JPH0797254A - High-strength sintered alumina - Google Patents

High-strength sintered alumina

Info

Publication number
JPH0797254A
JPH0797254A JP5239483A JP23948393A JPH0797254A JP H0797254 A JPH0797254 A JP H0797254A JP 5239483 A JP5239483 A JP 5239483A JP 23948393 A JP23948393 A JP 23948393A JP H0797254 A JPH0797254 A JP H0797254A
Authority
JP
Japan
Prior art keywords
zro
less
zirconia
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5239483A
Other languages
Japanese (ja)
Other versions
JP3078430B2 (en
Inventor
Katsura Hayashi
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05239483A priority Critical patent/JP3078430B2/en
Publication of JPH0797254A publication Critical patent/JPH0797254A/en
Application granted granted Critical
Publication of JP3078430B2 publication Critical patent/JP3078430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sintered alumina which has over 6 MN/m<3/2> facture toughness and over 70kg/mm<2> traverse strength and can be used to produce ceramic tools suitable for high-efficiency processing such as high-speed machining and high-speed feeding. CONSTITUTION:The product comprises 5 to 30wt.% of zirconia (ZrO2) of less than lmum average particle size, less than 1.0wt.%, based on the total ZrO2, of hafnia (HfO2) and the rest of alumina (Al2 O3) of less than 1.5mum average particle size and unavoidable impurities wherein more than 40% of the zirconia is tetragonal crystals (t-ZrO2) and 0.01 to 5wt.% of at least one from the oxides of Fe, Ni, Co may be incorporated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、破壊靱性および抗折強
度を向上させた切削工具用の高強度アルミナ質焼結体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength alumina sintered body for a cutting tool having improved fracture toughness and bending strength.

【0002】[0002]

【従来技術】近時、工作機械は高効率化、無人化が進
み、切削工具においても多数の切削装置を同時に作動さ
せる場合が多い。しかしながら、アルミナセラミック工
具は一般に抗折強度や破壊靱性値が低く、そのため高速
切削、高切り込みおよび高送りといった高効率化におい
て、一度に多数のセラミック工具を使用すると1個のセ
ラミック工具であってもそれが急な欠損を生じた場合
に、全ての装置を停止させなければならないという不都
合が生じる。したがってこれらのセラミック工具として
破壊靱性が充分で、特に抗折強度が優れており、かつこ
れらが安定して得られるセラミック工具の焼結体が強く
要求されている。
2. Description of the Related Art In recent years, machine tools are becoming highly efficient and unmanned, and in many cases, many cutting devices are operated simultaneously even in cutting tools. However, alumina ceramic tools generally have low bending strength and fracture toughness values, and therefore, in order to achieve high efficiency such as high-speed cutting, high cutting depth and high feed, even if one ceramic tool is used when many ceramic tools are used at a time. The disadvantage is that all equipment must be stopped if it causes a sudden failure. Therefore, there is a strong demand for a sintered body of a ceramic tool which has sufficient fracture toughness and is particularly excellent in bending strength as these ceramic tools, and which can stably obtain these.

【0003】そこで、アルミナ質焼結体の破壊靱性値
(K1c)を向上させるため、アルミナ(Al2 3 )に
ジルコニア(ZrO2 )を添加させるものがある。この
ような典型的な先行技術は特開昭59−25748号公
報に開示されている。これは、Al2 3 中にZrO2
を分散させ、分散したジルコニア(ZrO2 )が焼結後
t−ZrO2 (テトラゴナル−ジルコニア)からm−Z
rO2 (モノクリニック−ジルコニア)に相転移する際
の体積膨張変化により、焼結体中に多数のマイクロクラ
ックを発生させ、このマイクロクラックの存在により破
壊靱性を向上させようとするものである。
Therefore, in order to improve the fracture toughness value (K 1c ) of the alumina-based sintered body, there is a method of adding zirconia (ZrO 2 ) to alumina (Al 2 O 3 ). Such typical prior art is disclosed in Japanese Patent Laid-Open No. 59-25748. This is due to ZrO 2 in Al 2 O 3.
Is dispersed, and the dispersed zirconia (ZrO 2 ) is sintered and then converted from t-ZrO 2 (tetragonal-zirconia) to m-Z.
The volume expansion change at the time of phase transition to rO 2 (monoclinic-zirconia) causes many microcracks in the sintered body, and the presence of these microcracks is intended to improve the fracture toughness.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、焼結
体中に多数のマイクロクラックを存在させることは破壊
靱性が向上したとしても、逆に抗折強度が著しく劣化
し、特に高速切削、高切り込みおよび高送りといった高
速加工において焼結体に欠損を生じ易いという問題があ
った。
However, even if the fracture toughness is improved, the presence of a large number of microcracks in the sintered body, on the contrary, significantly deteriorates the transverse strength, and particularly, high-speed cutting and high cutting In addition, there is a problem that defects are likely to occur in the sintered body during high-speed processing such as high feed.

【0005】一方、ZrO2 およびAl2 3 を微粒子
にしていくと、抗折強度は上がるが破壊靱性は低下する
という問題があった。これはZrO2 の微粒化によりZ
rO2 のt−ZrO2 からm−ZrO2 への転移が抑制
されるからである。
On the other hand, when ZrO 2 and Al 2 O 3 are made into fine particles, there has been a problem that the fracture strength is reduced although the bending strength is increased. This is due to the atomization of ZrO 2.
This is because the transition of rO 2 from t-ZrO 2 to m-ZrO 2 is suppressed.

【0006】本発明は、破壊靱性および抗折強度をとも
に向上することができる高強度アルミナ質焼結体を提供
することを目的とする。
An object of the present invention is to provide a high-strength alumina sintered body which can improve both fracture toughness and transverse strength.

【0007】[0007]

【問題点を解決するための手段】本発明者は上記現状に
鑑み鋭意研究の結果、平均結晶粒径1.5μm以下のA
2 3 の主成分に平均結晶粒径1μm以下のZrO2
を一定量含有し、ZrO2 全量に対するHfO2 量を一
定量に制限し、ZrO2 の40%以上をt−ZrO2
晶としたアルミナ質焼結体は、抗折強度を著しく向上し
つつ、しかもある程度以上の破壊靱性を有していること
を知見した。
[Means for Solving the Problems] The inventors of the present invention have made earnest studies in view of the above-mentioned circumstances, and as a result, A having an average crystal grain size of 1.5 μm or less was obtained.
The main component of l 2 O 3 is ZrO 2 having an average crystal grain size of 1 μm or less.
A certain amount contained, limits the HfO 2 amount for ZrO 2 total amount a certain amount, the alumina sintered body of 40% or more of ZrO 2 was t-ZrO 2 crystals, while significantly improving the flexural strength, Moreover, they have found that they have fracture toughness above a certain level.

【0008】また、主成分Al2 3 中に所定量のZr
2 と、所定量のFe,Ni,Co等の酸化物とを含有
するとともに、ZrO2 全量に対するHfO2 量を一定
量制限することにより、抗折強度を著しく向上しつつ、
しかもある程度以上の破壊靱性を有していることを知見
した。
Further, a predetermined amount of Zr is contained in the main component Al 2 O 3.
While containing O 2 and a predetermined amount of oxides of Fe, Ni, Co, etc. and limiting the amount of HfO 2 with respect to the total amount of ZrO 2 by a certain amount, the bending strength is significantly improved,
Moreover, they have found that they have fracture toughness above a certain level.

【0009】即ち、本発明の高強度アルミナ質焼結体
は、平均結晶粒径1μm以下のジルコニア(ZrO2
を5〜30重量%、ハフニア(HfO2 )をZrO2
量に対して1.0重量%以下、残部が平均結晶粒径1.
5μm以下のアルミナ(Al23 )および不可避不純
物からなるとともに、ジルコニア(ZrO2 )の40%
以上が正方晶ジルコニア(t−ZrO2 )結晶であるこ
とを特徴とする。また、平均結晶粒径1μm以下のジル
コニア(ZrO2 )を5〜30重量%、ハフニア(Hf
2 )をZrO2 全量に対して1.0重量%以下、F
e,Ni,Coの酸化物のうち少なくとも1種を0.0
1〜5重量%、残部が平均結晶粒径1.5μm以下のア
ルミナ(Al2 3 )および不可避不純物からなるとと
もに、ジルコニア(ZrO2 )の40%以上が正方晶ジ
ルコニア(t−ZrO2 )結晶であることを特徴とす
る。
That is, the high-strength alumina sintered body of the present invention is a zirconia (ZrO 2 ) having an average crystal grain size of 1 μm or less.
5 to 30% by weight, hafnia (HfO 2 ) is 1.0% by weight or less based on the total amount of ZrO 2 , and the balance is an average crystal grain size of 1.
Consists of alumina (Al 2 O 3 ) of 5 μm or less and inevitable impurities, and 40% of zirconia (ZrO 2 ).
The above is a tetragonal zirconia (t-ZrO 2 ) crystal. Further, zirconia (ZrO 2 ) having an average crystal grain size of 1 μm or less is included in an amount of 5 to 30% by weight, and hafnia (Hf) is included.
O 2 ) is 1.0% by weight or less based on the total amount of ZrO 2 , and F
At least one of oxides of e, Ni, and Co is 0.0
1 to 5% by weight, the balance consisting of alumina (Al 2 O 3 ) having an average crystal grain size of 1.5 μm or less and unavoidable impurities, and 40% or more of zirconia (ZrO 2 ) is tetragonal zirconia (t-ZrO 2 ). It is characterized by being a crystal.

【0010】ここで、ZrO2 量、HfO2 量等を上記
のように限定した理由について説明する。
Here, the reason why the amounts of ZrO 2 and HfO 2 are limited as described above will be explained.

【0011】先ず、Al2 3 量は70〜95重量%と
することが望ましい。Al2 3 量が70重量%よりも
少ないとZrO2 の転移によりAl2 3 が破壊され抗
折強度が低下するからであり、95重量%よりも多いと
破壊靱性が小さくなるからである。Al2 3 量のより
好ましい含有量は78〜87重量%である。
First, it is desirable that the amount of Al 2 O 3 is 70 to 95% by weight. This is because when the amount of Al 2 O 3 is less than 70% by weight, the transition of ZrO 2 causes destruction of Al 2 O 3 and the transverse rupture strength decreases, and when it exceeds 95% by weight, the fracture toughness decreases. . The more preferable content of Al 2 O 3 is 78 to 87% by weight.

【0012】また、ZrO2 量を5〜30重量%とした
のは、ZrO2 の含有量が5重量%より少ない場合で
は、ZrO2 添加によるクラック先端のエネルギー吸収
が少なく靱性向上の効果が小さい。また、抗折強度向上
の効果が小さい。30重量%を越えると焼結体中のZr
2 結晶相のうち単斜晶ZrO2 (m−ZrO2 )量が
多くなり、クラック先端でのエネルギー吸収に関与する
ZrO2 が実質的に減少し、破壊靱性が低下したり、焼
結体の硬度が低下するので切削工具用として使用すると
摩擦量が大となるからである。ZrO2 量のより好まし
い含有量は13〜22重量%である。
Furthermore, it had the ZrO 2 amount and 5 to 30 wt%, in the case where the content of ZrO 2 is less than 5 wt%, less effect of energy absorption of the crack tip by ZrO 2 added is small toughness improved . Further, the effect of improving the bending strength is small. Zr in the sintered body exceeds 30% by weight
The amount of monoclinic ZrO 2 (m-ZrO 2 ) in the O 2 crystal phase is increased, the ZrO 2 involved in energy absorption at the crack tip is substantially reduced, the fracture toughness is lowered, and the sintered body is This is because the hardness of is reduced and the friction amount becomes large when used as a cutting tool. The more preferable content of ZrO 2 is 13 to 22% by weight.

【0013】また、ZrO2 全量に対するHfO2 量を
1.0重量%以下と限定したのは、1.0重量%よりも
多い場合にはZrO2 を微粒化した場合にt−ZrO2
からm−ZrO2 への転移が抑制され、靱性向上の効果
が小さくなるからである。ZrO2 全量に対するHfO
2 量は、0.03〜1.0重量%とすることが望まし
い。HfO2 量が0.03重量%よりも少ないと、原料
粉末の精製が非常に困難となるからである。HfO2
ZrO2 原料中に通常3〜5重量%含有されているが、
本発明のようにHfO2 含有量を少なくするためには、
HfO2 の含有量の少ない鉱石を選んでZrO2 を精製
すると良い。ZrO2 全量に対するHfO2 量は、特に
0.05〜0.5重量%含有することが好ましい。Hf
2 は単体ではなく、ZrO2 との化合物として存在す
るか、ZrO2 中に固溶していても良い。
The amount of HfO 2 with respect to the total amount of ZrO 2 is limited to 1.0% by weight or less. When the amount of HfO 2 is more than 1.0% by weight, t-ZrO 2 is atomized when ZrO 2 is atomized.
To m-ZrO 2 is suppressed, and the effect of improving toughness is reduced. HfO to ZrO 2 total amount
The 2 amount is preferably 0.03 to 1.0% by weight. If the amount of HfO 2 is less than 0.03% by weight, it will be very difficult to purify the raw material powder. HfO 2 is usually contained in the ZrO 2 raw material in an amount of 3 to 5% by weight.
In order to reduce the HfO 2 content as in the present invention,
It is advisable to select an ore with a low HfO 2 content and purify ZrO 2 . The amount of HfO 2 with respect to the total amount of ZrO 2 is particularly preferably 0.05 to 0.5% by weight. Hf
O 2 is not a simple substance, or present as a compound with ZrO 2, may be solved in ZrO 2.

【0014】焼結体中のAl2 3 の平均結晶粒径が
1.5μmを越えると母相であるAl2 3 の強度が低
くなる傾向にあり、ZrO2 を均一にAl2 3 中に分
散させても抗折強度は充分に向上しない。また、焼結体
中のZrO2 の平均結晶粒径が1μmを越えると、粒子
径のバラツキを考慮すると粒径3μm以上の比較的粗大
なジルコニア粒子が焼結体中に残存することが多く、こ
れらのジルコニア粒子が抗折試験を行った場合に破壊源
となり強度が劣化する。Al2 3 およびZrO2 の平
均結晶粒径は0.5μm以下が好ましい。
When the average crystal grain size of Al 2 O 3 in the sintered body exceeds 1.5 μm, the strength of the matrix Al 2 O 3 tends to be low, and ZrO 2 is uniformly dispersed in Al 2 O 3. Even if it is dispersed therein, the bending strength is not sufficiently improved. Further, when the average crystal grain size of ZrO 2 in the sintered body exceeds 1 μm, relatively coarse zirconia particles having a particle size of 3 μm or more often remain in the sintered body in consideration of the variation in particle size, When these zirconia particles are subjected to the bending test, they become a fracture source and deteriorate in strength. The average crystal grain size of Al 2 O 3 and ZrO 2 is preferably 0.5 μm or less.

【0015】また、ZrO2 中の40%以上をt−Zr
2 結晶としたのは、t−ZrO2の含有量が40%未
満であれば、抗折強度の増加量が少なく、また、切削工
具として使用した場合に靱性の顕著な向上が望めないか
らである。また、Al2 3-ZrO2 系においては、Zr
2 によるアルミナ強化機構の1つとして、クラックの
先端でt−ZrO2 がm−ZrO2 に相変態し、クラッ
クのエネルギーを吸収し、クラックを止めるという効果
がある。したがって、t−ZrO2 が40%未満ではク
ラック先端近傍のt−ZrO2 量が少なく、クラックの
エネルギーを充分に吸収できないからである。焼結体中
のZrO2 結晶相はZrO2 全量のうち、t−ZrO2
は50%以上、特に70%以上であることが好ましい。
Further, 40% or more of ZrO 2 is t-Zr.
O 2 crystal is used because if the content of t-ZrO 2 is less than 40%, the amount of increase in bending strength is small, and when it is used as a cutting tool, remarkable improvement in toughness cannot be expected. Is. Further, in the Al 2 O 3 —ZrO 2 system, Zr
As one of the alumina strengthening mechanisms by O 2, there is an effect that t-ZrO 2 undergoes a phase transformation into m-ZrO 2 at the tip of the crack, absorbs the energy of the crack, and stops the crack. Therefore, when t-ZrO 2 is less than 40%, the amount of t-ZrO 2 in the vicinity of the crack tip is small and the crack energy cannot be sufficiently absorbed. ZrO 2 crystal phase in the sintered body of the ZrO 2 total amount, t-ZrO 2
Is preferably 50% or more, and particularly preferably 70% or more.

【0016】また、本発明においては、ZrO2 を5〜
30重量%、HfO2 をZrO2 全量に対して1.0重
量%以下の割合で含有させるとともに、Fe,Ni,C
oの酸化物のうち少なくとも1種を0.01〜5重量%
の割合でAl2 3 中に分散含有した高強度アルミナ質
焼結体が提供される。
In the present invention, ZrO 2 is added in an amount of 5 to 5.
30% by weight, HfO 2 in an amount of 1.0% by weight or less based on the total amount of ZrO 2 , and Fe, Ni, C
0.01-5% by weight of at least one of the oxides of o
A high-strength alumina-based sintered body dispersedly contained in Al 2 O 3 is provided.

【0017】ここで、Fe,Ni,Coの酸化物を0.
01〜5重量%の割合で分散含有したのは、Fe,N
i,Coの酸化物が0.01重量%よりも少ないと破壊
靱性の向上効果が得られず、5重量%を越えると抗折強
度が低下するからである。
Here, the oxides of Fe, Ni, and Co are added to 0.
Fe, N were dispersed and contained in the proportion of 01 to 5% by weight.
This is because if the oxide of i, Co is less than 0.01% by weight, the effect of improving fracture toughness cannot be obtained, and if it exceeds 5% by weight, the flexural strength is lowered.

【0018】本発明の高強度アルミナ質焼結体の製造に
際しては通常の方法を採用し得る。
In producing the high-strength alumina sintered body of the present invention, a usual method can be adopted.

【0019】例えば、平均粒子径1μm以下のAl2
3 、ZrO2 、所望によりFe,Ni,Co酸化物もし
くは焼成により酸化物に変換しうる化合物を秤量後、こ
れらを分散材および蒸留水等の媒質とともに混合粉砕す
る。ZrO2 原料にはHfO2含有量の少ない原料を用
いる。例えば、HfO2 含有量の少ないZrO2 鉱石か
ら化学的に抽出し、加熱によって酸化物粉末にしたもの
である。
For example, Al 2 O having an average particle size of 1 μm or less
3 , ZrO 2 , and optionally Fe, Ni, Co oxides or compounds that can be converted into oxides by firing are weighed, and then mixed and pulverized with a medium such as a dispersant and distilled water. A raw material having a low HfO 2 content is used as the ZrO 2 raw material. For example, it is an oxide powder that is chemically extracted from ZrO 2 ore having a low HfO 2 content and heated to form an oxide powder.

【0020】粉砕後公知の成形手段で成形した後125
0〜1600℃で焼成する。焼成方法としては、大気中
での常圧焼成、ホットプレス、熱間静水圧法等を採用し
うるが、高密度の焼結体を得るためには、先ず1400
〜1500℃で常圧焼成した後、さらに1300〜15
00℃で熱間静水圧焼成すれば良い。
125 after crushing and shaping by known shaping means
Baking at 0 to 1600 ° C. As the firing method, atmospheric pressure firing in air, hot pressing, hot isostatic pressing, etc. can be adopted, but in order to obtain a high density sintered body, first, 1400
After firing under normal pressure at ~ 1500 ° C, 1300 ~ 15
It suffices to carry out hot isostatic pressing at 00 ° C.

【0021】[0021]

【作用】本発明の高強度アルミナ質焼結体では、クラッ
クの先端でt−ZrO2 がm−ZrO2 に相変態し、ク
ラック先端のエネルギーを吸収し、クラックの伸展を防
止し、破壊靱性を向上することが可能となる。
In the high-strength alumina sintered body of the present invention, t-ZrO 2 undergoes phase transformation into m-ZrO 2 at the crack tip, absorbs energy at the crack tip, prevents crack extension, and fracture toughness. It becomes possible to improve.

【0022】そして、本発明では、ZrO2 全量に対す
るHfO2 量を一定量に制限し、ジルコニア(Zr
2 )の40%以上をt−ZrO2 結晶としたので、破
壊靱性および抗折強度をさらに向上する。
In the present invention, the amount of HfO 2 relative to the total amount of ZrO 2 is limited to a fixed amount, and zirconia (Zr
Since 40% or more of O 2 ) is a t-ZrO 2 crystal, the fracture toughness and the bending strength are further improved.

【0023】本発明のFe,Ni,Coの酸化物の添加
効果を確認すべく焼結体破壊面を観察したところ、F
e,Ni,Co酸化物を添加した試料では、それらの酸
化物を添加していない試料に比較して、Al2 3 粒子
の粒内破壊が多くなっている。
The fractured surface of the sintered body was observed to confirm the effect of adding the oxides of Fe, Ni and Co of the present invention.
In the sample to which the e, Ni, and Co oxides were added, intragranular fracture of Al 2 O 3 particles was larger than that in the sample to which the oxides were not added.

【0024】このことから、Fe,Ni,Co酸化物の
添加によってAl2 3 粒子の結合が強固になり粒界で
の破壊が起こりにくくなっていると考えられる。破壊靱
性が向上した理由は、Al2 3 粒子の結合が強固にな
り、クラックの伸展が困難になるためであると考えられ
る。
From this, it is considered that the addition of Fe, Ni, and Co oxides strengthens the bonding of Al 2 O 3 particles and makes it difficult for the Al 2 O 3 particles to break at the grain boundaries. It is considered that the reason why the fracture toughness is improved is that the bond of Al 2 O 3 particles is strengthened and it is difficult to spread the crack.

【0025】以下、本発明を次の実施例で説明する。The present invention will be described in the following examples.

【0026】[0026]

【実施例】【Example】

実施例1 Al2 3 原料とZrO2 原料とを表1に示す割合で調
合し、調合原料100gを樹脂製ポットに入れ、アルコ
ールとφ10mmの高純度アルミナボールとともに密封
し、所定時間混合する。混合後の原料を乾燥した後、4
重量%バインダを添加し、所望形状に成形する。成形体
を大気雰囲気中で1500℃で2時間仮焼し、しかる後
に1400℃で1時間熱間静水圧焼成を行った。
Example 1 An Al 2 O 3 raw material and a ZrO 2 raw material were mixed at a ratio shown in Table 1, 100 g of the mixed raw material was put into a resin pot, and the mixture was sealed with alcohol and a φ10 mm high-purity alumina ball and mixed for a predetermined time. After drying the mixed raw materials, 4
Add wt% binder and shape into desired shape. The molded body was calcined in an air atmosphere at 1500 ° C. for 2 hours, and then hot isostatic firing was performed at 1400 ° C. for 1 hour.

【0027】これらの試料について日本工業規格(JI
S)による4点曲げ抗折強度試験を行うとともに、破壊
靱性(K1c)をビッカース圧痕法により、さらにビッカ
ース硬度については荷重20kgでビッカース硬度計に
より測定した結果を表1に示す。
Regarding these samples, Japanese Industrial Standards (JI
Table 1 shows the results obtained by performing a 4-point bending bending strength test according to S), measuring fracture toughness (K 1c ) by the Vickers indentation method, and further measuring Vickers hardness by a Vickers hardness meter with a load of 20 kg.

【0028】[0028]

【表1】 [Table 1]

【0029】試料番号2〜10、12〜14、17〜1
9は本発明の範囲内のものであり、いずれも抗折強度7
0kg/mm2 以上、靱性値も6MN/m3/2 以上と優
れている。これに対し、試料番号1及び20は本発明の
範囲外のものであり、試料番号1は抗折強度55kg/
mm2 および靱性値が4.0MN/m3/2 と低く、試料
番号20は抗折強度が120kg/mm2 と優れている
が、靱性が4.5MN/m3/2 と劣化している。試料番
号4〜8は本発明のより好ましい範囲であり、抗折強度
が100kg/mm2 以上、靱性値が6.0MN/m
3/2 以上と優れている。
Sample Nos. 2-10, 12-14, 17-1
9 is within the scope of the present invention, and all have a bending strength of 7
It has an excellent value of 0 kg / mm 2 or more and a toughness value of 6 MN / m 3/2 or more. On the other hand, sample numbers 1 and 20 are out of the scope of the present invention, and sample number 1 has a bending strength of 55 kg /
mm 2 and toughness value are as low as 4.0 MN / m 3/2, and Sample No. 20 has an excellent bending strength of 120 kg / mm 2 but has deteriorated toughness of 4.5 MN / m 3/2 . . Sample Nos. 4 to 8 are more preferable ranges of the present invention, and have a bending strength of 100 kg / mm 2 or more and a toughness value of 6.0 MN / m.
Excellent with 3/2 or more.

【0030】実施例2 更に、試料番号6についてジルコニア(ZrO2 )の平
均結晶粒径を異ならせてt−ZrO2 結晶相の焼結体中
の量をX線回折ピークにより下記の方法で測定した。
Example 2 Furthermore, with respect to sample No. 6, the amount of t-ZrO 2 crystal phase in the sintered body was measured by the following method by varying the average crystal grain size of zirconia (ZrO 2 ). did.

【0031】CuKα線で2θ=27°〜33°までX
線回折測定を行い、以下のピーク高さ(t1 ,m1 ,m
2 )を求める。
With CuKα ray, 2θ = 27 ° to 33 ° X
Line diffraction measurement was performed and the following peak heights (t 1 , m 1 , m
2 ) Ask.

【0032】 t−ZrO2 (111) 30.2° t1 (1) m−ZrO2 (111) 28.2° m1 (2) m−ZrO2 (111) 31.5° m2 (3) t1 ,m1 ,m2 より、t−ZrO2 の量は数1で求め
られる。
T-ZrO 2 (111) 30.2 ° t 1 (1) m-ZrO 2 (111) 28.2 ° m 1 (2) m-ZrO 2 (111) 31.5 ° m 2 (3 ) From t 1 , m 1 and m 2 , the amount of t-ZrO 2 can be calculated by Equation 1.

【0033】[0033]

【数1】 [Equation 1]

【0034】上記測定法によりt−ZrO2 結晶相の量
による抗折強度および靱性の変化を調べた結果を表2に
示す。
Table 2 shows the results of examining the changes in the bending strength and the toughness depending on the amount of the t-ZrO 2 crystal phase by the above measuring method.

【0035】[0035]

【表2】 [Table 2]

【0036】試料番号21〜24はジルコニア(ZrO
2 )の平均粒径が1μm以下と本発明の範囲内で、t−
ZrO2 結晶相が約40%以上であり、この程度以上の
t−ZrO2 結晶相を含むアルミナ質焼結体は抗折強度
が90kg/mm2 以上と優れている。これに対し、試
料番号25および26はジルコニア(ZrO2 )の平均
粒径が1μmを越え本発明の範囲外で、t−ZrO2
晶相が40%未満であり、このようなアルミナ質焼結体
は抗折強度が65kg/mm2 未満と劣っていることが
理解される。尚、靱性値については試料番号21〜26
のいずれも7.2〜8.5MN/m3/2 程度で特に大き
な差は生じなかった。
Sample numbers 21 to 24 are zirconia (ZrO
If the average particle size of 2 ) is 1 μm or less and within the range of the present invention, t-
The ZrO 2 crystal phase is about 40% or more, and the alumina-based sintered body containing the t-ZrO 2 crystal phase having the ZrO 2 crystal phase or more is excellent in bending strength of 90 kg / mm 2 or more. On the other hand, sample numbers 25 and 26 have an average particle size of zirconia (ZrO 2 ) of more than 1 μm and outside the scope of the present invention, and the t-ZrO 2 crystal phase is less than 40%. It is understood that the body has a poor transverse strength of less than 65 kg / mm 2 . Regarding the toughness values, sample numbers 21 to 26
In each of the above cases, a large difference did not occur at about 7.2 to 8.5 MN / m 3/2 .

【0037】実施例3 純度98%以上のAl2 3 粉末、ZrO2 粉末及び平
均粒子径1.0μm以下のNiO、CoO、Fe2 3
粉末を表3の量に秤量し、これを分散剤を添加した蒸留
水に入れ、アトライタで混合粉砕する。粉砕後のスラリ
ーを乾燥し、有機バインダーを添加し、さらに乾燥させ
て、成形用原料とした。
Example 3 Al 2 O 3 powder having a purity of 98% or more, ZrO 2 powder and NiO, CoO, Fe 2 O 3 having an average particle diameter of 1.0 μm or less.
The powder is weighed to the amount shown in Table 3, put in distilled water to which a dispersant is added, and mixed and ground with an attritor. The slurry after crushing was dried, an organic binder was added, and further dried to obtain a molding raw material.

【0038】この原料を用いて所定寸法に成形した後、
ポリエチレンの袋に真空パックし、4t/cm2 の圧力
でCIP処理(冷間静水圧成形)した。
After molding to a predetermined size using this raw material,
It was vacuum packed in a polyethylene bag and subjected to CIP treatment (cold isostatic pressing) at a pressure of 4 t / cm 2 .

【0039】得られた成形体を脱バインダーし、大気雰
囲気中で1450℃で2時間予備焼成した。その後、焼
結体を1425℃で1時間2000気圧で熱間静水圧焼
成した。
The obtained molded body was debindered and prebaked at 1450 ° C. for 2 hours in the air atmosphere. Then, the sintered body was hot isostatically baked at 1425 ° C. for 1 hour at 2000 atmospheric pressure.

【0040】得られた焼結体を3×4×40mmの抗折
強度試験片に研摩し、JISR1601に従って3点曲
げ強度を測定した。また、前述の方法で同時に3×4×
40mmのタブレットを作製し、焼上がりの未研摩面で
X線回折を測定し、ZrO2の結晶を調べた。
The obtained sintered body was ground into a bending strength test piece of 3 × 4 × 40 mm, and the three-point bending strength was measured according to JIS R1601. In addition, 3 × 4 × at the same time by the above method
A 40 mm tablet was prepared, and X-ray diffraction was measured on the unpolished surface after baking to examine ZrO 2 crystals.

【0041】更に、3×4×40mmのタブレットを研
摩後、3μmのダイヤモンドペーストでポリッシングを
行い、ビッカース硬度用ダイヤモンドコーンを用いて荷
重20kgでクラック長さを測定し、MI法によって破
壊靱性を測定した。
Further, after polishing a tablet of 3 × 4 × 40 mm, polishing was performed with a diamond paste of 3 μm, the crack length was measured with a load of 20 kg using a diamond cone for Vickers hardness, and the fracture toughness was measured by the MI method. did.

【0042】[0042]

【表3】 [Table 3]

【0043】この表3より、NiO、CoO、Fe2
3 を全く添加しない組成(表1)よりも靱性が向上して
いることが判る。例えば、表1の試料No.6では靱性が
7MN/m3/2 、抗折強度が135 kg/mm2 であるのに対
し、この実施例では表3の試料No.35のように靱性が
7.5MN/m3/2 、抗折強度が140 kg/mm2 を達成でき
た。
From Table 3, NiO, CoO, Fe 2 O
It can be seen that the toughness is improved over the composition in which 3 is not added at all (Table 1). For example, the sample No. 6 in Table 1 has a toughness of 7 MN / m 3/2 and the bending strength is 135 kg / mm 2 , whereas in this Example, the sample No. 35 in Table 3 has a toughness. It was possible to achieve 7.5 MN / m 3/2 and a bending strength of 140 kg / mm 2 .

【0044】[0044]

【発明の効果】以上のように本発明によれば、破壊靱性
値が少なくとも6MN/m3/2 以上維持することがで
き、特に抗折強度は70kg/mm2 以上とすることが
でき、高速切削、高切り込みおよび高送りといった高効
率加工に適したセラミック工具用のアルミナ質焼結体を
提供することができる。
As described above, according to the present invention, the fracture toughness value can be maintained at least 6 MN / m 3/2 or more, and the bending strength can be 70 kg / mm 2 or more. It is possible to provide an alumina-based sintered body for a ceramic tool suitable for high-efficiency machining such as cutting, high-cutting and high-feeding.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均結晶粒径1μm以下のジルコニア(Z
rO2 )を5〜30重量%、ハフニア(HfO2 )をZ
rO2 全量に対して1.0重量%以下、残部が平均結晶
粒径1.5μm以下のアルミナ(Al2 3 )および不
可避不純物からなるとともに、前記ジルコニア(ZrO
2 )の40%以上が正方晶ジルコニア(t−ZrO2
結晶であることを特徴とする高強度アルミナ質焼結体。
1. Zirconia (Z having an average crystal grain size of 1 μm or less
5 to 30% by weight of rO 2 ) and Z of hafnia (HfO 2 ).
1.0 wt% or less with respect to the total amount of rO 2 and the balance consisting of alumina (Al 2 O 3 ) having an average crystal grain size of 1.5 μm or less and unavoidable impurities, and the zirconia (ZrO 2
40% or more of 2 ) is tetragonal zirconia (t-ZrO 2 ).
A high-strength alumina sintered body characterized by being a crystal.
【請求項2】平均結晶粒径1μm以下のジルコニア(Z
rO2 )を5〜30重量%、ハフニア(HfO2 )をZ
rO2 全量に対して1.0重量%以下、Fe,Ni,C
oの酸化物の内少なくとも1種を0.01〜5重量%、
残部が平均結晶粒径1.5μm以下のアルミナ(Al2
3 )および不可避不純物からなるとともに、前記ジル
コニア(ZrO2 )の40%以上が正方晶ジルコニア
(t−ZrO2 )結晶であることを特徴とする高強度ア
ルミナ質焼結体。
2. Zirconia (Z having a mean crystal grain size of 1 μm or less
5 to 30% by weight of rO 2 ) and Z of hafnia (HfO 2 ).
1.0% by weight or less based on the total amount of rO 2 , Fe, Ni, C
0.01 to 5% by weight of at least one of the oxides of o,
The balance is alumina (Al 2
O 3 ) and inevitable impurities, and 40% or more of the zirconia (ZrO 2 ) is a tetragonal zirconia (t-ZrO 2 ) crystal, a high-strength alumina sintered body.
JP05239483A 1993-09-27 1993-09-27 High-strength alumina sintered body Expired - Fee Related JP3078430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05239483A JP3078430B2 (en) 1993-09-27 1993-09-27 High-strength alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05239483A JP3078430B2 (en) 1993-09-27 1993-09-27 High-strength alumina sintered body

Publications (2)

Publication Number Publication Date
JPH0797254A true JPH0797254A (en) 1995-04-11
JP3078430B2 JP3078430B2 (en) 2000-08-21

Family

ID=17045452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05239483A Expired - Fee Related JP3078430B2 (en) 1993-09-27 1993-09-27 High-strength alumina sintered body

Country Status (1)

Country Link
JP (1) JP3078430B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211252A (en) * 2004-01-28 2005-08-11 Kyocera Corp Biological member, method for manufacture thereof and artificial joint
US7247588B2 (en) * 2002-11-22 2007-07-24 Saint-Gobain Ceramics & Plastics, Inc. Zirconia toughened alumina ESD safe ceramic composition, component, and methods for making same
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
CN112834085A (en) * 2020-12-29 2021-05-25 襄阳臻芯传感科技有限公司 Elastic thin substrate of ceramic capacitive pressure sensor and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247588B2 (en) * 2002-11-22 2007-07-24 Saint-Gobain Ceramics & Plastics, Inc. Zirconia toughened alumina ESD safe ceramic composition, component, and methods for making same
US8516857B2 (en) 2002-11-22 2013-08-27 Coorstek, Inc. Zirconia toughened alumina ESD safe ceramic composition, component, and methods for making same
JP2005211252A (en) * 2004-01-28 2005-08-11 Kyocera Corp Biological member, method for manufacture thereof and artificial joint
WO2019208438A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
JPWO2019208438A1 (en) * 2018-04-26 2021-06-10 京セラ株式会社 Ceramic substrate and mounting substrate and electronic device using it
CN112834085A (en) * 2020-12-29 2021-05-25 襄阳臻芯传感科技有限公司 Elastic thin substrate of ceramic capacitive pressure sensor and manufacturing method

Also Published As

Publication number Publication date
JP3078430B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPS6140621B2 (en)
JPH07277814A (en) Alumina-based ceramic sintered compact
JPWO2006080473A1 (en) Composite ceramics and manufacturing method thereof
JPH10194824A (en) Zirconia-containing alumina sintered compact
US4874725A (en) High-density sintered article of silicon carbid
JP3078430B2 (en) High-strength alumina sintered body
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JPH0553751B2 (en)
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP5687090B2 (en) Silicon nitride sintered body
JP2645894B2 (en) Method for producing zirconia ceramics
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JPH07215758A (en) Zirconia sintered compact
JP2668222B2 (en) Alumina sintered body
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JPS61242956A (en) High tenacity ceramic alloy
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JP2581940B2 (en) High-strength alumina sintered body and method for producing the same
JPS6222949B2 (en)
JPH01157466A (en) Silicon nitride sintered body
JPH0688835B2 (en) High-toughness ZrO 2) system sintered body and manufacturing method thereof
JPH0840770A (en) Zirconia sintered product and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees