JP2581939B2 - High-strength alumina sintered body and method for producing the same - Google Patents

High-strength alumina sintered body and method for producing the same

Info

Publication number
JP2581939B2
JP2581939B2 JP62326535A JP32653587A JP2581939B2 JP 2581939 B2 JP2581939 B2 JP 2581939B2 JP 62326535 A JP62326535 A JP 62326535A JP 32653587 A JP32653587 A JP 32653587A JP 2581939 B2 JP2581939 B2 JP 2581939B2
Authority
JP
Japan
Prior art keywords
zro
sintered body
powder
peak
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62326535A
Other languages
Japanese (ja)
Other versions
JPH01157461A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62326535A priority Critical patent/JP2581939B2/en
Priority to US07/286,888 priority patent/US5082809A/en
Priority to DE3853349T priority patent/DE3853349T2/en
Priority to EP88121406A priority patent/EP0321955B1/en
Publication of JPH01157461A publication Critical patent/JPH01157461A/en
Application granted granted Critical
Publication of JP2581939B2 publication Critical patent/JP2581939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミナを主成分としてジルコニアを含有す
る焼結体とその製造方法に関し、特に切削工具或いは高
温用材料として有用な焼結体の改良に関する。
Description: FIELD OF THE INVENTION The present invention relates to a sintered body containing alumina and zirconia as a main component and a method for producing the same, and particularly to an improvement of a sintered body useful as a cutting tool or a material for high temperature. About.

〔従来技術〕(Prior art)

セラミックから成る工具は、硬度、耐摩耗性、耐熱性
に優れる等の長所を有する反面、チッピングや欠損を生
じ易いという問題を有し、その用途も仕上げ加工等に限
られていた。しかし乍ら、工作機械の進歩に伴い、切削
速度を上げ、工具交換のサイクルタイムを長くする必要
性が高まり、セラミック工具も、これらに対応し、安定
且つ高強度のものが求められている。
A tool made of ceramic has advantages such as excellent hardness, wear resistance, and heat resistance, but has a problem that chipping and chipping easily occur, and its use has been limited to finishing and the like. However, with the advancement of machine tools, there is an increasing need to increase the cutting speed and lengthen the cycle time for tool change. Corresponding ceramic tools are also required to be stable and have high strength.

アルミナ(Al2O3)は金属との反応性が低く耐摩耗性
に優れることから、切削工具として有用な材料として注
目されたが破壊靭性(K1c)が低いという問題があっ
た。またジルコニア(ZrO2)は、抗折強度および破壊靭
性は高いものの200〜300℃で急激な強度低下を示し、熱
的に不安定であり、しかも鉄と激しく反応するため切削
工具として実用に耐えないものであった。
Alumina (Al 2 O 3 ) has attracted attention as a material useful as a cutting tool because of its low reactivity with metals and excellent wear resistance, but there was a problem of low fracture toughness (K 1 c). Zirconia (ZrO 2 ) has high flexural strength and fracture toughness, but shows a sharp decrease in strength at 200 to 300 ° C, is thermally unstable, and reacts violently with iron. There was nothing.

そこで、Al2O3中にZrO2を分散含有させることによ
り、Al2O3の破壊靭性を改良する事が行われている。こ
の破壊靭性の改善法については従来より2つのタイプが
提案されている。1つはAl2O3質焼結体中に単斜晶ZrO2
を分散させたもので、ZrO2の相転移によりマイクロクラ
ックを発生させるものである。
Therefore, by dispersing containing ZrO 2 in Al 2 O 3, possible to improve the fracture toughness of the Al 2 O 3 it is performed. Conventionally, two types of methods for improving the fracture toughness have been proposed. One is monoclinic ZrO 2 in Al 2 O 3 sintered body.
And microcracks are generated by the phase transition of ZrO 2 .

他の1つはAl2O3質焼結体中に正方晶ZrO2を分散させ
ることによりクラック先端のエネルギーをZrO2の相転移
で吸収させるものである。
The other is to disperse tetragonal ZrO 2 in an Al 2 O 3 sintered body to absorb the energy at the crack tip by the phase transition of ZrO 2 .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし乍ら、前者では破壊靭性は向上するものの、抗
折強度が低く、実用的でない。また後者の方法では破壊
靭性の改善効果は前者の場合よりやや劣るものの抗折強
度はクラック先端でのエネルギー吸収や表面の加工によ
り生じる圧縮応力の効果等で大幅に改善されるが、Al2O
3中にZrO2を正方晶として存在させるためにはZrO2を0.3
〜0.5μm以下の微粒として分散させることが必要とな
る。
However, in the former, although the fracture toughness is improved, the bending strength is low and it is not practical. The effect of improving the fracture toughness in the latter method is slightly bending strength of inferior is greatly improved by the effects and the like of the compression stress produced by the processing of the energy absorption and the surface at the crack tip than in the former case, Al 2 O
During 3 ZrO 2 in order to present the ZrO 2 as tetragonal 0.3
It is necessary to disperse as fine particles having a size of 0.5 μm or less.

焼結体中のZrO2を0.5μm以下に制御する事は技術的
に非常に難しいため、一般にMgO,CaO,Y2O3等の安定化剤
を少量添加してZrO2粒子が1μm程度でも準安定な正方
晶ZrO2を生成できるように制御していた。
Since it is technically very difficult to control ZrO 2 in the sintered body to 0.5 μm or less, even if a small amount of a stabilizer such as MgO, CaO, Y 2 O 3 is added and the ZrO 2 particles are about 1 μm, It was controlled so that metastable tetragonal ZrO 2 could be produced.

上記の方法においては、添加剤の分散の不均一のた
め、一部粒子は過度に安定化してしまい、クラック先端
のエネルギー吸収に関与しなくなるという問題がある
が、添加剤を加えずして正方晶を準安定化する事は行わ
れておらず、まして、安定化剤無添加系で立方晶を準安
定化させる事はほとんど不可能だった。
In the above method, there is a problem that some particles are excessively stabilized due to non-uniform dispersion of the additive and do not contribute to energy absorption at the crack tip. Metastabilization of the crystals has not been performed, and it has been almost impossible to metastabilize the cubic crystals without adding any stabilizer.

〔発明の目的〕[Object of the invention]

本発明は上述したような問題を解決することを目的と
するものであり、詳細には、前述したような安定化剤を
添加することなく、実質的にAl2O3とZrO2からなり、抗
折強度および破壊靭性に優れたアルミナ質焼結体および
その製造方法を提供することを目的とするものである。
The present invention is aimed at solving the problems as described above, in particular, without the addition of stabilizing agents such as described above, substantially consists Al 2 O 3 and ZrO 2, An object of the present invention is to provide an alumina-based sintered body having excellent bending strength and fracture toughness and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者は前述した問題に対し、研究を重ねた結果、
Al2O3及びZrO2の粉末を乾式粉砕すると粉末自体に歪が
生じ、これを成形後、比較的低温で焼成するとアルミナ
結晶中に立方晶ZrO2或いは正方晶と立方晶の中間的ZrO2
結晶を準安定として存在させることができ、これによっ
て従来の正方晶ZrO2分散系よりも優れた抗折強度と破壊
靭性が得られることを知見した。
The present inventor has repeated research on the above-mentioned problem,
Al 2 O 3 and distortion occur ZrO 2 powder in the dry ground powder itself, after molding it, cubic ZrO 2 or tetragonal and cubic in relatively when fired at a low temperature alumina crystal intermediate ZrO 2
It has been found that the crystals can be made metastable, which results in better transverse strength and fracture toughness than the conventional tetragonal ZrO 2 dispersion.

即ち、本発明の焼結体はZrO2を1乃至30重量%、残部
がAl2O3及び不可避不純物から成るアルミナ質焼結体で
あって、該焼結体のレーザーラマン分光分析の測定チャ
ートの600±10cm-1の位置にZrO2のピークが存在するこ
とを特徴とするものである。
That is, the sintered body of the present invention is an alumina-based sintered body composed of 1 to 30% by weight of ZrO 2 and the balance being Al 2 O 3 and unavoidable impurities, and is a measurement chart of laser Raman spectroscopic analysis of the sintered body. Characterized in that a peak of ZrO 2 exists at a position of 600 ± 10 cm −1 .

また、この焼結体の製造方法は、ZrO2粉末を1乃至30
重量%含むアルミナ粉末を乾式粉砕して、活性化処理を
行った後、成形後、1500℃以下の低温で焼成することを
特徴とするものである。
The manufacturing method of the sintered body, a ZrO 2 powder 1 to 30
After dry-pulverizing and activating the alumina powder containing the weight%, after molding, it is fired at a low temperature of 1500 ° C. or less.

通常、Al2O3−ZrO2系では抗折強度の向上と靭性の向
上とは相反するものであった。抗折強度の向上には焼結
体中のZrO2の微粒化(0.5μm以下)することが有効で
あるが、それでは一部のZrO2が安定になりすぎるため、
エネルギー吸収に関与する準安定ZrO2が減り、破壊エネ
ルギーが吸収されず靭性が低下する。一方、ZrO2粒子が
0.5〜1.0μm程度では正方晶ZrO2から単斜晶ZrO2への転
移が容易となり、靭性は向上するが、転移にともない発
生するマイクロクラックやZrO2粒子自体が破壊源となり
抗折強度が低下する。
Usually, in the Al 2 O 3 —ZrO 2 system, the improvement in the transverse rupture strength and the improvement in the toughness were contradictory. To improve the transverse rupture strength, it is effective to atomize ZrO 2 in the sintered body (0.5 μm or less). However, some ZrO 2 becomes too stable.
Metastable ZrO 2 involved in energy absorption is reduced, and fracture energy is not absorbed and toughness is reduced. On the other hand, ZrO 2 particles
When the thickness is about 0.5 to 1.0 μm, the transition from tetragonal ZrO 2 to monoclinic ZrO 2 becomes easy and the toughness is improved, but the microcracks and ZrO 2 particles generated by the transition become fracture sources and the bending strength decreases. I do.

これに対し、本発明は抗折強度と破壊靭性とを同時に
向上させたものである。本発明における焼結体の基本組
成はZrO2が1乃至30重量%、特に15乃至20重量%,残部
がAl2O3と不可避不純物から成るものであって、ZrO2
量が1重量%を下回ると靭性が低下し、ZrO2の量が30重
量%を越えると抗折強度、靭性が低下する。
On the other hand, in the present invention, the bending strength and the fracture toughness are simultaneously improved. The basic composition of the sintered body in the present invention is such that ZrO 2 is 1 to 30% by weight, particularly 15 to 20% by weight, and the balance is composed of Al 2 O 3 and unavoidable impurities, and the amount of ZrO 2 is 1% by weight. If the amount is less than 30%, the toughness decreases. If the amount of ZrO 2 exceeds 30% by weight, the bending strength and the toughness decrease.

なお、SiO2,Fe2O3,TiO2の不可避不純物は極力低減す
ることが望ましいが、全体量に対し3重量%以下であれ
ば問題はない。
It is desirable that the inevitable impurities of SiO 2 , Fe 2 O 3 , and TiO 2 be reduced as much as possible, but there is no problem if it is 3% by weight or less based on the total amount.

本発明におけるアルミナ質焼結体の特徴を第1図およ
び第2図に示すレーザーラマン分光分析における測定チ
ャート図に基づいて説明する。第1図と第2図のチャー
トを比較すると第1図において600cm-1付近ににピーク
が存在することが理解される。この600cm-1のピークに
ついて検討すると、一般に単斜晶ZrO2(m−ZrO2)は48
0cm-1、180cm-1及び630cm-1、正方晶ZrO2(t−ZrO2
は270cm-1及び640cm-1付近に主ピークが存在するのに対
し、立方晶ZrO2(c−ZrO2)は610〜600cm-1付近に主ピ
ークを有する。このようなことからこの600cm-1ピーク
は立方晶ZrO2を示すものと判断される。
The features of the alumina sintered body according to the present invention will be described with reference to the measurement charts in the laser Raman spectroscopy shown in FIGS. 1 and 2. Comparing the charts of FIG. 1 and FIG. 2, it is understood that a peak exists near 600 cm −1 in FIG. When the peak at 600 cm -1 is examined, it is generally found that monoclinic ZrO 2 (m-ZrO 2 )
0 cm -1, 180cm -1, and 630 cm -1, tetragonal ZrO 2 (t-ZrO 2)
Has a main peak near 270 cm -1 and 640 cm -1 , whereas cubic ZrO 2 (c-ZrO 2 ) has a main peak near 610 to 600 cm -1 . From this, it is determined that this 600 cm −1 peak indicates cubic ZrO 2 .

特に600cm-1付近のc−ZrO2のピーク高さHcは後述す
る実施例からも明らかなように415cm-1付近のAl2O3のピ
ーク高さHAとの比較においてその比率(Hc/HA)が大き
い程、優れた特性を示すもので、特に(Hc/HA)×100が
20以上ではその特性はさらに優れる。
In particular, the peak height Hc of c-ZrO 2 around 600 cm −1 is, as apparent from the examples described later, the ratio (Hc / Hc / H 2) in comparison with the peak height HA of Al 2 O 3 around 415 cm −1. The larger the value of H A ) is, the more excellent the characteristics are. Particularly, (Hc / H A ) × 100
Above 20 the properties are even better.

次に本発明の焼結体の特徴をX線回折曲線をもとに分
析する。
Next, the characteristics of the sintered body of the present invention are analyzed based on the X-ray diffraction curve.

第3図は、本発明の焼結体、第4図は比較例の焼結体
のX線回折曲線である。
FIG. 3 is an X-ray diffraction curve of the sintered body of the present invention, and FIG. 4 is an X-ray diffraction curve of the sintered body of the comparative example.

このZrO2のX線回折曲線に対しては従来から検討され
ており、例えば単斜晶ZrO2についてLewis等(ANP Dept,
CINCINATTI,15,OHIO)が、正方晶ZrO2についてSmith等
(Anaual Report to the Joint Committee on Powder D
iffraction Standard,1973)が、また立方晶ZrO2につい
てKatz(J,Am,Ceram,Soc.,54,531,1971)がそれぞれ発
表している。
The X-ray diffraction curve of ZrO 2 has been studied in the past. For example, monoclinic ZrO 2 has been studied by Lewis et al. (ANP Dept.
CINCINATTI, 15, OHIO) is, Smith, etc. for the tetragonal ZrO 2 (Anaual Report to the Joint Committee on Powder D
iffraction Standard, 1973), but also for the cubic ZrO 2 Katz (J, Am, Ceram, Soc., 54,531,1971) are presented respectively.

通常、Cu−K α線にるX線回折曲線において正方晶
ZrO2(t−ZrO2)の(101)面は29.8゜にピークを有
し、その結晶面間隔は2.995Åであり、一方、立方晶ZrO
2(C−ZrO2)の(111)面は30.5゜にピークを有し、そ
の結晶面間隔は2.93Åである。これに対し、本発明の焼
結体はZrO2は29.8゜を上回るもので、その結晶面間隔は
2.93〜2.995Åの範囲にあると考えられる。また、c−Z
rO2のピークは2θ=30.5゜のほか35.1゜、50.6゜、60.
3゜、63.1゜等に存在するが、これらのうち35.1゜のピ
ークはαアルミナのピークと重なり、50.6゜は単斜晶Zr
O2(m−ZrO2)や正方晶ZrO2のピークと重なり、63.3゜
はα−Al2O3のピークと重なり、63.1゜はm−ZrO2のピ
ークと重なる。
Normally, a tetragonal crystal is used in the X-ray diffraction curve of Cu-K α ray.
The (101) plane of ZrO 2 (t-ZrO 2 ) has a peak at 29.8 °, and the crystal plane spacing is 2.995 °, while cubic ZrO 2
The (111) plane of 2 (C-ZrO 2 ) has a peak at 30.5 °, and the crystal plane spacing is 2.93 °. On the other hand, the sintered body of the present invention has a ZrO 2 of more than 29.8 ゜, and its crystal plane spacing is
It is considered to be in the range of 2.93 to 2.995Å. Also, c-Z
The peak of rO 2 is 2θ = 30.5 °, 35.1 °, 50.6 °, 60.
The peaks of 35.1% and 63.1% overlap with those of α-alumina, and 50.6% are monoclinic Zr
The peak of O 2 (m-ZrO 2 ) or tetragonal ZrO 2 overlaps, 63.3 ° overlaps with the peak of α-Al 2 O 3 , and 63.1 ° overlaps with the peak of m-ZrO 2 .

そこで、59.5゜〜61゜の間のピークと、62.0゜〜63.5
゜の間のピーク高さをそれぞれH60,H63とすると、c−Z
rO2が存在しなければα−Al2O3の主ピーク高さ(H43
する。)とH60との比は、H60がα−Al2O3のみのピーク
となるため、H60/H43=0.07で一定となる。同様にm−Z
rO2の主ピーク高さ(H28)とH63との比はH63がm−ZrO2
のみのピークとなるため、H63/H28=0.1一定とある。
Therefore, the peak between 59.5 ゜ and 61 ゜ and 62.0 ゜ and 63.5 ゜
Assuming that the peak heights between ゜ are H 60 and H 63 respectively, c−Z
If rO 2 is not present, the ratio between the main peak height of α-Al 2 O 3 (referred to as H 43 ) and H 60 is such that H 60 becomes a peak of α-Al 2 O 3 only, It becomes constant at 60 / H 43 = 0.07. Similarly, m-Z
The ratio of the main peak height (H 28 ) of rO 2 to H 63 is such that H 63 is m-ZrO 2
H 63 / H 28 = 0.1 constant because the peak is only at the peak.

しかし、本発明の焼結体では後述する実施例から明ら
かなように、H63/H28>0.1、H60/H43>0.07とそれぞれ
C−ZrO2が存在しない場合に比較して大幅に大となって
いる。
However, in the sintered body of the present invention, as is apparent from the examples described later, H 63 / H 28 > 0.1 and H 60 / H 43 > 0.07, which are significantly larger than those in the case where C-ZrO 2 is not present. It has become large.

このようなことから、焼結対中にはc−ZrO2或いはt
−ZrO2とc−ZrO2の中間的結晶(C′−ZrO2)が存在す
ると考えられる。
Therefore, c-ZrO 2 or t
-ZrO 2 and c-ZrO 2 intermediate crystalline considered (C'-ZrO 2) is present.

このようにAl2O3中にc−ZrO2或いはC′−ZrO2を存
在させることにより外部応力に対してc−ZrO2(C′−
ZrO2)→t−ZrO2→m−ZrO2と2段階でエネルギーを吸
収するための破壊靭性が向上する。しかも、t−ZrO2
m−ZrO2の相転移よりもc−ZrO2(C′−ZrO2)→t−
ZrO2→m−ZrO2の相転移の方が体積変化が大きいので加
工後の表面の残留圧縮応力が大となり、これにより抗折
強度が向上する。
Thus Al 2 O c-ZrO 2 with respect to external stress by the presence of c-ZrO 2 or C'-ZrO 2 in 3 (C'-
ZrO 2 ) → t-ZrO 2 → m-ZrO 2 The fracture toughness for absorbing energy in two stages is improved. Moreover, t-ZrO 2
c-ZrO 2 (C′-ZrO 2 ) → t− rather than the phase transition of m-ZrO 2
Since the volume change is larger in the phase transition of ZrO 2 → m-ZrO 2 , the residual compressive stress on the surface after processing is increased, thereby improving the bending strength.

なお、本発明によれば、焼結体中でAl2O3結晶粒子は
0.3〜1.0μmの粒子で存在するが、ZrO2結晶粒子は0.1
〜1.5μm、特に0.1〜0.5μmの大きさで存在させるこ
とが望ましく、ZrO2粒子の大きさが1.5μmを越えると
相転移に伴うクラックが破壊源となり、抗折強度を低下
させる原因となる。
According to the present invention, Al 2 O 3 crystal particles in the sintered body
Although present as particles of 0.3 to 1.0 μm, ZrO 2 crystal particles
It is desirable to exist in a size of ~ 1.5 μm, especially 0.1 to 0.5 μm, and when the size of ZrO 2 particles exceeds 1.5 μm, cracks accompanying phase transition become a fracture source and cause a decrease in bending strength. .

さらに、ZrO2の結晶相は、c−ZrO2或いはC′−ZrO2
とt−ZrO2がその大部分を含めることが望ましく、単斜
晶ZrO2はZrO2全体の50%以下、特に20%以下であること
が好ましく、50%を越えると靭性が低下する。
Further, the crystal phase of ZrO 2 is c-ZrO 2 or C′-ZrO 2
And it is desirable that t-ZrO 2 is included majority, monoclinic ZrO 2 is less than 50% of the total ZrO 2, preferably in particular 20% or less, the toughness falls exceeds 50%.

本発明の焼結体の製造方法によれば、まずZrO2粉末が
1乃至30重量%、特に15乃至20重量%、残部が実質的に
Al2O3粉末から成る混合粉末を調整する。用いる粉末は
いずれもBET比表面積が10m2/gが以上の微粉末であるこ
とが望ましい。
According to the method for producing a sintered body of the present invention, first, ZrO 2 powder is 1 to 30% by weight, particularly 15 to 20% by weight, and the balance is substantially
A mixed powder composed of Al 2 O 3 powder is prepared. It is desirable that any powder used is a fine powder having a BET specific surface area of 10 m 2 / g or more.

次に混合粉末を乾式で粉砕して、粉末の活性化処理を
行う。この活性化処理によって混合粉末中のZrO2粉末お
よびAl2O3粉末結晶に歪みを生じさせる。活性化処理手
段としては従来から一般的に用いられているボールミル
による湿式粉砕では難しく、高速粉砕が可能な手段を採
用する。例えば高速振動ミルあるいは摩耗ミル(attrit
ion mill)等が適当でこれらによって原料粉末のZrO2
晶に歪みが生じるまで粉砕を行う。
Next, the mixed powder is pulverized in a dry manner to perform a powder activation treatment. This activation causes distortion of the ZrO 2 powder and Al 2 O 3 powder crystals in the mixed powder. As the activation treatment means, means which is difficult in wet grinding with a ball mill which has been generally used conventionally and which can perform high-speed grinding is adopted. For example, high-speed vibration mill or wear mill (attrit
An ion mill or the like is suitable, and pulverization is performed until the ZrO 2 crystal of the raw material powder is distorted.

尚、この粉砕はAl2O3粉末、ZrO2粉末の混合前に行っ
ても良いことは当然である。
It should be noted that this pulverization may be performed before mixing the Al 2 O 3 powder and the ZrO 2 powder.

このようにして活性化処理された混合粉末は公知の成
形手段で例えばプレス成形、冷間成形(CIP)、射出成
形、泥漿鋳込み等で成形した後、焼成に移される。
The mixed powder thus activated is molded by known molding means, for example, by press molding, cold molding (CIP), injection molding, slurry casting, etc., and then transferred to firing.

焼成は、先の活性化処理によって粉末自体の焼結性が
向上するため、1500℃以下の低温で行うことができる。
The sintering can be performed at a low temperature of 1500 ° C. or less because the sinterability of the powder itself is improved by the above-described activation treatment.

焼成は大気雰囲気で1〜6時間程度保持して行えばよ
い。焼成手段としては公知の手段を利用でき具体的には
大気中或いは不活性ガス中での常圧焼成、ホットプレ
ス、熱間静水圧焼成等が採用し得るが、高密度の焼結体
を得るため、1500℃以下の温度で常圧焼成、ホットプレ
スによって予備焼成した後、1500℃以下で熱間静水圧焼
成することが望ましい。これにより実質的に気孔を含ま
ない焼結体が得られる。
The sintering may be carried out in an atmosphere for about 1 to 6 hours. As the sintering means, known means can be used, and specifically, normal pressure sintering in air or an inert gas, hot pressing, hot isostatic sintering or the like can be adopted, but a high-density sintered body is obtained. For this reason, it is desirable to perform normal pressure firing at a temperature of 1500 ° C. or less, preliminary firing by hot pressing, and then hot isostatic firing at 1500 ° C. or less. As a result, a sintered body substantially free of pores is obtained.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

〔実施例〕〔Example〕

BET比表面積10m2/g以上、純度99.99%以上のAl2O3
末と、BET比表面積10m2/g以上、純度99.9%以上のZrO2
粉末を摩耗ミル(attrition mill)によって乾式粉砕を
行い粉末の活性化を行った。得られた粉末についてX線
回折を調べたところZrO2粉末の結晶に歪みが認められ
た。
Al 2 O 3 powder with a BET specific surface area of 10 m 2 / g or more and a purity of 99.99% or more, and ZrO 2 with a BET specific surface area of 10 m 2 / g or more and a purity of 99.9% or more
The powder was dry-ground with an attrition mill to activate the powder. When the obtained powder was analyzed by X-ray diffraction, distortion was found in the crystal of the ZrO 2 powder.

得られた粉末を第1表の割合で秤量して混合を行い、
6%の有機バインダーを添加し、スプレー造粒を行う。
造粒粉末を所望の形状に成形し、6t/cm2でCIP処理(冷
間静水圧プレス成形)を行った。
The obtained powder was weighed at the ratio shown in Table 1 and mixed.
6% of an organic binder is added and spray granulation is performed.
The granulated powder was formed into a desired shape and subjected to CIP treatment (cold isostatic pressing) at 6 t / cm 2 .

得られた成形体を350℃で焼成して脱バインダーを行
った後、1450℃で2時間大気中で予備焼成を行い、得ら
れた焼結体を1400℃で1時間Ar中2000気圧で熱間静水圧
処理を行い実質的に気孔を含まない試料No.1〜7を得
た。
The obtained molded body is fired at 350 ° C. to remove the binder, and then prefired at 1450 ° C. for 2 hours in the air, and the obtained sintered body is heated at 1400 ° C. for 1 hour in Ar at 2000 atm. The sample was subjected to hydrostatic pressure treatment for a period of time to obtain samples Nos. 1 to 7 substantially containing no pores.

また、比較例として、乾式粉砕を行わずにボールミル
で湿式混合したものを先と同様にして成形し、これを15
00℃で6時間大気中で予備焼成し、さらに1400℃で1時
間2000気圧アルゴン中で熱間静水圧焼成し、第1表No.
8,9の試料を得た。
In addition, as a comparative example, what was wet-mixed with a ball mill without performing dry pulverization was molded in the same manner as above, and this was
Pre-fired in the air at 00 ° C for 6 hours, and further hot-hydrostatically fired at 1400 ° C for 1 hour in 2000 atmospheres of argon.
8,9 samples were obtained.

得られた試料に対し、4880Å,200mWのレーザーを用い
て、レーザーラマン測定を行った。
The obtained sample was subjected to laser Raman measurement using a laser of 4880Å200 mW.

スキャン速度は120cm-1/min,サンプリングインターバ
ルは1.0cm-1とした。
The scanning speed was 120 cm -1 / min, and the sampling interval was 1.0 cm -1 .

なお、No.5の試料のチャート図を第1図に、No.10の
試料のチャート図を第2図に示した。
The chart of the sample No. 5 is shown in FIG. 1, and the chart of the sample No. 10 is shown in FIG.

各試料のチャート図より600cm-1付近のピークの有無
と、このピークの415cm-1付近のAl2O3のピーク高さHA
対するピーク比(Hc/HA)×100(%)を求めた。
The presence or absence of a peak near 600 cm -1 and the peak ratio (Hc / H A ) to the peak height HA of Al 2 O 3 near 415 cm -1 (Hc / H A ) × 100 (%) were determined from the chart of each sample. Was.

また得られた各試料に対し、焼放し面をCu−Kα線に
よるX線回折測定を行い、ZrO2中の単斜晶の含有率、Zr
O2の最大ピークの度数、H63/H28,H60/H43を調べた。
For each of the obtained samples, the annealed surface was subjected to X-ray diffraction measurement using Cu-Kα radiation, and the content of monoclinic in ZrO 2 , Zr
The frequency of the maximum peak of O 2 , H 63 / H 28 , H 60 / H 43 was examined.

なお、X線回折測定におけるZrO2中の単結晶含有率は
次式、〔t−ZrO2(101)面のピーク高さ〕/〔m−ZrO
2(111)面のピーク高さ+m−ZrO2(111)面のピーク
高さ+t−ZrO2(101)面のピーク高さ〕にて求めた。
The single crystal content in ZrO 2 in the X-ray diffraction measurement is represented by the following formula: [t-ZrO 2 (101) plane peak height] / [m-ZrO
2 peak height of (111) plane + peak height of m-ZrO 2 (111) plane + peak height of t-ZrO 2 (101) plane].

また、抗折強度はJISR1601に従い、試料を3×4×40
mmの形状に加工し、3点曲げによって測定した。
The flexural strength is in accordance with JISR1601, and the sample is 3 × 4 × 40
It was processed into a shape of mm and measured by three-point bending.

さらに、破壊靭性はビッカース硬度用ダイヤモンド圧
子で20Kgの荷重を加えて生じた圧痕及びクラック寸法か
ら新原の式を使用して求めた。
Further, the fracture toughness was determined from the indentation and crack size generated by applying a load of 20 kg using a diamond indenter for Vickers hardness using Niihara's formula.

結果は第1表に示す。 The results are shown in Table 1.

さらに比較例としてAl2O3粉末80%,3モル%のY2O3
含むZrO2粉末の20%の混合粉末をホールミルにて湿式粉
砕し、前述した実施例と同様な方法で成形後、焼成温度
を予備焼成1500℃、HIP1400℃にして焼成し、No.10、11
の試料を得た。
Further, as a comparative example, a mixed powder of 20% of ZrO 2 powder containing 80% of Al 2 O 3 powder and 3 mol% of Y 2 O 3 was wet-pulverized by a hole mill and formed by the same method as in the above-described embodiment. The firing temperature was set to 1,500 ° C for pre-firing and 1,400 ° C for HIP.
Sample was obtained.

また、第3図に第1表の試料番号No.5のX線回折チャ
ート図を示し、第4図に試料番号No.9のX線回折チャー
ト図を示した。
FIG. 3 shows an X-ray diffraction chart of Sample No. 5 in Table 1 and FIG. 4 shows an X-ray diffraction chart of Sample No. 9 in Table 1.

第1表の結果によれば、ZrO2を全く含まない系(No.
1)では破壊靭性、抗折強度とも低い。高エネルギー粉
砕を行った試料のうちZrO2量が30重量%を超えるNo.7で
はZrO2は焼結体中では正方晶(t−ZrO2)となってお
り、最大ピーク度数は30.2゜であったが、単斜晶のが含
有率が多く、破壊靭性が低い。
According to the results in Table 1, the system containing no ZrO 2 (No.
In 1), both fracture toughness and bending strength are low. In No. 7 in which the amount of ZrO 2 exceeds 30% by weight among the samples subjected to high energy grinding, ZrO 2 is tetragonal (t-ZrO 2 ) in the sintered body, and the maximum peak frequency is 30.2 °. However, the content of monoclinic is high and the fracture toughness is low.

一方、乾式粉砕を行わない場合(No.8,9)はいずれも
ZrO2は正方晶となっており、しかも単斜晶の含有率が多
くの抗折強度が低いものであった。
On the other hand, when dry grinding is not performed (Nos. 8 and 9),
ZrO 2 was tetragonal and had a high monoclinic content and low flexural strength.

さらに従来の方法で得たNo.10,11はいずれも正方晶Zr
O2が多く単斜晶ZrO2は少ないが、本発明に比較して効果
が不十分である。
Furthermore, No. 10 and 11 obtained by the conventional method are all tetragonal Zr
Although the content of O 2 is large and the content of monoclinic ZrO 2 is small, the effect is insufficient compared with the present invention.

No.9の試料は破壊靭性は向上しているが、抗折強度は
殆ど向上していない。
Although the sample of No. 9 has improved fracture toughness, the bending strength is hardly improved.

これらの比較例に対し、本発明の試料No.2〜6はいず
れも破壊靭性4.2MN/m3/2以上、抗折強度90Kg/mm2以上が
達成され、特にHc/HAが10%以上のもの、言い換えればH
63/H28が1.7以上、H60/H43が0.3以上は破壊靭性が4.3MN
/m3/2以上、抗折強度95Kg/mm2以上が達成された。
In contrast to these comparative examples, all of the samples Nos. 2 to 6 of the present invention achieved a fracture toughness of 4.2 MN / m 3/2 or more and a flexural strength of 90 kg / mm 2 or more, and in particular, Hc / HA was 10%. The above, in other words H
63 / H 28 is 1.7 or more, H 60 / H 43 is 0.3 or more, fracture toughness 4.3MN
/ m 3/2 or more, and a flexural strength of 95 kg / mm 2 or more.

〔発明の効果〕〔The invention's effect〕

以上詳述した通り、本発明によれば、Al2O3にZrO2
配合した単純な系で、原料粉末を乾式粉砕して粉末を活
性化させ、これを成形して1500℃以下の低温で焼成する
ことによってAl2O3中に準安定な立方晶ZrO2を分散させ
た焼結体が得られ、それによって優れた抗折強度及び靭
性が得られる。
As described above in detail, according to the present invention, in a simple system in which ZrO 2 is blended with Al 2 O 3 , the raw material powder is dry-pulverized to activate the powder, and the powder is molded and formed into a low temperature of 1500 ° C. or less. By sintering, a sintered body in which metastable cubic ZrO 2 is dispersed in Al 2 O 3 is obtained, and thereby excellent bending strength and toughness are obtained.

また、この製造方法では単純な系で複雑な制御を必要
とせず優れた特性が得られることから、量産性、経済性
に優れる。なお、本発明の焼結体は切削工具に対して特
に有用であるが、その他耐摩耗部品、1000℃までの高温
材料、人工骨等に利用できる。
In addition, this manufacturing method is excellent in mass productivity and economical efficiency because a simple system can provide excellent characteristics without requiring complicated control. Although the sintered body of the present invention is particularly useful for cutting tools, it can be used for other wear-resistant parts, high-temperature materials up to 1000 ° C., artificial bones, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明品(実施例No.5)のレーザーラマン分光
分析におけるチャート図、第2図は比較品(実施例No.1
0)のレーザーラマン分光分析におけるチャート図であ
り、第3図は本発明品(No.5)のX線回折チャート図、
第4図は比較品(No.9)のX線回折チャート図である。
FIG. 1 is a chart in laser Raman spectroscopy of the product of the present invention (Example No. 5), and FIG. 2 is a comparative product (Example No. 1).
0) is a chart in laser Raman spectroscopy, FIG. 3 is an X-ray diffraction chart of the product of the present invention (No. 5),
FIG. 4 is an X-ray diffraction chart of a comparative product (No. 9).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ZrO2を1乃至30重量%、残部が実質的にAl
2O3及び不可避不純物から成るアルミナ質焼結体であっ
て、該焼結体のレーザーラマン分光分析の測定チャート
の600±10cm-1の位置にZrO2のピークが存在することを
特徴とする高強度アルミナ質焼結体。
1 to 30% by weight of ZrO 2 , the balance being substantially Al
An alumina-based sintered body comprising 2 O 3 and unavoidable impurities, wherein a ZrO 2 peak is present at a position of 600 ± 10 cm −1 in a measurement chart of laser Raman spectroscopic analysis of the sintered body. High-strength alumina sintered body.
【請求項2】ZrO2粉末1乃至30重量%、残部がAl2O3
末から成る混合粉末を乾式粉砕して、活性化した後、成
形し、1500℃以下の温度で焼成したことを特徴とする高
強度アルミナ質焼結体の製造方法。
2. A mixed powder comprising 1 to 30% by weight of ZrO 2 powder and the balance being Al 2 O 3 powder is dry-pulverized, activated, molded, and fired at a temperature of 1500 ° C. or less. For producing a high-strength alumina-based sintered body.
JP62326535A 1987-09-29 1987-12-23 High-strength alumina sintered body and method for producing the same Expired - Fee Related JP2581939B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62326535A JP2581939B2 (en) 1987-09-29 1987-12-23 High-strength alumina sintered body and method for producing the same
US07/286,888 US5082809A (en) 1987-12-21 1988-12-20 High-strength alumina sintered body and process for preparation thereof
DE3853349T DE3853349T2 (en) 1987-12-21 1988-12-21 Sintered alumina body of high strength and process for its manufacture.
EP88121406A EP0321955B1 (en) 1987-12-21 1988-12-21 High-strength alumina sintered body and process for preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24741387 1987-09-29
JP62-247413 1987-09-29
JP62326535A JP2581939B2 (en) 1987-09-29 1987-12-23 High-strength alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01157461A JPH01157461A (en) 1989-06-20
JP2581939B2 true JP2581939B2 (en) 1997-02-19

Family

ID=26538251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326535A Expired - Fee Related JP2581939B2 (en) 1987-09-29 1987-12-23 High-strength alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2581939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699186B2 (en) * 1989-06-26 1994-12-07 住友金属工業株式会社 Carbon / steel fiber composite material for pantograph sliding plate
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body

Also Published As

Publication number Publication date
JPH01157461A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
US4977114A (en) Zirconia ceramics and method for producing same
JPS6140621B2 (en)
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
Pyda et al. CaO-containing tetragonal ZrO2 polycrystals (Ca-TZP)
US5082809A (en) High-strength alumina sintered body and process for preparation thereof
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JPH0553751B2 (en)
JPS6259565A (en) High density alumina/zirconia sintered body and its production
JP2581940B2 (en) High-strength alumina sintered body and method for producing the same
JP3078430B2 (en) High-strength alumina sintered body
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
Holmström et al. Reaction-sintered ZrO2-mullite composites
JPH03223159A (en) Alumina-zirconia compounded sintered material
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP2791441B2 (en) Zirconia fine powder and zirconia sintered body
JP3975016B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP2581936B2 (en) Alumina sintered body and method for producing the same
JP2668222B2 (en) Alumina sintered body
JPH0813702B2 (en) Composite ceramics
JPH0714835B2 (en) High-toughness ZrO 2) system sintered body and manufacturing method thereof
JPH0688835B2 (en) High-toughness ZrO 2) system sintered body and manufacturing method thereof
JPH078739B2 (en) Method for manufacturing alumina-based sintered body
JP3163704B2 (en) Partially stabilized zirconia sintered body
JPH04160053A (en) Wear-resistant alumina-zirconia sintered body and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees