JP2676008B2 - Abrasion resistant zirconia sintered body and method for producing the same - Google Patents

Abrasion resistant zirconia sintered body and method for producing the same

Info

Publication number
JP2676008B2
JP2676008B2 JP4120963A JP12096392A JP2676008B2 JP 2676008 B2 JP2676008 B2 JP 2676008B2 JP 4120963 A JP4120963 A JP 4120963A JP 12096392 A JP12096392 A JP 12096392A JP 2676008 B2 JP2676008 B2 JP 2676008B2
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
zirconia sintered
zro
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4120963A
Other languages
Japanese (ja)
Other versions
JPH05319923A (en
Inventor
宏司 大西
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP4120963A priority Critical patent/JP2676008B2/en
Priority to PCT/JP1993/000627 priority patent/WO1993023347A1/en
Publication of JPH05319923A publication Critical patent/JPH05319923A/en
Application granted granted Critical
Publication of JP2676008B2 publication Critical patent/JP2676008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性ジルコニア焼
結体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant zirconia sintered body and a method for producing the same.

【0002】[0002]

【従来技術とその課題】ジルコニア(ZrO2 )は、耐
熱部材、酸素センサー、ヒーター等のセラミックス製品
の原料として幅広く用いられている。
BACKGROUND OF THE INVENTION Zirconia (ZrO 2 ) is widely used as a raw material for ceramic products such as heat-resistant members, oxygen sensors and heaters.

【0003】ところで、純粋なジルコニア(ZrO2
は、加熱すると単斜晶から正方晶、さらに立方晶へと変
態し、これを冷却すると逆の変態が起こるという性質を
もっている。この場合、正方晶から単斜晶への変態では
大きな体積膨張を伴うため、室温まで冷却すると焼結体
は破壊されてしまう。このため、上記の各種製品には、
安定化ジルコニア又は部分安定化ジルコニアが採用され
ている。安定化ジルコニアは、ジルコニアにカルシア
(CaO)、イットリア(Y2 3 )、マグネシア(M
gO)等の酸化物が添加されたものであり、室温でも立
方晶からなる。部分安定化ジルコニアは、立方晶と単斜
晶を共存させることにより、上記安定化ジルコニアより
もさらに耐熱衝撃性を高めたものである。
By the way, pure zirconia (ZrO 2 )
Has a property that when it is heated, it transforms from monoclinic to tetragonal to cubic, and when it is cooled, the opposite transformation occurs. In this case, the transformation from the tetragonal system to the monoclinic system involves a large volume expansion, and thus the sintered body is destroyed when cooled to room temperature. Therefore, the above various products
Stabilized or partially stabilized zirconia is used. Stabilized zirconia includes zirconia, calcia (CaO), yttria (Y 2 O 3 ), and magnesia (M
oxides such as gO) are added, and the crystal is cubic even at room temperature. The partially stabilized zirconia has a higher thermal shock resistance than the above-mentioned stabilized zirconia by allowing a cubic crystal and a monoclinic crystal to coexist.

【0004】ところが、これらの安定化又は部分安定化
ジルコニア原料からなる焼結体は、耐熱衝撃性、耐熱性
等は良好である反面、気孔率が比較的大きく、しかもそ
の結晶粒径が20μm以上にも達するため、アルミナ焼
結体等に比して耐摩耗性に劣るという欠点をもってい
る。
However, the sintered body made of these stabilized or partially stabilized zirconia raw materials has good thermal shock resistance and heat resistance, but has a relatively large porosity and a crystal grain size of 20 μm or more. Therefore, it has a drawback that it is inferior in wear resistance to an alumina sintered body or the like.

【0005】一方、最近では、正方晶ジルコニアからな
る高強度ジルコニア焼結体が開発されている。かかる焼
結体は上記の安定化ジルコニア等と異なり、優れた耐摩
耗性を発揮することができる。
On the other hand, recently, a high-strength zirconia sintered body made of tetragonal zirconia has been developed. Unlike the above-mentioned stabilized zirconia and the like, such a sintered body can exhibit excellent wear resistance.

【0006】しかしながら、上記高強度ジルコニア焼結
体では製造コストが非常に高くなるという問題がある。
特に、ZrO2 −MgO系の高強度ジルコニア焼結体
は、1700℃以上での焼成を必要とし、しかも冷却速
度の制御、焼成後の熱処理等に手間がかかるため、工業
的規模での生産に適していない。また、その耐摩耗性
も、伸線用ダイス等の一部の用途では優れた効果を発揮
するものの、すべての用途において十分なものとは言え
ない。
However, the high-strength zirconia sintered body has a problem that the manufacturing cost becomes very high.
In particular, the ZrO 2 —MgO-based high-strength zirconia sintered body requires firing at 1700 ° C. or higher, and it takes time to control the cooling rate and heat treatment after firing. Not suitable. Further, its abrasion resistance also exhibits an excellent effect in some applications such as a die for wire drawing, but it cannot be said to be sufficient in all applications.

【0007】[0007]

【発明が解決しようとする課題】本発明は、比較的安価
であって、あらゆる用途において優れた耐摩耗性を発揮
できるジルコニア焼結体を提供することを主な目的とす
る。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a zirconia sintered body which is relatively inexpensive and can exhibit excellent wear resistance in any application.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記の従来
技術の問題点に鑑み、研究を重ねたところ、ジルコニア
に特定量のマグネシア、カルシア及びイットリアを添加
・混合及し、粉砕してなる成形用原料を成形し、焼成す
ることにより、ジルコニアの単斜晶量、嵩密度及び結晶
粒径を制御できることを見出し、さらにこれらの値を特
定範囲内に制御したジルコニア焼結体が優れた耐摩耗性
を発現することを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted repeated studies in view of the above-mentioned problems of the prior art, and as a result, added and mixed a specific amount of magnesia, calcia and yttria to zirconia and pulverized them. It was found that the monoclinic crystal amount, the bulk density and the crystal grain size of zirconia can be controlled by molding and firing the forming raw material which is, and a zirconia sintered body in which these values are controlled within a specific range is excellent. The inventors have found that they exhibit wear resistance and have completed the present invention.

【0009】即ち、本発明は、下記の耐摩耗性ジルコニ
ア焼結体及びその製造方法を提供するものである。 1.ZrO−MgO系焼結体において、 (i)MgOを6〜10mol%含有し、 (ii)CaO及びYの少なくとも1種を0.2
〜2mol%含有し、 (iii)単斜晶ZrO含有量が5〜50体積%であ
り、 (iv)嵩密度が5.55g/cm以上であって、 (v)結晶粒径が4μm以下である、 ことを特徴とする耐摩耗性ジルコニア焼結体。
That is, the present invention provides the following wear resistant zirconia sintered body and a method for producing the same. 1. The ZrO 2 —MgO based sintered body contains (i) 6 to 10 mol% of MgO, and (ii) 0.2 or more of at least one of CaO and Y 2 O 3.
Content of ˜2 mol%, (iii) monoclinic ZrO 2 content of 5 to 50% by volume , (iv) bulk density of 5.55 g / cm 3 or more, (v) crystal grain size of 4 μm The wear resistant zirconia sintered body is characterized by the following.

【0010】2.ZrO粉末に、MgO6〜10mo
l%並びにCaO及びYの少なくとも1種0.2
〜2mol%を添加・混合し、比表面積3m/g以上
に粉砕することにより得られる成形用粉末を、成形し、
1400〜1600℃で焼成することを特徴とする請求
項1記載の耐摩耗性ジルコニア焼結体の製造方法。
[0010] 2. ZrO 2 powder with MgO 6-10mo
1% and at least one of CaO and Y 2 O 3 0.2
˜2 mol% is added and mixed, and a molding powder obtained by pulverizing to a specific surface area of 3 m 2 / g or more is molded,
The method for producing a wear-resistant zirconia sintered body according to claim 1 , wherein firing is performed at 1400 to 1600 ° C.

【0011】3.ZrO2 粉末としてバッテライト鉱石
又はその精製原料を用いる上記第2項記載の耐摩耗性ジ
ルコニア焼結体の製造方法。
3. The method for producing a wear-resistant zirconia sintered body according to the above item 2 , wherein vatterite ore or a refined raw material thereof is used as ZrO 2 powder.

【0012】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0013】本発明の耐摩耗性ジルコニア焼結体は、
(i)MgOを6〜10mol%含有し、(ii)Ca
O及びYの少なくとも1種を0.2〜2mol%
含有し、(iii)単斜晶ZrO含有量が5〜50体
積%であり、(iv)嵩密度が5.55g/cm以上
であって、(v)結晶粒径が4μm以下である、という
特徴を有している。
The wear resistant zirconia sintered body of the present invention is
(I) contains 6 to 10 mol% of MgO, and (ii) Ca
0.2 to 2 mol% of at least one of O and Y 2 O 3
And (iii) the monoclinic ZrO 2 content is 5 to 50
% Of the product , (iv) the bulk density is 5.55 g / cm 3 or more, and (v) the crystal grain size is 4 μm or less.

【0014】MgOは、本発明の焼結体に耐摩耗性を付
与するために必要な成分である。従って、上記含有量が
6 mol%を下回ると単斜晶ジルコニアの占める割合が多
くなり、焼成時における冷却過程での正方晶から単斜晶
への変態によるマイクロクラックが多く生ずる。その結
果、焼結体の崩壊までは起こらなくても、マイクロクラ
ックの存在により耐摩耗性の低下が惹き起こされる。一
方、10 mol%を上回る場合には、立方晶ジルコニアの
割合が多くなり、その結晶粒径が大きくなるので、この
場合にも耐摩耗性の低下を来す。
MgO is a component necessary for imparting wear resistance to the sintered body of the present invention. Therefore, if the content is less than 6 mol%, the proportion of monoclinic zirconia occupies increases, and many microcracks are generated due to the transformation from tetragonal to monoclinic during the cooling process during firing. As a result, even if the sintered body does not collapse, the presence of microcracks causes a decrease in wear resistance. On the other hand, if it exceeds 10 mol%, the proportion of cubic zirconia increases and the crystal grain size increases, so that the wear resistance also decreases in this case.

【0015】一方、本発明の範囲内の単斜晶量、嵩密度
及び結晶粒径を有する焼結体を得ようとする場合、Mg
O単味の添加では、焼成工程における正方晶から単斜晶
への変態を制御することが非常に困難である。従って、
かかる制御をできるだけ容易なものとし、さらに耐摩耗
特性に適した微細構造制御を行なうため、本発明ではC
aO及びY2 3 の少なくとも1種を用いる。なお、そ
の含有量が0.2 mol%未満の場合には焼結性が低下
し、上記微細構造が得られなくなり、2.0 mol%を超
える場合には立方晶ジルコニアの割合が増加し、その結
晶粒径が大きくなって耐摩耗性が低下してしまうので好
ましくない。
On the other hand, when it is desired to obtain a sintered body having a monoclinic crystal amount, a bulk density and a crystal grain size within the scope of the present invention, Mg
With the addition of only O, it is very difficult to control the transformation from tetragonal to monoclinic in the firing step. Therefore,
In order to make such control as easy as possible and to perform fine structure control suitable for wear resistance characteristics, in the present invention, C
At least one of aO and Y 2 O 3 is used. If the content is less than 0.2 mol%, the sinterability is deteriorated and the above fine structure cannot be obtained. If it exceeds 2.0 mol%, the proportion of cubic zirconia increases, This is not preferable because the crystal grain size becomes large and the wear resistance decreases.

【0016】単結晶ジルコニアの占める割合(単斜晶
量)は5〜50体積%である。本発明焼結体における単
斜晶のジルコニア粒子は粒界及び粒内に存在しており、
体積膨張を起こした単斜晶ジルコニア粒子によって焼結
体内部に圧縮応力が発生し、この圧縮応力が耐摩耗性の
向上に寄与する。単斜晶量が50体積%を上回る場合に
は、その体積膨張が過大になり、マイクロクラックが発
生して耐摩耗性を低下させてしまう。また、単斜晶以外
のジルコニアは、好ましくは、本発明焼結体中、立方晶
ジルコニアが80体積%以下、正方晶ジルコニアが70
体積%以下となるのが良い。尚、上記単斜晶ジルコニア
の量は、得られた焼結体表面を鏡面となるまで研磨し、
次いでX線回折分析により解析角27〜34°の範囲で
測定し、単斜晶回折ピークI、立方晶回折ピークI
及び正方晶回折ピークIから次式により求めた。
The proportion of monocrystalline zirconia (monoclinic amount) is 5 to 50% by volume . The monoclinic zirconia particles in the sintered body of the present invention are present at the grain boundaries and within the grains,
The monoclinic zirconia particles that have undergone volume expansion generate compressive stress inside the sintered body, and this compressive stress contributes to improvement in wear resistance. If the amount of monoclinic crystals is more than 50% by volume, the volume expansion will be excessive and microcracks will be generated to deteriorate the wear resistance. Further, zirconia other than monoclinic is preferably 80% by volume or less of cubic zirconia and 70% of tetragonal zirconia in the sintered body of the present invention.
It is good to be below the volume%. The amount of the monoclinic zirconia was determined by polishing the surface of the obtained sintered body until it became a mirror surface,
Then, it was measured by X-ray diffraction analysis in the analysis angle range of 27 to 34 °, and the monoclinic crystal diffraction peak I M and the cubic crystal diffraction peak I C were measured.
And it was determined by the following equation tetragonal diffraction peak I T.

【0017】[0017]

【数1】 (Equation 1)

【0018】また、立方晶(C)及び正方晶(T)は単
斜晶量を求めるのと同じようにして回折角70〜77°
の範囲で測定し、立方晶回折ピークIC と正方晶回折ピ
ークIT のピーク高さから次式により求めた。
For the cubic crystal (C) and the tetragonal crystal (T), the diffraction angle is 70 to 77 ° in the same manner as the monoclinic crystal amount is obtained.
Was measured by the following formula from the peak heights of the cubic crystal diffraction peak I C and the tetragonal crystal diffraction peak I T.

【0019】[0019]

【数2】 (Equation 2)

【0020】嵩密度は5.55g/cm3 以上、好ましく
は5.60g/cm3 以上とする。嵩密度が5.55g/
cm3 未満の場合は、それだけポアの数が多くなり、耐摩
耗性の低下につながるので望ましくない。
The bulk density is 5.55 g / cm 3 or more, preferably 5.60 g / cm 3 or more. Bulk density is 5.55 g /
If it is less than 3 cm3, the number of pores is increased correspondingly and the wear resistance is lowered, which is not desirable.

【0021】結晶粒径は4μm以下とする。焼成温度か
らの冷却中に、正方晶から単斜晶への変態に伴い、体積
膨張が起こってマイクロクラックが生成するが、結晶粒
径が4μmを上回るとマイクロクラック密度が増加し、
衝撃あるいは摺動によって焼結体表面で粒子脱離等が起
こり、耐摩耗性を低下させるので好ましくない。尚、本
発明において、結晶粒径は、得られた焼結体表面を鏡面
にまで研磨し、次いで熱エッチング又は化学エッチング
をした後、走査電子顕微鏡で観察してインターセプト法
により10点平均を求める。算出式はD=1.5×n/
L(D:平均結晶粒径、n:長さL当たりの結晶の数、
L:測定長さ)により求めた。
The crystal grain size is 4 μm or less. During the cooling from the firing temperature, with the transformation from tetragonal to monoclinic, volume expansion occurs and microcracks are generated, but when the crystal grain size exceeds 4 μm, the microcrack density increases,
Particles and the like occur on the surface of the sintered body due to impact or sliding, which reduces wear resistance and is not preferable. In the present invention, the crystal grain size is obtained by averaging 10 points by the intercept method by observing with a scanning electron microscope after polishing the surface of the obtained sintered body to a mirror surface and then performing thermal etching or chemical etching. . The calculation formula is D = 1.5 × n /
L (D: average crystal grain size, n: number of crystals per length L,
L: measurement length).

【0022】次に、本発明の耐摩耗性ジルコニア焼結体
の製造方法について説明する。まず、ジルコニア粉末に
上記所定量のマグネシア、イットリア及びカルシアを添
加する。ジルコニア原料としては、特にその種類は制限
されず、例えばジルコンサンドより精製したジルコニア
等が使用できるが、特にコスト上の見地よりバッテライ
ト鉱石又はその精製原料を用いることがより好ましい。
また、マグネシア供給源として、マグネシアのほかに水
酸化マグネシウム、炭酸マグネシウム、マグネシウム塩
等を用いても良い。同様にイットリア及びカルシアの供
給源としても、イットリア及びカルシアのほか、イット
リウム及びカルシウムの水酸化物、炭酸塩等を使用でき
る。
Next, a method of manufacturing the wear resistant zirconia sintered body of the present invention will be described. First, the predetermined amount of magnesia, yttria and calcia is added to zirconia powder. The type of zirconia raw material is not particularly limited, and for example, zirconia refined from zircon sand can be used, but it is more preferable to use vatterite ore or a refined raw material thereof from the viewpoint of cost.
In addition to magnesia, magnesium hydroxide, magnesium carbonate, magnesium salt, etc. may be used as the magnesia supply source. Similarly, as the supply source of yttria and calcia, hydroxides and carbonates of yttrium and calcium as well as yttria and calcia can be used.

【0023】これらの各原料を混合し、粉砕して成形用
粉末とする。この場合、混合・粉砕は、常法に従えば良
く、例えば湿式法によって水又は有機溶媒中でポットミ
ル、アトリッションミル等の粉砕機を用いて行なうこと
ができる。この場合、必要に応じて、乾燥後に1100
〜1400℃程度で仮焼し、これを再度粉砕し、分散
し、乾燥したものを成形用粉末としても良い。上記成形
用粉末は、その比表面積が3m2 /g以上とする。比表
面積が3m2 /g未満の場合には焼結性が悪くなるので
好ましくない。
These respective raw materials are mixed and pulverized to obtain a molding powder. In this case, the mixing and crushing may be carried out according to a conventional method, for example, by a wet method in water or an organic solvent using a crusher such as a pot mill or an attrition mill. In this case, if necessary, after drying 1100
The powder may be calcined at about 1400 ° C., pulverized again, dispersed, and dried to obtain molding powder. The molding powder has a specific surface area of 3 m 2 / g or more. When the specific surface area is less than 3 m 2 / g, the sinterability is deteriorated, which is not preferable.

【0024】次いで、上記の成形用粉末を所定の形状に
成形する。この場合の成形方法は、例えば鋳込み成形、
射出成形、押し出し成形、プレス成形(CIP、HI
P)等の公知の各種成形方法がそのまま採用できる。
Next, the above-mentioned molding powder is molded into a predetermined shape. The molding method in this case is, for example, cast molding,
Injection molding, extrusion molding, press molding (CIP, HI
Various known molding methods such as P) can be adopted as they are.

【0025】その後、得られた成形体を、常法に従って
成形する。焼成温度は1400〜1600℃とする。
上のようにして本発明の耐摩耗性ジルコニア焼結体が得
られる。
Thereafter, the obtained molded body is molded according to a conventional method. The firing temperature is 1400 to 1600 ° C. As described above, the wear resistant zirconia sintered body of the present invention is obtained.

【0026】[0026]

【発明の効果】本発明の製造方法によれば、特定構造を
有するジルコニア焼結体を比較的容易に得ることができ
る。
According to the manufacturing method of the present invention, a zirconia sintered body having a specific structure can be obtained relatively easily.

【0027】そして、このジルコニア焼結体は特定の構
造を有することにより、実質的にあらゆる用途において
優れた耐摩耗性を発揮することができる。特に、(イ)
強度、靱性及び耐衝撃性に優れるため、高負荷での耐摩
耗性に優れ、(ロ)耐熱衝撃性に優れるため、高速条件
下での耐摩耗性にも優れている。
Since this zirconia sintered body has a specific structure, it can exhibit excellent wear resistance in virtually all applications. Especially (a)
Since it has excellent strength, toughness and impact resistance, it has excellent wear resistance under high load, and (b) it has excellent thermal shock resistance, so it also has excellent wear resistance under high speed conditions.

【0028】また、耐摩耗性に優れているにも拘らず、
弾性率がアルミナ等に比して小さいので相手の材料を傷
つけにくい。さらに、本発明焼結体を粉砕機用部材とし
て使用する場合には摩耗粉の混入がほとんどなく、また
仮に摩耗粉が被粉砕物に混入しても、その生成する摩耗
粉は非常に微細であるために実質的に被粉砕物の均一性
を害することはない。
Further, despite having excellent wear resistance,
Since the elastic modulus is smaller than that of alumina etc., it is hard to damage the material of the other party. Furthermore, when the sintered body of the present invention is used as a member for a crusher, almost no abrasion powder is mixed, and even if the abrasion powder is mixed in the object to be pulverized, the generated abrasion powder is very fine. Since it is present, it does not substantially impair the homogeneity of the material to be ground.

【0029】このような優れた効果を発揮できる本発明
の耐摩耗性ジルコニア焼結体は、粉砕用ボール、内張
材、粉砕用容器、ノズル、ローラー、ゲージ、ダイス等
の各種用途に最適である。
The wear resistant zirconia sintered body of the present invention capable of exerting such excellent effects is most suitable for various uses such as crushing balls, lining materials, crushing containers, nozzles, rollers, gauges and dies. is there.

【0030】[0030]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

【0031】実施例1〜9 平均粒径1.0μmのジルコニア原料、平均粒径0.5
μmのマグネシア若しくは炭酸マグネシウム、及びカル
シア若しくはイットリア又はその塩の成分を表1に示す
組成になるように配合し、これをポットミルに投入し
て、比表面積が8m2 /gとなるまで粉砕し、成形用粉
末を得た。なお、ジルコニア原料は、実施例1、3、5
及び8についてはバッテライト(ZrO2 99.5%、
SiO2 0.2%、Al2 3 0.01%)を用い、そ
の他はジルコンサンドより精製したジルコニア原料を用
いた。
Examples 1 to 9 zirconia raw material having an average particle size of 1.0 μm, average particle size of 0.5
μm magnesia or magnesium carbonate, and calcia or yttria or its salt components were blended so as to have the composition shown in Table 1, and this was put into a pot mill and ground until a specific surface area of 8 m 2 / g, A molding powder was obtained. In addition, the zirconia raw material was used in Examples 1, 3, and 5.
Batterite (ZrO 2 99.5%,
SiO 2 0.2% and Al 2 O 3 0.01%) were used, and the others were zirconia raw materials purified from zircon sand.

【0032】次いで、成形用粉末を静水圧プレス成形法
(CIP)により、圧力1ton /cm2 で直径15mmのボ
ールを成形し、その成形体を1450〜1700℃で焼
成した。焼成後、ボールをバレル研磨を施し、本発明の
耐摩耗性ジルコニア焼結体によるボールを得た。
Then, the molding powder was molded by a hydrostatic pressure molding method (CIP) into a ball having a diameter of 15 mm at a pressure of 1 ton / cm 2 , and the molded body was fired at 1450 to 1700 ° C. After firing, the balls were barrel-polished to obtain balls made of the wear resistant zirconia sintered body of the present invention.

【0033】この焼結体について、嵩密度(g/c
m3 )、結晶粒径(μm)、単斜晶量(体積%)及び摩
耗率(%)について調べた。その結果を表1に示す。な
お、摩耗率は次の方法により測定した。
For this sintered body, the bulk density (g / c
m 3 ), crystal grain size (μm), amount of monoclinic crystal (volume%) and wear rate (%) were investigated. Table 1 shows the results. The wear rate was measured by the following method.

【0034】<摩耗率>容量2リットルのアルミナ製ポ
ットミル(アルミナ純度92%)に本発明焼結体ボール
1kgと水0.8リットルを入れ、回転数100rpm
で48時間空ずりテストをし、テスト後のボールの重量
減をテスト前のボール重量に対する百分率(%)にて評
価した。
<Abrasion rate> 1 kg of the sintered ball of the present invention and 0.8 liter of water were put into an alumina pot mill (alumina purity 92%) having a capacity of 2 liters, and the rotation speed was 100 rpm.
The ball was subjected to a skid test for 48 hours, and the weight loss of the ball after the test was evaluated by a percentage (%) with respect to the ball weight before the test.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、本発明の耐摩耗性ジルコニア焼
結体は、本発明特有の構造により優れた耐摩耗性を発揮
していることがわかる。
From Table 1, it can be seen that the wear resistant zirconia sintered body of the present invention exhibits excellent wear resistance due to the structure peculiar to the present invention.

【0037】比較例1〜7 表2に示す組成になるように配合した以外は、実施例と
同様にして焼結体のボールを製造し、その特性を調べ
た。その結果を表2に示す。なお、ジルコニア原料は、
比較例1、3、5及び7についてはバッテライト(Zr
2 99.5%、SiO2 0.2%、Al2 3 0.0
1%)を用い、その他はジルコンサンドより精製したジ
ルコニア原料を用いた。
Comparative Examples 1 to 7 Sintered balls were manufactured in the same manner as in Examples except that the composition was adjusted to the composition shown in Table 2, and their characteristics were examined. Table 2 shows the results. The zirconia raw material is
For Comparative Examples 1, 3, 5 and 7, vatterite (Zr
O 2 99.5%, SiO 2 0.2%, Al 2 O 3 0.0
1%) and the others used zirconia raw material purified from zircon sand.

【0038】[0038]

【表2】 [Table 2]

【0039】表2より、比較例の各ボールは、その原料
組成が本発明の範囲外であるため、本発明特有の焼結体
特性を有さず、耐摩耗性に劣っていることがわかる。
From Table 2, it can be seen that each ball of the comparative examples does not have the characteristics of the sintered body peculiar to the present invention and the abrasion resistance is inferior because the raw material composition thereof is outside the range of the present invention. .

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ZrO−MgO系焼結体において、 (i)MgOを6〜10mol%含有し、 (ii)CaO及びYの少なくとも1種を0.2
〜2mol%含有し、 (iii)単斜晶ZrO含有量が5〜50体積%であ
り、 (iv)嵩密度が5.55g/cm以上であって、 (v)結晶粒径が4μm以下である、 ことを特徴とする耐摩耗性ジルコニア焼結体。
1. A ZrO 2 —MgO based sintered body comprising (i) 6 to 10 mol% of MgO and (ii) 0.2 or more of at least one of CaO and Y 2 O 3.
Content of ˜2 mol%, (iii) monoclinic ZrO 2 content of 5 to 50% by volume , (iv) bulk density of 5.55 g / cm 3 or more, (v) crystal grain size of 4 μm The wear resistant zirconia sintered body is characterized by the following.
【請求項2】ZrO粉末に、MgO6〜10mol%
並びにCaO及びYの少なくとも1種0.2〜2
mol%を添加・混合し、比表面積3m/g以上に粉
砕することにより得られる成形用粉末を、成形し、14
00〜1600℃で焼成することを特徴とする請求項1
記載の耐摩耗性ジルコニア焼結体の製造方法。
2. ZrO 2 powder, MgO 6-10 mol%
And at least one of CaO and Y 2 O 3 0.2-2
14. A molding powder obtained by adding and mixing mol% and pulverizing to a specific surface area of 3 m 2 / g or more is molded,
Firing at a temperature of from 0 to 1600 ° C.
A method for producing the wear-resistant zirconia sintered body described.
【請求項3】ZrO粉末としてバッデライト鉱石又は
その精製原料を用いる請求項2記載の耐摩耗性ジルコニ
ア焼結体の製造方法。
3. The method for producing a wear-resistant zirconia sintered body according to claim 2 , wherein a baddelite ore or a refined raw material thereof is used as the ZrO 2 powder.
JP4120963A 1992-05-14 1992-05-14 Abrasion resistant zirconia sintered body and method for producing the same Expired - Fee Related JP2676008B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4120963A JP2676008B2 (en) 1992-05-14 1992-05-14 Abrasion resistant zirconia sintered body and method for producing the same
PCT/JP1993/000627 WO1993023347A1 (en) 1992-05-14 1993-05-12 Wear-resistant zirconia sinter and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120963A JP2676008B2 (en) 1992-05-14 1992-05-14 Abrasion resistant zirconia sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05319923A JPH05319923A (en) 1993-12-03
JP2676008B2 true JP2676008B2 (en) 1997-11-12

Family

ID=14799341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120963A Expired - Fee Related JP2676008B2 (en) 1992-05-14 1992-05-14 Abrasion resistant zirconia sintered body and method for producing the same

Country Status (2)

Country Link
JP (1) JP2676008B2 (en)
WO (1) WO1993023347A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267807B1 (en) 1996-06-20 2001-07-31 Lexmark International, Inc. Method for grinding colorants
JP6093228B2 (en) * 2013-04-09 2017-03-08 曙ブレーキ工業株式会社 Friction material
JP6772592B2 (en) * 2016-06-30 2020-10-21 東ソー株式会社 Translucent zirconia sintered body, its manufacturing method, and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1374832A (en) * 1972-04-11 1974-11-20 Magnesium Elektron Ltd Sintered zirconia bodies
JPS6031796B2 (en) * 1981-09-14 1985-07-24 東レ株式会社 Zirconia sintered body
DE3634588A1 (en) * 1986-10-10 1988-04-21 Feldmuehle Ag SINTER MOLDED BODY
JPS63277560A (en) * 1987-05-11 1988-11-15 Toshiba Ceramics Co Ltd Zro2-mgo-y2o3 ceramic and production thereof

Also Published As

Publication number Publication date
JPH05319923A (en) 1993-12-03
WO1993023347A1 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
US4977114A (en) Zirconia ceramics and method for producing same
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
Thomas et al. Effect of zirconia additions on the reaction sintering of aluminium titanate
US4975397A (en) Sintered molding, a method for producing it and its use
US3929498A (en) Sintered zirconia bodies
JPH10194824A (en) Zirconia-containing alumina sintered compact
JP3970462B2 (en) Grinding / dispersing media comprising a zirconia sintered body having excellent durability and method for producing the same
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JP2976226B2 (en) Manufacturing method of alumina-zirconia sintered body
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JPH0553751B2 (en)
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP3198507B2 (en) Alumina-zirconia composite sintered body
JP2900118B2 (en) Abrasion resistant alumina ceramics
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPS647030B2 (en)
JP2803314B2 (en) Method for producing alumina-zirconia composite powder and sintered body
JPH0544428B2 (en)
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JP2000290067A (en) Improving method for producing magnesium aluminate spinel aggregate
JP2004137128A (en) Partially stabilized sintered zirconia

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees