JPH06107454A - Alumina sintered body and production thereof - Google Patents

Alumina sintered body and production thereof

Info

Publication number
JPH06107454A
JPH06107454A JP4256391A JP25639192A JPH06107454A JP H06107454 A JPH06107454 A JP H06107454A JP 4256391 A JP4256391 A JP 4256391A JP 25639192 A JP25639192 A JP 25639192A JP H06107454 A JPH06107454 A JP H06107454A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
al2o3
powder
mullite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4256391A
Other languages
Japanese (ja)
Other versions
JP3076682B2 (en
Inventor
Yuji Sato
裕二 佐藤
Yuji Katsumura
祐次 勝村
Toshiyuki Mori
利之 森
Hiroshi Yamamura
博 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Tosoh Corp
Original Assignee
Tosoh Corp
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Toshiba Tungaloy Co Ltd filed Critical Tosoh Corp
Priority to JP04256391A priority Critical patent/JP3076682B2/en
Publication of JPH06107454A publication Critical patent/JPH06107454A/en
Application granted granted Critical
Publication of JP3076682B2 publication Critical patent/JP3076682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve chipping resistance by mixing >=1 kind of ZrO2 and HfO2, Al2O3 or MgO containing Al2O3, ZrSiO4 and SiO2 molding, sintering by heating and treating under hot isostatic pressure in a specific condition. CONSTITUTION:A slurry is prepared by wet mixing a raw material powder containing ZrO2 and/or HfO2 powder, a stabilizer such as Y2O3, Al2O3 or Al2O3 containing MgO powder, ZrSiO4 powder and SiO2 powder in a specific weight ratio. The slurry is dried and granulated by adding a molding assistant such as a wax and the granulated material is molded in a prescribed shape and the molded body is sintered in an atmosphere at 1350-1650 deg.C. Next, the sintered body is treated under hot isostatic pressure in Ar gas atmosphere of >=1000atm at >=1300 deg.C to obtain Al2O3 based sintered body excellent in chipping resistance and wear resistance composed of a matrix containing 5-40wt.% (hereafter %) tenacious phase containing ZrO2 and/or HfO2 and the mutual solid solution, 1-30% ZrSiO4, 1-20% mullite and Al2O3 or Al2O3 and spinel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナを主成分と
し、他に酸化ジルコニウム及び/又は酸化ハフニウム、
ケイ酸ジルコニウムならびにムライトを含むアルミナ系
焼結体及びその製造方法に関する。該アルミナ系焼結体
は、たとえば切削工具、また耐摩耗性及び耐食性の必要
な工具に適し、とくに鋳鉄及び鋼の高速切削用工具とし
て最適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly composed of alumina, and further contains zirconium oxide and / or hafnium oxide,
The present invention relates to an alumina-based sintered body containing zirconium silicate and mullite and a method for manufacturing the same. The alumina-based sintered body is suitable for, for example, a cutting tool and a tool that requires wear resistance and corrosion resistance, and is most suitable as a tool for high speed cutting of cast iron and steel.

【0002】[0002]

【従来の技術】アルミナは、耐熱性、耐摩耗性、耐薬品
性などの優れた特性を有しているが、強度及び靭性に劣
るという問題がある。この問題を解決するため、アルミ
ナに各種の他物質を添加したアルミナ系焼結体が多数提
案されている。アルミナ系焼結体のうち、アルミナ、酸
化ジルコニウム、ケイ酸ジルコニウム及びムライトを含
む焼結体としては、次のようなものが提案されている。
2. Description of the Related Art Alumina has excellent properties such as heat resistance, abrasion resistance, and chemical resistance, but has a problem of poor strength and toughness. In order to solve this problem, many alumina-based sintered bodies have been proposed in which various other substances are added to alumina. Among the alumina-based sintered bodies, the following have been proposed as sintered bodies containing alumina, zirconium oxide, zirconium silicate and mullite.

【0003】たとえば特開昭61−247659号公報
には、ムライトとして存在するSiO2 2.5〜8.5
重量%、ZrO2 3.0〜8.0重量%、及び残部がα
−Al23 からなる焼結体が記載されている。このア
ルミナ系焼結体は、耐摩耗性を改善し、信頼性及び安定
性を高めることにより、従来のAl23 −MgO系焼
結体及びAl23 −SiO2 系焼結体の問題点を解決
したものであるが、切削工具のような苛酷な条件で用い
る場合は、強度、靭性及び耐熱衝撃性が満足できるもの
ではなく、耐欠損性に問題があり、寿命が短い。
For example, in JP-A-61-247659, SiO 2 2.5 to 8.5 existing as mullite is disclosed.
% By weight, ZrO 2 3.0 to 8.0% by weight, and the balance α.
Sintered body consisting -al 2 O 3 is described. This alumina-based sintered body has improved wear resistance, and improved reliability and stability, and thus has the same properties as conventional Al 2 O 3 —MgO based sintered bodies and Al 2 O 3 —SiO 2 based sintered bodies. Although the problem is solved, when used under severe conditions such as a cutting tool, the strength, toughness and thermal shock resistance are not satisfactory, there is a problem in fracture resistance, and the life is short.

【0004】また、特開昭62−12662号公報に
は、安定化剤を含む部分安定化酸化ジルコニウムに、
0.5〜60内部重量%の範囲でムライト又はアルミナ
及びムライトを含む焼結体が記載されている。この焼結
体は、体積変化が大きいという酸化ジルコニウムの欠点
を抑制し、強度及び靭性を高めたものであるが、耐熱衝
撃性及び高温における耐摩耗性の低下が著しいので、高
速切削用工具のような用途には適さない。
Further, Japanese Patent Laid-Open No. 62-12662 discloses a partially stabilized zirconium oxide containing a stabilizer,
Sintered bodies containing mullite or alumina and mullite in the range of 0.5 to 60% internal weight are described. This sintered body suppresses the drawback of zirconium oxide, which has a large volume change, and enhances strength and toughness, but since thermal shock resistance and wear resistance at high temperatures are significantly reduced, it is Not suitable for such uses.

【0005】さらに、特開昭61−26558号公報に
は、ケイ酸ジルコニウム粉末を5〜25重量%配合した
アルミナ系セラミックス焼結原料粉末混合物を、成形
し、焼結した、耐熱衝撃性に優れたアルミナ系セラミッ
クスの製造方法が記載されている。この焼結体は、従来
のアルミナ系セラミックスの欠点である耐熱衝撃性を改
善したものであるが、強度、靭性の改善がなされておら
ず、切削工具のような過酷な条件の用途では、使用に耐
えない。
Further, Japanese Patent Laid-Open No. 61-26558 discloses that an alumina-based ceramics sintering raw material powder mixture containing 5 to 25% by weight of zirconium silicate powder is molded and sintered, and has excellent thermal shock resistance. A method for producing alumina-based ceramics is described. Although this sintered body has improved thermal shock resistance, which is a drawback of conventional alumina-based ceramics, it has not been improved in strength and toughness, and is used in applications such as cutting tools under harsh conditions. Can not stand.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上述
のアルミナ系焼結体に存在する問題点を解決して、アル
ミナの長所である耐熱性、耐摩耗性及び耐薬品性を最大
限に発揮するとともに、その短所である強度と靭性を補
い、高温における耐摩耗性及び耐欠損性、ならびに耐熱
衝撃性及び耐塑性変形性に優れ、とくに工具用に適する
アルミナ系焼結体を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problems existing in the above-mentioned alumina-based sintered body and maximize the heat resistance, wear resistance and chemical resistance of alumina. In addition to exhibiting its strength and toughness, which are its disadvantages, it provides an alumina-based sintered body that is particularly suitable for tools, with excellent wear resistance and fracture resistance at high temperatures, and excellent thermal shock resistance and plastic deformation resistance. That is.

【0007】本発明のもうひとつの目的は、このような
アルミナ系焼結体の製造方法を提供することである。
Another object of the present invention is to provide a method for producing such an alumina-based sintered body.

【0008】[0008]

【課題を解決するための手段】本発明者らは、アルミナ
の強度及び靭性を高める目的で、アルミナ−酸化ジルコ
ニウム系焼結体について研究を重ねた結果、アルミナに
ケイ酸ジルコニウムを添加した出発原料を用いて、ケイ
酸ジルコニウムの分解及びムライトの生成反応を起こさ
せると緻密な焼結体が得られること、アルミナに二酸化
ケイ素を加えた系でも同様にムライトを形成して緻密な
焼結体が得られること、ならびに得られる焼結体中に存
在するアルミナ、酸化ジルコニウム、ケイ酸ジルコニウ
ム及びムライトの組成比の制御により、高温における焼
結体の特性を顕著に高めることができるという知見を得
て、本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive research on an alumina-zirconium oxide-based sintered body for the purpose of increasing the strength and toughness of alumina, and as a result, a starting material obtained by adding zirconium silicate to alumina. The decomposition of zirconium silicate and the reaction of mullite formation can be performed by using, to obtain a dense sintered body. Even in a system in which silicon dioxide is added to alumina, mullite is similarly formed to form a dense sintered body. By obtaining what is obtained and controlling the composition ratio of alumina, zirconium oxide, zirconium silicate and mullite present in the obtained sintered body, it has been found that the characteristics of the sintered body at a high temperature can be significantly improved. The present invention has been completed.

【0009】すなわち、本発明のアルミナ系焼結体は、
下記成分(1)〜(4)を含むアルミナ系焼結体であ
る。 (1)酸化ジルコニウム、酸化ハフニウム及びこれらの
相互の固溶体の少なくとも1種を含む強靭化相5〜40
重量%; (2)ケイ酸ジルコニウム1〜30重量%; (3)ムライト1〜20重量%;ならびに (4)アルミナ又はアルミナとスピネルとを含むマトリ
ックス
That is, the alumina-based sintered body of the present invention is
It is an alumina-based sintered body containing the following components (1) to (4). (1) Toughening phase 5 to 40 containing at least one of zirconium oxide, hafnium oxide and mutual solid solutions thereof
% By weight; (2) 1 to 30% by weight of zirconium silicate; (3) 1 to 20% by weight of mullite; and (4) alumina or a matrix containing alumina and spinel.

【0010】本発明の焼結体において、強靭化相は、酸
化ジルコニウム、酸化ハフニウム又は両者相互の固溶体
であり、これらの2種以上が混在してもよい。また、後
述のように安定化剤を含有していてもよい。
In the sintered body of the present invention, the toughening phase is zirconium oxide, hafnium oxide, or a solid solution of the two, and two or more of these may be mixed. Moreover, you may contain the stabilizer as mentioned later.

【0011】酸化ジルコニウムは、結晶構造的には、正
方晶系、単斜晶系及び立方晶系のいずれでもよく、また
これらの混在した状態でもよい。これらのうち、正方晶
の酸化ジルコニウムは、応力誘起変態によって焼結体の
強度、靭性を高める効果があることから特に好ましく、
さらに単斜晶の酸化ジルコニウムも、マイクロクラック
強化による靭性向上の効果があることから好ましい。
Zirconium oxide may be tetragonal, monoclinic or cubic in terms of crystal structure, or may be a mixture thereof. Of these, tetragonal zirconium oxide is particularly preferable because it has the effect of increasing the strength and toughness of the sintered body by stress-induced transformation,
Further, monoclinic zirconium oxide is also preferable because it has an effect of improving toughness by strengthening microcracks.

【0012】酸化ハフニウムは、周知のとおり酸化ジル
コニウムと極めて類似した特性を有するものであり、し
たがって酸化ジルコニウムの一部又は全部を酸化ハフニ
ウムで置換してもよい。また、両者の固溶体を形成して
もよい。
Hafnium oxide has properties very similar to zirconium oxide, as is well known, and therefore, part or all of zirconium oxide may be replaced with hafnium oxide. Moreover, you may form the solid solution of both.

【0013】強靭化相には、必要に応じてMgO、Ca
O、Y23 、CeO2 などの安定化剤を含有させるこ
とができる。これは、過度の単斜晶の生成によるマイク
ロクラックの結合に伴う強度低下を防止するものであ
り、焼結体の組成、粒径などにより好ましい安定化剤の
種類及び含有量を選択すればよい。特に、切削工具用焼
結体の場合は、高強度の焼結体が得られるY23 が好
ましい。Y23 の含有量は、強靭化相を形成する酸化
物全体の5モル%以下が好ましい。
The toughening phase may include MgO and Ca as required.
Stabilizers such as O, Y 2 O 3 and CeO 2 can be included. This prevents the strength from being reduced due to the bonding of microcracks due to excessive monoclinic crystal formation, and the type and content of the preferred stabilizer may be selected depending on the composition of the sintered body, the particle size, and the like. . Particularly, in the case of a cutting tool sintered body, Y 2 O 3 is preferable because a sintered body of high strength can be obtained. The content of Y 2 O 3 is preferably 5 mol% or less of the whole oxide forming the toughening phase.

【0014】強靭化相の含有量は、安定化剤が存在する
場合は該安定化剤を含めて、焼結体の5〜40重量%の
範囲である。5重量%未満では、所望の強度及び靭性が
得られず、逆に40重量%を越えると耐熱衝撃性の低下
が著しく、また硬度の著しい低下により耐摩耗性が低下
する。
The content of the toughening phase is in the range of 5 to 40% by weight of the sintered body including the stabilizer, if the stabilizer is present. If it is less than 5% by weight, the desired strength and toughness cannot be obtained. On the contrary, if it exceeds 40% by weight, the thermal shock resistance is remarkably lowered, and the hardness is remarkably lowered, so that the wear resistance is lowered.

【0015】本発明の焼結体において、ケイ酸ジルコニ
ウムは後述のムライトと同様、高温における強度、耐塑
性変形性及び耐熱衝撃性を向上させる効果があり、特に
耐熱衝撃性を向上させる効果が著しい。これは、ケイ酸
ジルコニウムの熱膨張係数がムライトよりもさらに小さ
いことによる。
In the sintered body of the present invention, zirconium silicate has the effect of improving strength at high temperature, plastic deformation resistance and thermal shock resistance, and particularly the effect of improving thermal shock resistance, as in the case of mullite described later. . This is because the coefficient of thermal expansion of zirconium silicate is smaller than that of mullite.

【0016】ケイ酸ジルコニウムの含有量は、焼結体の
1〜30重量、好ましくは5〜20重量%である。1重
量%未満では上述の効果が不十分であり、30重量%を
越えると室温における強度の低下が著しくなる。
The content of zirconium silicate is 1 to 30% by weight, preferably 5 to 20% by weight of the sintered body. If it is less than 1% by weight, the above-mentioned effect is insufficient, and if it exceeds 30% by weight, the decrease in strength at room temperature becomes remarkable.

【0017】本発明の焼結体において、ムライトは、高
温における強度、耐塑性変形性及び耐熱衝撃性を向上さ
せる効果がある。
In the sintered body of the present invention, mullite has an effect of improving strength at high temperature, plastic deformation resistance and thermal shock resistance.

【0018】ムライトの含有量は、焼結体の1〜20重
量%、好ましくは5〜15重量%である。1重量%未満
では上述の効果が不十分であり、20重量%を越えると
耐摩耗性及び室温における強度の低下が著しいからであ
る。
The content of mullite is 1 to 20% by weight, preferably 5 to 15% by weight of the sintered body. This is because if the amount is less than 1% by weight, the above-mentioned effect is insufficient, and if the amount exceeds 20% by weight, the wear resistance and the strength at room temperature are significantly reduced.

【0019】本発明の焼結体において、スピネルは、ア
ルミナ粒子の成長を抑制するとともに、焼結性を向上さ
せる作用がある。スピネルの含有量は、焼結体の形状及
び用途により選定すればよく、たとえば、鋼の高速切削
用工具として用いる場合は、耐摩耗性が低下しないよう
に、10重量%以下が好ましい。
In the sintered body of the present invention, spinel has the functions of suppressing the growth of alumina particles and improving the sinterability. The content of spinel may be selected according to the shape and application of the sintered body. For example, when it is used as a tool for high-speed cutting of steel, it is preferably 10% by weight or less so as not to deteriorate wear resistance.

【0020】本発明のアルミナ系焼結体は、酸化ジルコ
ニウム及び酸化ハフニウムの少なくとも1種からなる強
靭化相形成粉末、アルミナ又はマグネシアを含有するア
ルミナ、ケイ酸ジルコニウムならびに二酸化ケイ素粉末
を含む出発物質を混合、成形及び加熱焼結した後、圧力
1,000気圧以上、温度1,300℃以上の条件で熱
間静水圧処理を施すことにより製造することができる。
The alumina-based sintered body of the present invention comprises a toughening phase forming powder composed of at least one of zirconium oxide and hafnium oxide, alumina or alumina containing magnesia, zirconium silicate and a starting material containing silicon dioxide powder. After mixing, molding and heat-sintering, it can be manufactured by performing hot isostatic treatment under conditions of a pressure of 1,000 atm or higher and a temperature of 1,300 ° C or higher.

【0021】ムライトは、出発原料としてムライト粉末
を使用してもよいが、二酸化ケイ素粉末やケイ酸ジルコ
ニウム粉末として添加し、焼結中、下記の反応により生
成させることが好ましい。これは、焼結性が向上すると
ともに、二酸化ケイ素粉末を用いたときはアルミナ−ム
ライト粒子間の結合が、またケイ酸ジルコニウム粉末を
用いたときはアルミナ−ムライト−酸化ジルコニウム粒
子間の結合が強固になり、緻密な焼結体を形成して、耐
欠損性がいっそう向上するためである。
Although mullite powder may be used as a starting material for mullite, it is preferably added as silicon dioxide powder or zirconium silicate powder and produced by the following reaction during sintering. This is because the sinterability is improved, and the bond between the alumina-mullite particles is strong when the silicon dioxide powder is used, and the bond between the alumina-mullite-zirconium oxide particles is strong when the zirconium silicate powder is used. This is because a dense sintered body is formed and the fracture resistance is further improved.

【0022】[0022]

【化1】 [Chemical 1]

【0023】また、アルミナとともにマトリックスを構
成するスピネルは、焼結中に、下記のようなアルミナと
マグネシアの反応によって生成させることができる。
The spinel, which constitutes a matrix together with alumina, can be produced by the following reaction between alumina and magnesia during sintering.

【0024】[0024]

【化2】 [Chemical 2]

【0025】本発明の製造方法において、用いられる酸
化ジルコニウム、酸化ハフニウム、安定化剤、アルミ
ナ、マグネシア、ケイ酸ジルコニウム、ムライト及び二
酸化ケイ素の量は、上記の化学反応によって得られる焼
結体に含有される酸化ジルコニウム、酸化ハフニウム、
安定化剤、ケイ酸ジルコニウム、ムライト及びアルミナ
の量からの計算量でよい。
In the production method of the present invention, the amounts of zirconium oxide, hafnium oxide, stabilizer, alumina, magnesia, zirconium silicate, mullite and silicon dioxide used are contained in the sintered body obtained by the above chemical reaction. Zirconium oxide, hafnium oxide,
It may be calculated from the amounts of stabilizer, zirconium silicate, mullite and alumina.

【0026】本発明の焼結体は、従来の粉末冶金法によ
り製造することができるが、熱間静水圧(HIP)処理
を施すことにより、さらに高強度で信頼性に優れた焼結
体を得ることができる。すなわち、各種の出発原料を所
要量配合し、たとえばボールミルなどにより均一に混
合、粉砕する。上記の原料粉末混合物に、パラフィンな
どの成形助剤を添加し、造粒した後、所定の形状にプレ
ス成形する。ついで、成形体を、たとえば大気圧雰囲気
中、1,350〜1,650℃の温度で焼結することに
より、本発明の焼結体を得ることができる。さらに必要
に応じてHIP処理を施すことができる。HIP処理の
条件としては、雰囲気ガスとしてAr、N2 などの不活
性ガスが使用されるが、酸素を含むガス雰囲気であれば
さらに好ましい。特に、安定化剤としてCeO2 を含有
する場合は、酸素雰囲気によるHIP処理を行うことが
好ましい。ガス圧力としては1,000気圧以上が必要
であり、処理温度は1,300〜1,600℃が好まし
い。1,000気圧未満のガス圧力、又は1,300℃
未満の温度では、HIP処理による強度、信頼性向上の
効果が十分でない。
The sintered body of the present invention can be manufactured by a conventional powder metallurgy method, but by subjecting it to hot isostatic pressing (HIP) treatment, a sintered body having higher strength and excellent reliability can be obtained. Obtainable. That is, various starting materials are mixed in required amounts, and are uniformly mixed and pulverized by, for example, a ball mill. A molding aid such as paraffin is added to the above raw material powder mixture, granulated, and then press-molded into a predetermined shape. Then, the molded body is sintered at a temperature of 1,350 to 1,650 ° C. in an atmospheric pressure atmosphere, for example, to obtain the sintered body of the present invention. Furthermore, HIP processing can be performed as needed. As an HIP treatment condition, an inert gas such as Ar or N 2 is used as an atmosphere gas, but a gas atmosphere containing oxygen is more preferable. In particular, when CeO 2 is contained as a stabilizer, it is preferable to perform HIP treatment in an oxygen atmosphere. The gas pressure needs to be 1,000 atm or higher, and the treatment temperature is preferably 1,300 to 1,600 ° C. Gas pressure less than 1,000 atm or 1,300 ℃
If the temperature is lower than this, the effect of improving the strength and reliability by the HIP treatment is not sufficient.

【0027】[0027]

【実施例】出発原料として、平均粒径0.1μm のアル
ミナ粉末、マグネシア粉末、ムライト粉末、平均粒径
0.2μm のケイ酸ジルコニウム粉末、一次粒子径が3
00Åの酸化ジルコニウム粉末、3モル%の酸化イット
リウムを含有する酸化ジルコニウム粉末及び平均粒径
0.8μm の酸化ハフニウム粉末を用いた。これらを表
1の配合組成となるように秤量し、メタノール溶媒、ア
ルミナボールを用い、ボールミルにより48時間混合と
粉砕を行ってスラリーとした。得られたスラリーを乾燥
後、5重量%のパラフィンワックスを添加して造粒し
た。このようにして得られた粒状物を1ton/cm2 の圧力
で金型プレスにより成形し、1,500℃で1時間、大
気中で焼結した。さらに1,500℃で1時間、Arガ
ス1,500気圧の条件でHIP処理を行うことによ
り、本発明による焼結体1〜9及び比較品焼結体1〜4
を得た。
Example As starting materials, alumina powder having an average particle size of 0.1 μm, magnesia powder, mullite powder, zirconium silicate powder having an average particle size of 0.2 μm, and a primary particle size of 3
Zirconium oxide powder of 00Å, zirconium oxide powder containing 3 mol% of yttrium oxide, and hafnium oxide powder having an average particle diameter of 0.8 μm were used. These were weighed so as to have the composition shown in Table 1, and were mixed and pulverized by a ball mill for 48 hours using a methanol solvent and alumina balls to obtain a slurry. After drying the obtained slurry, 5% by weight of paraffin wax was added and granulated. The granules thus obtained were molded by a die press at a pressure of 1 ton / cm 2 and sintered in the air at 1,500 ° C. for 1 hour. Further, HIP treatment is performed at 1,500 ° C. for 1 hour under the condition of Ar gas of 1,500 atm, whereby the sintered bodies 1 to 9 and the comparative product sintered bodies 1 to 4 according to the present invention are processed.
Got

【0028】[0028]

【表1】 [Table 1]

【0029】このようにして得られた焼結体について、
X線回析による組成分析を行うとともに、室温における
曲げ強さ、及びAr雰囲気中、1,200℃における高
温曲げ強さを測定した。さらに、水中急冷法による熱衝
撃試験を行い、強度低下の起こる臨界温度差△Tcを測
定した。これらの結果は表2に示すとおりであった。
Regarding the sintered body thus obtained,
The composition was analyzed by X-ray diffraction, and the bending strength at room temperature and the high temperature bending strength at 1,200 ° C. in Ar atmosphere were measured. Further, a thermal shock test was carried out by an underwater quenching method to measure a critical temperature difference ΔTc at which strength reduction occurs. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】さらに、本発明品1〜9及び比較品1〜4
を用いて表3に示す条件(A)及び(B)による乾式連
続旋削試験、及び条件(C)によるフライス切削試験を
行った。その結果を表4に示す。
Further, the products of the present invention 1 to 9 and the comparative products 1 to 4
Was used to perform a dry continuous turning test under the conditions (A) and (B) shown in Table 3 and a milling cutting test under the condition (C). The results are shown in Table 4.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】本発明の焼結体は、ムライト及び酸化ジ
ルコニウムを含有した従来のアルミナ系焼結体に比べ
て、曲げ強さ、特に高温における曲げ強さ、水中急冷法
による臨界温度差ならびに切削試験による耐摩耗性及び
耐欠損性が顕著に優れている。
INDUSTRIAL APPLICABILITY The sintered body of the present invention has bending strength, especially bending strength at high temperature, a critical temperature difference due to an underwater quenching method, as compared with a conventional alumina-based sintered body containing mullite and zirconium oxide. The wear resistance and fracture resistance in the cutting test are remarkably excellent.

【0035】したがって、本発明の焼結体は、従来のア
ルミナ系焼結体の用途はもちろんのこと、鋼及び鋳鉄の
高速切削用工具をはじめとして、各種の切削工具から、
さらにスリッタ、ボール、スリーブ、ノズル、プランジ
ャ、ハサミ、包丁などの耐摩耗用工具や機械部品にも応
用できる、産業上有用な材料である。
Therefore, the sintered body of the present invention can be used not only for conventional alumina-based sintered bodies but also for various cutting tools including high-speed cutting tools for steel and cast iron.
Further, it is an industrially useful material that can be applied to wear-resistant tools and machine parts such as slitters, balls, sleeves, nozzles, plungers, scissors, and knives.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 利之 茨城県土浦市富士崎一丁目18−7 (72)発明者 山村 博 茨城県つくば市上広岡460−35 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshiyuki Mori 1-18-7 Fujisaki, Tsuchiura City, Ibaraki Prefecture (72) Inventor Hiroshi Yamamura 460-35 Kamihirooka, Tsukuba City, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記成分(1)〜(4)を含むことを特
徴とするアルミナ系焼結体。 (1)酸化ジルコニウム、酸化ハフニウム及びこれらの
相互の固溶体の少なくとも1種を含む強靭化相5〜40
重量%; (2)ケイ酸ジルコニウム1〜30重量%; (3)ムライト1〜20重量%;ならびに (4)アルミナ又はアルミナとスピネルとを含むマトリ
ックス。
1. An alumina-based sintered body comprising the following components (1) to (4): (1) Toughening phase 5 to 40 containing at least one of zirconium oxide, hafnium oxide and mutual solid solutions thereof
% By weight; (2) 1-30% by weight of zirconium silicate; (3) 1-20% by weight of mullite; and (4) Alumina or a matrix containing alumina and spinel.
【請求項2】 強靭化相が、安定化剤として酸化イット
リウムを含む酸化ジルコニウムである請求項1記載のア
ルミナ系焼結体。
2. The alumina-based sintered body according to claim 1, wherein the toughening phase is zirconium oxide containing yttrium oxide as a stabilizer.
【請求項3】 酸化ジルコニウム及び酸化ハフニウムの
少なくとも1種からなる強靭化相形成粉末、アルミナ又
はマグネシアを含有するアルミナ、ケイ酸ジルコニウム
ならびに二酸化ケイ素粉末を含む出発物質を混合、成形
及び加熱焼結した後、1,000気圧以上、1,300
℃以上の条件で熱間静水圧処理を施すことを特徴とする
請求項1記載のアルミナ系焼結体の製造方法。
3. A starting material comprising a toughening phase forming powder comprising at least one of zirconium oxide and hafnium oxide, alumina or alumina containing magnesia, zirconium silicate and silicon dioxide powder, mixed, molded and heat-sintered. Later, over 1,000 atmospheres, 1,300
The method for producing an alumina-based sintered body according to claim 1, wherein the hot isostatic treatment is performed at a temperature of not less than ° C.
JP04256391A 1992-09-25 1992-09-25 Alumina-based sintered body and method for producing the same Expired - Fee Related JP3076682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04256391A JP3076682B2 (en) 1992-09-25 1992-09-25 Alumina-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04256391A JP3076682B2 (en) 1992-09-25 1992-09-25 Alumina-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06107454A true JPH06107454A (en) 1994-04-19
JP3076682B2 JP3076682B2 (en) 2000-08-14

Family

ID=17292030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04256391A Expired - Fee Related JP3076682B2 (en) 1992-09-25 1992-09-25 Alumina-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3076682B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127263A (en) * 2006-11-23 2008-06-05 Nippon Soken Inc Alumina sintered body and spark plug
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
WO2020115868A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor device
CN111902383A (en) * 2018-03-28 2020-11-06 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210378A1 (en) * 2016-06-10 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. CIRCONOXIDE CERAMIC, CELLULAR MATERIAL THEREOF AND METHOD FOR THE PRODUCTION OF ZIRCONOXIDE CERAMIC

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127263A (en) * 2006-11-23 2008-06-05 Nippon Soken Inc Alumina sintered body and spark plug
CN111902383A (en) * 2018-03-28 2020-11-06 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
CN111902383B (en) * 2018-03-28 2022-12-16 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
JPWO2019208438A1 (en) * 2018-04-26 2021-06-10 京セラ株式会社 Ceramic substrate and mounting substrate and electronic device using it
WO2020115868A1 (en) * 2018-12-06 2020-06-11 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor device
JPWO2020115868A1 (en) * 2018-12-06 2021-09-30 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor devices
US11897817B2 (en) 2018-12-06 2024-02-13 Ngk Insulators, Ltd. Ceramic sintered body and substrate for semiconductor device

Also Published As

Publication number Publication date
JP3076682B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JPS6140621B2 (en)
JPH0475188B2 (en)
JPS61111970A (en) Silicon nitride sintered body and manufacture
US5082809A (en) High-strength alumina sintered body and process for preparation thereof
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
US4650498A (en) Abrasion resistant silicon nitride based articles
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JP2645894B2 (en) Method for producing zirconia ceramics
JPH0687650A (en) Alumina-based sintered compact and its production
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JPH0797254A (en) High-strength sintered alumina
JP2581940B2 (en) High-strength alumina sintered body and method for producing the same
JPH04160053A (en) Wear-resistant alumina-zirconia sintered body and its production
JPH01183460A (en) Production of sintered ceramic material
JPH01157466A (en) Silicon nitride sintered body
JPH0339989B2 (en)
JPH03275565A (en) Silicon nitride-based sintered material having high toughness and strength
JPH0812443A (en) Superplastic silicon nitride sintered compact
JPH04104944A (en) Al2o3-sic-zro2 composite sinter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees