in various 4' and r properties within the viscous material become large,
There is a technical problem that it is difficult to industrialize because it causes a decrease in strength.

本発明は、上記のような欠点及び問題点を解決し、S 
i 3N4と焼結助剤との反応性を容易にすることによ
って複雑な形状又は大型の形状の焼結体内で焼結助剤を
主とする第2相の分散を均一にし、しかも第2相とSi
3N4との結合強度を高めること(こまって焼結体の諸
特性が向上した窒化硅素焼結体及びその製造方法の提供
を目的Oこしたものである。
The present invention solves the above-mentioned drawbacks and problems, and
i By facilitating the reactivity between 3N4 and the sintering aid, the second phase, which is mainly composed of the sintering aid, can be uniformly dispersed in a sintered body with a complex or large shape, and the second phase can be easily dispersed. and Si
The purpose of this invention is to provide a silicon nitride sintered body with improved bonding strength with 3N4 (and thus with improved properties of the sintered body) and a method for manufacturing the same.

本発明の高強度窒化硅素焼結体は、希土類元素の窒化物
及び酸窒化物の少なくともL種0.5〜252[jit
%と周期律表のIIa族元素の酸化物、窒化物及び酸窒
化物の少なくとも1種0.5〜25重量%と残り窒化硅
素と不可避不純切から成る窒化硅素焼結体である。この
ように窒素を含有した焼結助剤の内特に希土類元素の窒
素含有化合物は、酸化物を主体にした焼結助剤に比較し
て分解温度が低く、低温で活性化になるために硬質相で
あるSi3N4との反応性を高め、又この反応ではアニ
オンイオンの移動が非常に少ないために5isN4中に
部分的にせよ窒素含有焼結助剤が固溶可能となると共に
Si3N4粒界に焼結助剤が均一に分散して焼結が促進
され、焼結後は焼結助剤中に含有している窒素含有焼結
助剤を主体として形成される第2相とS i 3N4硬
質相との結合強度を高めるために酸化物系焼結助剤Qこ
みられる焼結助剤の偏析、焼きむら、残留気孔及びSi
3N4粒子の異常成長等の弊害を防止することができし
かも第2相とSi3N4との結晶異方性から生じる内部
応力も小さくなるため(・こ複雑な形状又は大型の形状
のものでも容易に均質に焼結できると共番こ緻密で寸法
精度の高い高強度焼結体の作製が容易となる。ここで使
用する焼結助剤の内、希土類元素の窒化物及び酸窒化物
は、周期律表のHa族元素の化合物と共に焼結過程にお
いてSi3N4粒界を均一に浸透分散しなからSi3N
4粒千を取り囲んで焼結助剤を主体とする均質な第2相
の形成とこの第2相中の窒素とSi3N4中の窒素どの
相互拡散によりS i 3N4と第2相との結合強化に
寄与すると共に第2相の偏析を防止し、焼結後は、焼結
体の高温強度の向上を含めた諸特゛1″iミを高めてい
る。一方焼結助剤として使用する周期律表のIIa族元
素の酸化物、窒化物及び酸窒化物は、希土類元素の化合
物よりも5i3N4の焼結促進効果が強く、焼結助剤を
主体とする均質な第2相の形成とこの第2相中の希土類
元素とS i 3N4中の硅素との結合の媒介的作用と
なって焼結体の諸特性の向上に寄与している。
The high-strength silicon nitride sintered body of the present invention contains at least L species of rare earth element nitrides and oxynitrides of 0.5 to 252[jit
%, 0.5 to 25% by weight of at least one of oxides, nitrides and oxynitrides of group IIa elements of the periodic table, and the remainder silicon nitride and unavoidable impurities. Among these nitrogen-containing sintering aids, nitrogen-containing compounds of rare earth elements in particular have a lower decomposition temperature than sintering aids based on oxides, and are activated at low temperatures, making them hard. It increases the reactivity with the Si3N4 phase, and since the movement of anion ions is very small in this reaction, the nitrogen-containing sintering aid can be dissolved even partially in 5isN4, and it is sintered at the Si3N4 grain boundaries. The sintering aid is uniformly dispersed to promote sintering, and after sintering, a second phase formed mainly from the nitrogen-containing sintering aid contained in the sintering aid and an Si 3N4 hard phase are formed. Oxide-based sintering aid Q is used to increase the bond strength with the sintering aid.
It is possible to prevent harmful effects such as abnormal growth of 3N4 particles, and the internal stress caused by the crystal anisotropy of the second phase and Si3N4 is also reduced. If sintering is possible, it becomes easy to produce a high-strength sintered body that is dense and has high dimensional accuracy.Among the sintering aids used here, nitrides and oxynitrides of rare earth elements are Because Si3N4 grain boundaries are not uniformly penetrated and dispersed in the sintering process together with the Ha group element compounds shown in the table, Si3N
Formation of a homogeneous second phase mainly composed of sintering aid surrounding the four grains, and mutual diffusion of nitrogen in this second phase and nitrogen in Si3N4 strengthen the bond between Si3N4 and the second phase. It also contributes to the prevention of segregation of the second phase, and after sintering, improves various properties of the sintered body, including improvement in high-temperature strength.On the other hand, the periodic rule used as a sintering aid The oxides, nitrides, and oxynitrides of Group IIa elements shown in the table have a stronger effect of accelerating sintering of 5i3N4 than compounds of rare earth elements, and they promote the formation of a homogeneous second phase mainly composed of sintering aids. It serves as a mediating effect of the bond between the rare earth element in the two phases and the silicon in S i 3N4 and contributes to improving various properties of the sintered body.

本発明の高強度窒化硅素焼結体の製造方法は、出発原着
トとして出来るだけ微細なS i 3N4粉末を使用す
ることが望ましく、このSi3N4粉末に希土類元素の
窒化物及び酸窒化物の少なくとも1種の粉末0.5−・
25重51%と周期律表のIla族元素の酸化物、窒化
物及び酸窒化物の少なくとも1種の粉末0.5−25重
量%とを配合してもよく、又は希土類元素の窒化物及び
酸窒化物の少なくとも1aと周期律表のIla族元素の
酸化物、窒化物及び酸窒化物の少なくとも1種とからな
る複合化合物粉末とSi3N4粉末とを配合して出発原
料としてもよく、更には希土類元素の窒化物及び酸窒化
物の少なくとも1捕と周期律表のTla族元素の酸化物
、窒化物及び酸窒化物の少なくとも1種とSi3N4と
からなる複合化合物粉末とSi3N4粉末を出発原料と
して配合してもよく、特に複合化合物粉末を出発原料と
して使用すると焼結体の組構が柱状化又ζ才針状化する
のを抑制してアスペクト比の小さし・粒子を形成する傾
IAI &こあり、アスペクト比の小さい粒子形21y
:の・)3γ結体は、耐熱衝撃性が向上するので切削二
り具のような局部的に苛酷な熱衝撃が加わる用途りこ使
用する場合番こは複合化合物粉末を出発原料とするのが
望まし、い。
In the method for producing a high-strength silicon nitride sintered body of the present invention, it is desirable to use as fine a Si3N4 powder as possible as a starting material, and at least a rare earth element nitride and an oxynitride are added to the Si3N4 powder. 1 type of powder 0.5-・
51% by weight of 25% by weight and 0.5-25% by weight of at least one powder of oxides, nitrides and oxynitrides of group Ila elements of the periodic table, or nitrides and nitrides of rare earth elements. A composite compound powder consisting of at least 1a of oxynitride and at least one of oxides, nitrides and oxynitrides of group Ila elements of the periodic table and Si3N4 powder may be blended as a starting material; A composite compound powder consisting of at least one nitride and oxynitride of a rare earth element, at least one oxide, nitride, and oxynitride of a Tla group element of the periodic table, and Si3N4, and Si3N4 powder as starting materials. In particular, when a composite compound powder is used as a starting material, the structure of the sintered body can be suppressed from becoming columnar or acicular, and the aspect ratio can be reduced and particles can be formed. This is particle shape 21y with small aspect ratio.
:の・)3γ solids have improved thermal shock resistance, so when using them in applications where severe localized thermal shock is applied, such as in cutting tools, it is recommended to use composite compound powder as the starting material. desirable.

本発明の高強度老化硅素焼結体の製造方法において、出
発原料として使用する3i3N4粉末は、高純度のもの
が望まし、いがSi3N4粉末の不純物として含有しζ
いるAI、Fe等が2重量%以下混在していたり、又は
Si3N4粉末粒子の表面に酸素が吸着して5102を
形成していたり、更(こは配合した粉末を容器(二人れ
てAl2O3ボール、スケールボール・又は;円便合金
ボール等で混合粉砕するとき(こ容器及びこれらのボー
ルから混入してくる不純物が5 ’rR、f−3,:%
以下ならば:!J7J?i助剤の量及び焼結助剤として
使用する希十う111元素窒化物及び酸窒化物と周期律
表のlIa族元素の酸化物、窒化物及び酸窒化物の窒素
含有量を調整することにより充分に本発明の高強度窒化
硅素焼結体の諸特性を保持することができる。例えば混
合粉砕どきに使用する超硬合金ボール等から混入する周
期律表の■a族元素、Va族元素及び■a族元素の炭化
物及び窒化物等は、本発明の焼結体において耐摩耗性の
向−にに役立つ傾向があり、出発原料粉末と混合粉砕ど
きの容器及びボールから混入する5i02.AI及びF
e族元素は、硬質相であるSi3N4中の硅素と窒素の
相互拡散反応を促進し、特に5102はS i 3N4
本来の分解温度を低下させるためにS i 3N4と焼
結助剤との反応を低温側で生じさせて焼結の促進と緻密
化に寄与する傾向にある。又、周期律表のIa族元素で
あるL ir Na T Kの酸化物、窒化物、酸窒化
物は、周期律表のIla族元素の酸化物、窒化物、酸窒
化物と同様に焼結の促進と緻密化に寄与した後一部は分
解除去されて、周期律表のIla族元素の酸化物、窒化
物、酸窒化物の補助的役割をするので本発明の高強度窒
化硅素焼結体の諸特性を低下させない範囲内で添加させ
ることもできる。ここで使用する出発原料としてのSi
3]’34は、α−8i3N4、β−3i3N4、非晶
質のSi3N4又はこれらの結晶構造の異なる3 13
T心を任意の比率に混合したものを使用してもよい。又
焼結助剤としての希土類元素の窒化物及び酸窒化物の少
なくともL種と周期律表のHa族元素の11勾化物、窒
化物及び酸窒化物の少なくともliの内、窒素含有化合
物は定比化合物又は不定比([;自Q’sを使用しても
よく、この内特に希土類元素の窒素含有化合物は大気中
で酸化され易いので窒素ガス等の不活FtガスJd人の
状態で取扱う必要があるが周期律表のla族元素との複
合化合物にするのが望ましい。
In the method for producing a high-strength aged silicon sintered body of the present invention, the 3i3N4 powder used as a starting material is preferably of high purity, and ζ is contained as an impurity in the Si3N4 powder.
If less than 2% by weight of AI, Fe, etc. are mixed in, or if oxygen is adsorbed to the surface of the Si3N4 powder particles to form 5102, or if the blended powder is placed in a container (two people put it in an Al2O3 ball). When mixing and pulverizing with scale balls, round alloy balls, etc. (impurities mixed in from this container and these balls are 5'rR, f-3,:%
If below:! J7J? Adjusting the amount of the i-adjuvant and the nitrogen content of the rare 111 element nitrides and oxynitrides and the oxides, nitrides and oxynitrides of the IIa group elements of the periodic table used as sintering aids. As a result, various properties of the high-strength silicon nitride sintered body of the present invention can be sufficiently maintained. For example, carbides and nitrides of elements of Group A, Group Va, and Group A of the periodic table, which are mixed in from cemented carbide balls used during mixing and pulverization, have no wear resistance in the sintered body of the present invention. 5i02. AI and F
Group e elements promote the interdiffusion reaction between silicon and nitrogen in the hard phase Si3N4, and 5102 in particular promotes the interdiffusion reaction between silicon and nitrogen in Si3N4, which is a hard phase.
In order to lower the original decomposition temperature, the reaction between S i 3N4 and the sintering aid tends to occur on the low temperature side, contributing to the promotion of sintering and densification. In addition, oxides, nitrides, and oxynitrides of L ir Na T K, which are elements of group Ia of the periodic table, can be sintered in the same way as oxides, nitrides, and oxynitrides of elements of group Ila of the periodic table. After contributing to the promotion and densification of silicon nitride, some of it is decomposed and removed and plays an auxiliary role as oxides, nitrides, and oxynitrides of Group Ila elements in the periodic table. They can also be added within a range that does not reduce the various properties of the body. Si as the starting material used here
3] '34 is α-8i3N4, β-3i3N4, amorphous Si3N4, or 3 13 with a different crystal structure of these
A mixture of T cores in any ratio may be used. In addition, among at least L types of nitrides and oxynitrides of rare earth elements as sintering aids and at least 11 gradients, nitrides, and oxynitrides of Ha group elements of the periodic table, nitrogen-containing compounds are Specific compounds or non-stoichiometric compounds ([;selfQ's may be used; among these, nitrogen-containing compounds of rare earth elements are particularly susceptible to oxidation in the atmosphere, so they are handled in the state of inert Ft gases such as nitrogen gas. Although it is necessary, it is desirable to form a complex compound with an element of Group I of the periodic table.

本発明の製造方法もこおいて、各種の出発F(℃料を混
合又は混合粉砕した粉末を混合粉末の状態で焼結用モー
ルトエ詰めて粉末圧粉体にしたり、成形モールドで成形
体にしたり、成形モールドで成形体にして後h′誘、′
1温度より低い′/1(jt度で子機焼結したり又は予
備焼結後成形加工した)&形体を真空を含めた非「i、
’2化性雰囲気中で普通焼結(無加圧焼結も含む)、高
周波加圧焼結、通電加圧焼結、ガス加圧焼結及びホット
プレス等の方法により焼結したり又はこれらの焼結方法
と静水圧加圧法を組合せて焼結体の緻密化を促進する方
法もできる。焼結温度は、焼結方法又は配合成分によっ
ても異なるが1500℃〜1900℃の温度内で充分に
緻密な焼結体が得られる。
In the manufacturing method of the present invention, various starting F(℃) materials are mixed or mixed and pulverized, and the mixed powder state is packed in a mold for sintering to make a powder compact, or a compact is made into a compact with a forming mold, After making it into a molded body in a mold,
Temperature lower than 1'/1 (sintered at jt degree or formed after preliminary sintering) & form in non-'i, including vacuum
'Sintering in a bicarbonate atmosphere using methods such as normal sintering (including pressureless sintering), high-frequency pressure sintering, energized pressure sintering, gas pressure sintering, and hot pressing; It is also possible to combine the sintering method and the hydrostatic pressing method to promote densification of the sintered body. Although the sintering temperature varies depending on the sintering method or the ingredients, a sufficiently dense sintered body can be obtained at a temperature of 1500°C to 1900°C.

ここで使用してきた希土類元素とはSc、Y、La。The rare earth elements used here are Sc, Y, and La.

Ce、Pr+Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er。
Ce, Pr+Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er.

Tm、Yb及びLuの177元素総称し、周期律表の]
1 a族元素とはBe +Mg r Ca + Sr 
、 Ba及びRaの6元素を総称したものである。
A collective term for the 177 elements of Tm, Yb and Lu, in the periodic table]
1. Group a elements are Be + Mg r Ca + Sr
, Ba, and Ra.

ここで数値限定した理由について説明する二\ノ希土類
元素の窒化物及び酸窒化物の少なくとも1種が0.5重
量c3(未満では焼結助剤を主体にして形成される第2
相の高温強度が低く、このために焼結体自体の強度も低
下し、25重量%を越えて多くなると相対的にS i 
3N4の量が少なくなって焼結体の硬さが低下して耐摩
耗性、耐熱性が低下するために0.5〜25重量%とし
た。
The reason for the numerical limitation will be explained here.If at least one of the nitrides and oxynitrides of two rare earth elements is less than 0.5 weight C3, the second
The high temperature strength of the phase is low, and therefore the strength of the sintered body itself is also reduced, and when the amount exceeds 25% by weight, the Si
Since the amount of 3N4 decreases, the hardness of the sintered body decreases, and the wear resistance and heat resistance decrease, so the content was set at 0.5 to 25% by weight.

周期律表のHa族元素の酸化物、窒化物及び酸窒化物の
少なくとも1種が0.5重量%未満ではS i 3N4
の焼結促進効果が弱く、25重量%を越えて多くなると
相対的にSi3N4の量が少なくなるのと焼結助剤を主
体にして形成される第2相中に低級硅酸塩が生じ易くて
焼結体の硬さ低下及び強度低下となるために0.5〜2
5重量%とした。
If at least one of oxides, nitrides, and oxynitrides of Ha group elements in the periodic table is less than 0.5% by weight, Si 3N4
The effect of promoting sintering is weak, and when the amount exceeds 25% by weight, the amount of Si3N4 becomes relatively small, and lower silicates are likely to occur in the second phase formed mainly from the sintering aid. 0.5 to 2 to reduce the hardness and strength of the sintered body.
The content was 5% by weight.

次に実施例に従って具体的に説明する。Next, a detailed explanation will be given according to an example.

実施例1 平均粒径1μInの5i3N4(約40%アモルファス
Si3N4とα−3i 3N4とβ−3i3N4の混在
)、平均粒径2pmの5i3N4(約95%α−3i 
3N4とβ−3i 3N4の混在)、平均粒径5μmの
S i 3N4(約70%α〜S i 3N4とβ−3
i 3N4の混在)とYN 、 Y303N 、MgO
、Mg 3N2及びMg4ON2 (7)各粉末を使用
して第1表に示した割合に各試料を配合し、配合したそ
れぞれの試料をヘキサン溶媒中WC基超硬合金製ボール
と共にステンレス製容器の中で混合粉砕した。得られた
混合粉末をBN粉末で被覆したl 00 rymX I
 00 turnの角形カーボンモールド中に充填し、
N2ガスで炉内を置換後150〜400刃の成形圧力、
1700℃〜1850℃の温度、60〜120分の保持
時間で加圧焼結した。各試料の製造条件を第1表に示し
、得られた焼結体を中心部と外周部に分けて約13 X
 13×5mmに切断し、切断した各試料の緒特性を従
来のY2O3−Al2O3−Si3N4系焼結体を比較
にして求め、その結果を第2表に示した。
Example 1 5i3N4 with an average particle size of 1 μIn (a mixture of about 40% amorphous Si3N4, α-3i 3N4 and β-3i3N4), 5i3N4 with an average particle size of 2 pm (about 95% α-3i
3N4 and β-3i 3N4), Si 3N4 with an average particle size of 5 μm (approximately 70% α ~ Si 3N4 and β-3
i 3N4 mixture) and YN, Y303N, MgO
, Mg3N2, and Mg4ON2 (7) Using each powder, mix each sample in the proportions shown in Table 1, and place each blended sample in a stainless steel container with a WC-based cemented carbide ball in a hexane solvent. It was mixed and ground. The obtained mixed powder was coated with BN powder l 00 rymX I
Filled in a 00 turn square carbon mold,
After replacing the furnace with N2 gas, molding pressure of 150 to 400 blades,
Pressure sintering was carried out at a temperature of 1700° C. to 1850° C. and a holding time of 60 to 120 minutes. The manufacturing conditions for each sample are shown in Table 1, and the obtained sintered body was divided into the center and the outer periphery.
The specimens were cut into 13 x 5 mm pieces, and the mechanical properties of each cut sample were determined by comparing with a conventional Y2O3-Al2O3-Si3N4-based sintered body, and the results are shown in Table 2.

以下余白 第2表の結果、本発明の高強度窒化硅素焼結体は、高硬
度で耐熱g:IN性及び破切靭性値(Kic)が高く、
比較品であるY20a −Al 203−3i 3N4
サイアロン系焼結体(こ比べて焼結体の中心部と外周部
の諸特性のバラツキが少なく大型の焼結体でも均質に焼
結できることが確認できた。ここで行った熱衝*試験は
、試料を各温度で2分保持後約20℃(常温)の水中に
試料を浸漬して試料にクラックが発生しないで酎“える
温度を示し、破壊@性値は、30kg荷重でのビツカー
ヌ圧痕から発生するクラック長さと圧痕の大きさ及びビ
ッカース硬さから求めた。又ここで得られた試料番号3
の外周部をX線回折及び蛍光X線によって確認したとこ
ろCo及びWが含有していることが明らかになり、しか
もWはタングステン硅化物を形成していると考えられた
As shown in Table 2 below, the high-strength silicon nitride sintered body of the present invention has high hardness, high heat resistance g:IN property, and high fracture toughness (Kic).
Comparison product Y20a -Al 203-3i 3N4
Sialon based sintered compact After holding the sample at each temperature for 2 minutes, the sample is immersed in water at approximately 20°C (room temperature) and the temperature at which the sample can be heated without cracking is shown. It was determined from the length of the crack generated, the size of the indentation, and the Vickers hardness. Also, sample number 3 obtained here
When the outer periphery of the material was confirmed by X-ray diffraction and fluorescent X-rays, it was found that Co and W were contained, and W was thought to form tungsten silicide.

実施例2 実施例Iで使用した1 it m Si 3N4とMg
SiN2゜YMgON、YSiO2N、YSi402N
5.YMgSi3ON5゜別g3N3及びYMg3Si
02Nsを用いて第3表のように配合し、実施例Iと同
様にして各試料の混合粉末を調整した。この混合粉末を
実施例1の製造条件に従って焼結し、得られた焼結体の
諸特性を実施例1と同様にして求め、その結果を第4表
に示した。
Example 2 1 it m Si 3N4 and Mg used in Example I
SiN2゜YMgON, YSiO2N, YSi402N
5. YMgSi3ON5° different g3N3 and YMg3Si
02Ns was blended as shown in Table 3, and the mixed powder of each sample was prepared in the same manner as in Example I. This mixed powder was sintered according to the manufacturing conditions of Example 1, and various properties of the obtained sintered body were determined in the same manner as in Example 1, and the results are shown in Table 4.

以下余白 実施例3 実施例1で使用した1μm5i3N4とイツトリウム化
合物及びマグネシウム化合物に更に周期律表のIIa族
の化合物及び希土類元素の化合物を用いて第5表のよう
に配合し、実施例1と同様にして各試料の混合粉末を調
整した。この混合粉末を実施例1の製造条件に従って焼
結し、得られた焼結体の緒特性を第6表に示した。焼結
体の緒特性は、実施例1と同様(こして求めた。
Below is a blank space Example 3 The 1μm5i3N4 used in Example 1, an yttrium compound, and a magnesium compound were further mixed with compounds of Group IIa of the periodic table and compounds of rare earth elements as shown in Table 5, and the same as in Example 1 was carried out. A mixed powder of each sample was prepared. This mixed powder was sintered according to the manufacturing conditions of Example 1, and the properties of the obtained sintered body are shown in Table 6. The properties of the sintered body were determined in the same manner as in Example 1.

以下余白 実施例4 実施例1で使用した1μm Si 3N4と不定比化合
物のYNo、85 、Y3(03N)0.95及びMg
5(N2)0.90とMgOを用いて第7表のように配
合し、実施例1と同様にして各試料の混合粉末を調整し
た。この混合粉末を実施例1の製造条件で焼結条件は約
10%N2ガヌ加圧焼結又はその後Arガス(こよるH
IP処理処理上って焼結し、得られた焼結体の緒特性を
第8表に示した。焼結体の緒特性は、実施例Iと同様に
して求めた。
Below is the margin Example 4 1μm Si 3N4 used in Example 1 and the non-stoichiometric compound YNo, 85, Y3 (03N) 0.95 and Mg
5(N2) 0.90 and MgO were blended as shown in Table 7, and the mixed powder of each sample was prepared in the same manner as in Example 1. This mixed powder was sintered under the manufacturing conditions of Example 1. The conditions were about 10% N2 pressure sintering or then Ar gas (H
Table 8 shows the properties of the sintered body obtained by IP treatment and sintering. The properties of the sintered body were determined in the same manner as in Example I.

以下余白 実施例5 実施例Iの試才十番号3、実施例2の試料番号13、実
施例3の試料番号19及び実施例4の試料番号32の本
発明焼結体に比リグ用としC実施例1と同様をこ焼結し
たY20a −Al 203− S i 3N4焼結体
を用い、それぞれの焼結体を中心部と外周部に切断した
後CIS基準5NP432及び5NCN54 ZTNに
成形して次の(ト)及び■条件にて切削試験を行って、
その結果を第9表に示した。
The following margins were used for the sintered bodies of the present invention, sample number 3 of Example I, sample number 13 of Example 2, sample number 19 of Example 3, and sample number 32 of Example 4. A Y20a-Al 203-S i 3N4 sintered body was sintered in the same manner as in Example 1, and each sintered body was cut into the center and outer periphery, and then molded into CIS standard 5NP432 and 5NCN54 ZTN. A cutting test was conducted under the conditions of (G) and ■.
The results are shown in Table 9.

(6)旋削による切削試験条件 被削材  Fe12  (350r%rgX]500m
yθ切削速度 600m/m i n 切り込み  1.51nm 送    リ         0.7mm/rev切
削時間  30m1n チップ形状 5NP432 σ3) ノライヌによる切削試験条件 彼1′川    肌焼’fi’jl (HRC45)黒
皮つき(刀削連J意270  rn/m i n切り込
み    4.5 πm デープル送り   G OOtrrrt1/m i n
−−一刀当りの送り 0.20  +、’B+、7 r
eVチップ形:l、I(5NCN54.2TN以下余白 第9表の結栗、本発明の高強度量化硅素焼結体は、旋削
による耐摩耗性及びフライス切削による耐欠損性におい
て比較品であるY2O3−Al 20i11−8i3N
4焼結体より優れており、しかも大きな形状に焼結した
焼結体の中心部と外周部との切削性能及び諸特性共番−
殆んど差がなく品質的にも非常に安定したものであるこ
とから大型の形状及び複雑な形状が多い耐熱性措造用材
料並びに多数個生産を要求される機械工作用材料の工業
的生産に適する材料及び製造方法であることが確認でき
た。
(6) Cutting test conditions by turning Work material Fe12 (350r%rgX] 500m
yθ Cutting speed 600m/min Depth of cut 1.51nm Feed 0.7mm/rev Cutting time 30m1n Chip shape 5NP432 σ3) Cutting test conditions by Noraine He1'kawa Skin hardening 'fi'jl (HRC45) With black skin (sword) Cutting chain 270 rn/min depth of cut 4.5 πm Daple feed G OOtrrrt1/min
--Feed per sword 0.20 +, 'B+, 7 r
eV chip type: L, I (5NCN54.2TN or less Margin shown in Table 9) The high-strength quantified silicon sintered body of the present invention is compared to Y2O3 in terms of wear resistance by turning and chipping resistance by milling. -Al 20i11-8i3N
4 Superior cutting performance and various characteristics between the center and outer periphery of a sintered body that is sintered into a large shape -
Because there is almost no difference and the quality is very stable, it is suitable for industrial production of heat-resistant construction materials that often have large and complex shapes, and materials for mechanical work that require production in large numbers. It was confirmed that the material and manufacturing method were suitable for this purpose.

Claims (1)

【特許請求の範囲】 25重量%と周期律表のna族元素(Be1Mg、Ca
。 Sr、Ba及びRa)の酸化物、窒化物及び酸窒化物の
少なくとも1種0.5〜25重量%と残り窒化硅素と不
可避不純物から成ることを特徴とする高強度窒化硅素焼
結体。 (2)希土類元素(Sc、Y及びランタニド元素を含む
)の窒化物及び酸窒化物の少なくとも1種0.5〜25
重量%と周期律表のia族元素(Be9Mg。 Ca、Sr、Ba及びRa)の酸化物、窒化物及び酸窒
化物の少なくとも1種0.5〜25重量%と残り窒化硅
素と不可避不純物から成る混合粉末を粉末圧粉体又は成
形体にして非酸化性雰囲気中1500℃〜1900℃で
加熱焼結することを特徴とする高強度窒化硅素焼結体の
製造方法。
[Claims] 25% by weight and the na group elements of the periodic table (Be1Mg, Ca
. A high-strength silicon nitride sintered body comprising 0.5 to 25% by weight of at least one of oxides, nitrides, and oxynitrides of Sr, Ba, and Ra), and the remainder silicon nitride and unavoidable impurities. (2) At least one of nitrides and oxynitrides of rare earth elements (including Sc, Y, and lanthanide elements) 0.5 to 25
0.5 to 25% by weight of at least one of the oxides, nitrides, and oxynitrides of Group IA elements of the periodic table (Be9Mg, Ca, Sr, Ba, and Ra), and the remaining silicon nitride and unavoidable impurities. 1. A method for producing a high-strength silicon nitride sintered body, which comprises forming a mixed powder into a powder compact or compact and heating and sintering it at 1500°C to 1900°C in a non-oxidizing atmosphere.
JP58088060A 1983-04-22 1983-05-19 High strength silicon nitride sintered body and manufacture Pending JPS59213676A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58088060A JPS59213676A (en) 1983-05-19 1983-05-19 High strength silicon nitride sintered body and manufacture
EP19840104449 EP0123292B1 (en) 1983-04-22 1984-04-19 Silicon nitride sintered body and method for preparing the same
DE8484104449T DE3483588D1 (en) 1983-04-22 1984-04-19 Sintered silicon nitride molded body and process for its manufacture.
CA000452515A CA1223013A (en) 1983-04-22 1984-04-19 Silicon nitride sintered body and method for preparing the same
US06/602,555 US4609633A (en) 1983-04-22 1984-04-20 Silicon nitride sintered body and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088060A JPS59213676A (en) 1983-05-19 1983-05-19 High strength silicon nitride sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS59213676A true JPS59213676A (en) 1984-12-03

Family

ID=13932299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088060A Pending JPS59213676A (en) 1983-04-22 1983-05-19 High strength silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS59213676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153168A (en) * 1985-07-30 1987-07-08 京セラ株式会社 Silicon nitride base sintered body and manufacture
JPH03504959A (en) * 1989-01-17 1991-10-31 アライド―シグナル・インコーポレーテッド Ultra-tough monolithic silicon nitride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175777A (en) * 1981-04-23 1982-10-28 Ube Industries Manufacture of silicon nitride sintered body
JPS58204874A (en) * 1982-05-20 1983-11-29 日産自動車株式会社 Silicon nitride sintered body
JPS598670A (en) * 1982-07-02 1984-01-17 東芝タンガロイ株式会社 High tenacity silicon nitride base sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175777A (en) * 1981-04-23 1982-10-28 Ube Industries Manufacture of silicon nitride sintered body
JPS58204874A (en) * 1982-05-20 1983-11-29 日産自動車株式会社 Silicon nitride sintered body
JPS598670A (en) * 1982-07-02 1984-01-17 東芝タンガロイ株式会社 High tenacity silicon nitride base sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153168A (en) * 1985-07-30 1987-07-08 京セラ株式会社 Silicon nitride base sintered body and manufacture
JPH03504959A (en) * 1989-01-17 1991-10-31 アライド―シグナル・インコーポレーテッド Ultra-tough monolithic silicon nitride

Similar Documents

Publication Publication Date Title
US4563433A (en) Ceramic material and method of manufacture
US4609633A (en) Silicon nitride sintered body and method for preparing the same
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
US4711644A (en) Ceramic material and method of manufacture
JPS6011288A (en) Surface coated sialon-base ceramic tool member
JP2825701B2 (en) Cubic boron nitride sintered body
JPS6256110B2 (en)
JPS59213676A (en) High strength silicon nitride sintered body and manufacture
EP0123292B1 (en) Silicon nitride sintered body and method for preparing the same
EP0441316B1 (en) Silicon nitride based sintered material and process of manufacturing same
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP4110338B2 (en) Cubic boron nitride sintered body
JPH0512297B2 (en)
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JPS59199584A (en) Silicon nitride base sintered body
JPH0518776B2 (en)
JPH0379309B2 (en)
JPH0451512B2 (en)
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPH0537944B2 (en)
JPS6241773A (en) Manufacture of composite ceramics
JPH0639344B2 (en) Manufacturing method of ceramic products
JPS6257596B2 (en)
JPS6257598B2 (en)
JPH03174365A (en) Aluminum nitride sintered body and production thereof