WO1993023347A1 - Wear-resistant zirconia sinter and production thereof - Google Patents

Wear-resistant zirconia sinter and production thereof Download PDF

Info

Publication number
WO1993023347A1
WO1993023347A1 PCT/JP1993/000627 JP9300627W WO9323347A1 WO 1993023347 A1 WO1993023347 A1 WO 1993023347A1 JP 9300627 W JP9300627 W JP 9300627W WO 9323347 A1 WO9323347 A1 WO 9323347A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
powder
zirconia
wear
monoclinic
Prior art date
Application number
PCT/JP1993/000627
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ohnishi
Toshio Kawanami
Original Assignee
Nikkato Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp. filed Critical Nikkato Corp.
Publication of WO1993023347A1 publication Critical patent/WO1993023347A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Definitions

  • the present invention relates to a wear-resistant zirconia sintered body and a method for producing the same.
  • Jirukonia (Z r 0 2) is heat-resistant member, oxygen sensors, it is widely used we as a raw material of Serra mission-box product heater first class.
  • pure Jirukonia (Z r 0 2) is tetragonal from monoclinic when heated, transforms into cubic to the al, have the property that when this is cooling the reverse transformation occurs.
  • the transformation from tetragonal to monoclinic involves a large volume expansion, and the sintered body is destroyed when cooled to room temperature.
  • stabilized zirconia or partially stabilized zirconia is adopted in the above various products.
  • Stabilized zirconia is obtained by adding oxides such as calcia (Ca0), yttria (Y ⁇ 0), and magnesia (Mg0) to zirconia, and is cubic even at room temperature.
  • Consists of The partially stabilized zirconia has a higher thermal shock resistance than the above-mentioned stabilized zirconia by allowing cubic and monoclinic to coexist.
  • these stabilized or partially stabilized zirconia A sintered body made of a material has good thermal shock resistance, heat resistance, etc., but has a relatively large porosity and a crystal grain size of more than 20 m. However, it has the drawback of poor abrasion resistance.
  • the high-strength zirconia sintered body has a problem that the production cost is extremely high.
  • High-strength zirconia sintered compacts of the Mg0 type require firing at 170 ° C or higher, and require a lot of time to control the cooling rate, heat treatment after firing, and so on an industrial scale. Not suitable for production at In addition, its wear resistance is excellent for some applications such as wire drawing dies, but it is not sufficient for all applications.
  • the object of the present invention is achieved as follows.
  • the present inventor has focused on research.
  • a specific amount of magnesia, calcia and yttria is added to and mixed with the zirconia, and the raw material for molding is crushed to form a monoclinic crystal of zirconia. It was found that the amount, bulk density, and crystal grain size could be controlled, and further, it was found that a zirconia sintered body in which these values were controlled within a specific range exhibited excellent wear resistance. Completed the invention.
  • the present invention provides the following wear-resistant zirconia sintered body and a method for producing the same;
  • Abrasion resistance Jirukonia sintered body of the present invention (i) M g O to 6 ⁇ : L 0 contains mol%, (ii) C a 0 and Y Q 0 ⁇ least 0.1 2 one of 2 containing mol%, (iii) monoclinic Z r 0 2 content is 5 0% by volume or less, there is (iv) a bulk density of 5. 5 5 g cm 3 or more, (V) grain It has the feature that the diameter is 4 m or less.
  • MgO is a component necessary for imparting wear resistance to the sintered body of the present invention. Therefore, when the above content is less than 6 mol%, the proportion of monoclinic zirconia increases, and a large number of microcracks due to transformation from tetragonal to monoclinic during the cooling process during firing occur. As a result, the wear resistance is reduced due to the presence of the microcracks, even if the collapse of the sintered body does not occur. On the other hand, if it exceeds 10 mol%, the proportion of cubic zirconia increases, and the crystal grain size increases. In this case, the wear resistance also decreases.
  • the proportion (monoclinic amount) of monoclinic zirconia is less than 50% by volume.
  • the monoclinic zirconia particles in the sintered body of the present invention are present at the grain boundaries and in the grains, and the monoclinic zirconia particles that have undergone volume expansion generate a compressive stress inside the sintered body. Contributes to the improvement of wear resistance. If the amount of monoclinic crystal is more than 50% by volume, the volume expansion will be excessive, and micro cracks will occur, reducing wear resistance.
  • the zirconia other than the monoclinic crystal is preferably 80% by volume or less of cubic zirconia and 70% by volume or less of tetragonal zirconia in the sintered body of the present invention. The amount of the monoclinic zirconia was determined by polishing the surface of the obtained sintered body to a mirror surface and then performing X-ray diffraction analysis at a diffraction angle of 27 to
  • T l 00-MC (volume 3 ⁇ 4)
  • the bulk density is 5.55 g Zcm 3 or more, preferably 5.60 g / cm 3 or more. If the bulk density is less than 5. 5 5 g Xcm u, correspondingly increases the number of pores, not properly desirable because tuna want to decrease the abrasion resistance.
  • the crystal grain size shall be 4 m or less. During cooling from the sintering temperature, volume expansion occurs due to the transformation from tetragonal to monoclinic, and a crack at the mouth is formed.However, when the crystal grain size exceeds 4 m, the microcrack density increases. It is not preferable because particles are detached on the surface of the sintered body due to impact or sliding, thereby reducing wear resistance.
  • the above-mentioned predetermined amounts of powder of magnesium, yttria, and potassium lucia are added to the zirconia powder.
  • the type of zirconia powder is not particularly limited, and for example, zirconia purified from zircon sand can be used.Battery ore or its refined raw material can be used from the viewpoint of cost. More preferred. It is preferable that the particle size of the zirconia powder is usually about l to 5 wm. Further, as magnesia powder, powder of magnesium hydroxide, magnesium carbonate, magnesium salt, etc. may be used in addition to magnesia.
  • the magnesia powder preferably has a particle size of usually about 0.5 to 2 am.
  • powders of hydroxide and carbonate of yttrium and calcium can be used in addition to yttria and lucia. It is preferable that the particle size of the Italian powder and the raw lucia powder is usually about 0.5 to 2 m.
  • mixing and pulverization may be performed in accordance with a conventional method, for example, pot milling or abrasion in water or an organic solvent by a wet method. This can be performed using a pulverizer such as a mill. In this case, if necessary, after drying, it may be calcined at about 110 to 140 ° C., pulverized again, dispersed, and dried to obtain a powder for molding.
  • the powder for molding has a specific surface area of 3 m 2 Zg or more. If the specific surface area is less than 3 m "Zg, the sinterability deteriorates, which is not preferable.
  • the above-mentioned molding powder is molded into a predetermined shape.
  • various known molding methods such as, for example, injection molding, injection molding, extrusion molding, and press molding (CIP, HIP) can be employed as they are.
  • the obtained molded body is fired according to a conventional method.
  • the sintering temperature is usually about 140 to 170 ° C, preferably about 150 to 160 ° C.
  • the wear-resistant zirconia sintered body of the present invention is obtained.
  • a zirconium sintered body having a specific structure can be obtained relatively easily.
  • the zirconia sintered body having a specific structure can exhibit excellent wear resistance in practically all uses.
  • (a) It has excellent wear resistance under high load due to its excellent strength, toughness and impact resistance, and (mouth) It has excellent wear resistance under high-speed conditions because of its excellent thermal shock resistance. .
  • it has a low elastic modulus compared to aluminum etc., so it does not easily damage the mating material.
  • the sintered body of the present invention is used as a pulverizer member, there is almost no mixing of abrasion powder, and even if the abrasion powder mixes with the material to be pulverized, the generated abrasion powder is generated. Since they are very fine, they do not substantially impair the uniformity of the material to be ground.
  • the abrasion-resistant zirconia sintered body of the present invention which can exhibit such excellent effects, is most suitable for various uses such as crushing balls, lining materials, crushing containers, nozzles, rollers, gauges, dies, and the like. .
  • Zirconia raw material with an average particle size of 1.0 m, magnesia or magnesium carbonate with an average particle size of 0.5 // m, and calcium or yttria or its salt are shown in Table 1.
  • the resulting mixture was mixed into a pot mill, and the mixture was pulverized until the specific surface area became 8 m / g to obtain a molding powder.
  • the molding powder is formed into a ball having a diameter of 15 mm at a pressure of 1 ton / cm 2 by an isostatic press molding method (CIP), and the formed body is heated at a temperature of 1450 to 170 ° C. Fired.
  • CIP isostatic press molding method
  • the ball was barrel-polished to obtain a ball made of the wear-resistant zirconia sintered body of the present invention.
  • This sintered body, a bulk density (g ZCM u) were examined for grain size (fi m), monoclinic Akiraryou (volume) and wear rate (%). The results are shown in Table 1.
  • the wear rate was measured by the following method.
  • Table 1 shows that the wear-resistant zirconia sintered body of the present invention exhibits excellent wear resistance due to the structure unique to the present invention.
  • Comparative Examples 1 to 7 Sintered balls were manufactured in the same manner as in the example except that the compositions were as shown in Table 2, and the characteristics were examined. The results are shown in Table 2. Incidentally, Jirukonia raw material, Comparative Example 1, 3, 5 and 7 Batterai you for the other (Z r ⁇ 2 9 9. 5%, S i 0 9 0. 2%, A 1 2 0 3 0. 0 1%) The other materials used were zirconia raw materials purified from zircon sand.
  • each ball of the comparative example has a raw material composition out of the range of the present invention, and thus does not have a sintered body characteristic peculiar to the present invention and is inferior in wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A wear-resistant zirconia sinter comprising a ZrO2-MgO sinter wherein: (i) the content of MgO is 6-10 mole %, (ii) the content of at least either CaO or Y2O3 is 0.2-2 mole %, (iii) the content of monoclinic ZrO2 is 50 vol. % or less, (iv) the bulk density is 5.55 g/cm3 or above, and (v) the diameter of the crystal grain is 4 νm or less. The invention can provide a zirconia sinter which is comparatively inexpensive and has an excellent wear resistance in every use thereof.

Description

明 細 書  Specification
耐摩耗性ジルコニァ焼結体及びその製造方法  Wear resistant zirconia sintered body and method for producing the same
技 術 分 野  Technical field
本発明は、 耐摩耗性ジルコニァ焼結体とその製造方法に 関する。  The present invention relates to a wear-resistant zirconia sintered body and a method for producing the same.
背 景 技 術  Background technology
ジルコニァ ( Z r 0 2 ) は、 耐熱部材、 酸素セ ンサー、 ヒータ一等のセラ ミ ッ クス製品の原料と して幅広く 用いら れている。 Jirukonia (Z r 0 2) is heat-resistant member, oxygen sensors, it is widely used we as a raw material of Serra mission-box product heater first class.
ところで、 純粋なジルコニァ (Z r 0 2 ) は、 加熱する と単斜晶から正方晶、 さ らに立方晶へと変態し、 これを冷 却する と逆の変態が起こるという性質をもっている。 この 場合、 正方晶から単斜晶への変態では大きな体積膨張を伴 うため、 室温まで冷却すると焼結体は破壊されてしま う。 このため、 上記の各種製品には、 安定化ジルコニァ又は部 分安定化ジルコニァが採用されている。 安定化ジルコニァ は、 ジルコ二ァにカルシア ( C a 0 ) 、 イ ツ ト リ ア ( Y ^ 0。 ) 、 マグネシア (M g 0 ) 等の酸化物が添加されたも のであり、 室温でも立方晶からなる。 部分安定化ジルコ二 ァは、 立方晶と単斜晶を共存させるこ とによ り、 上記安定 化ジルコニァより もさ らに耐熱衝撃性を高めたものである。 Meanwhile, pure Jirukonia (Z r 0 2) is tetragonal from monoclinic when heated, transforms into cubic to the al, have the property that when this is cooling the reverse transformation occurs. In this case, the transformation from tetragonal to monoclinic involves a large volume expansion, and the sintered body is destroyed when cooled to room temperature. For this reason, stabilized zirconia or partially stabilized zirconia is adopted in the above various products. Stabilized zirconia is obtained by adding oxides such as calcia (Ca0), yttria (Y ^ 0), and magnesia (Mg0) to zirconia, and is cubic even at room temperature. Consists of The partially stabilized zirconia has a higher thermal shock resistance than the above-mentioned stabilized zirconia by allowing cubic and monoclinic to coexist.
ところが、 これらの安定化又は部分安定化ジルコニァ原 料からなる焼結体は、 耐熱衝撃性、 耐熱性等は良好である 反面、 気孔率が比較的大きく、 しかもその結晶粒径が 2 0 m以上にも達するため、 アルミナ焼結体等に比して耐摩 耗性に劣るという欠点をもっている。 However, these stabilized or partially stabilized zirconia A sintered body made of a material has good thermal shock resistance, heat resistance, etc., but has a relatively large porosity and a crystal grain size of more than 20 m. However, it has the drawback of poor abrasion resistance.
—方、 最近では、 正方晶ジルコニァからなる高強度ジル コニァ焼結体が開発されている。 かかる焼結体は上記の安 定化ジルコニァ等と異なり、 優れた耐摩耗性を発揮するこ とができる。  —On the other hand, recently, high-strength zirconia sintered bodies made of tetragonal zirconia have been developed. Unlike such stabilized zirconia, such a sintered body can exhibit excellent wear resistance.
しかしながら、 上記高強度ジルコニァ焼結体では製造コ ス トが非常に高く なるという問題がある。 特に、 Z r O  However, the high-strength zirconia sintered body has a problem that the production cost is extremely high. In particular, ZrO
2 一 M g 0系の高強度ジルコニァ焼結体は、 1 7 0 0 °C以上 での焼成を必要とし、 しかも冷却速度の制御、 焼成後の熱 処理等に手間がかかるため、 工業的規模での生産に適して いない。 また、 その耐摩耗性も、 伸線用ダイス等の一部の 用途では優れた効果を発揮するものの、 すべての用途にお いて十分なものとは言えない。  (2) High-strength zirconia sintered compacts of the Mg0 type require firing at 170 ° C or higher, and require a lot of time to control the cooling rate, heat treatment after firing, and so on an industrial scale. Not suitable for production at In addition, its wear resistance is excellent for some applications such as wire drawing dies, but it is not sufficient for all applications.
従って、 本発明は、 比較的安価であって、 あらゆる用途 において優れた耐摩耗性を発揮できるジルコニァ焼結体を 提供することを主な目的とする。  Accordingly, it is a main object of the present invention to provide a zirconia sintered body that is relatively inexpensive and can exhibit excellent wear resistance in all uses.
発 明 の 開 示  Disclosure of the invention
上記本発明の目的は、 以下のようにして達成される。 本発明者は、 上記の従来技術の問題点に鑑み、 研究を重 ねたと ころ、 ジルコニァに特定量のマグネ シア、 力ルシア 及びイ ツ ト リ ァを添加 · 混合及し、 粉砕してなる成形用原 料を成形し、 焼成するこ とにより、 ジルコニァの単斜晶量、 嵩密度及び結晶粒径を制御できるこ とを見出し、 さ らにこ れらの値を特定範囲内に制御したジルコニァ焼結体が優れ た耐摩耗性を発現するこ とを見出し、 本発明を完成した。 The object of the present invention is achieved as follows. In view of the above-mentioned problems of the prior art, the present inventor has focused on research. At the same time, a specific amount of magnesia, calcia and yttria is added to and mixed with the zirconia, and the raw material for molding is crushed to form a monoclinic crystal of zirconia. It was found that the amount, bulk density, and crystal grain size could be controlled, and further, it was found that a zirconia sintered body in which these values were controlled within a specific range exhibited excellent wear resistance. Completed the invention.
即ち、 本発明は、 下記の耐摩耗性ジルコニァ焼結体及び その製造方法を提供するものである ;  That is, the present invention provides the following wear-resistant zirconia sintered body and a method for producing the same;
1. Z r 02 — M g O系焼結体において、 In the M g O-based sintered body, - 1. Z r 0 2
(i) M g Oを 6〜 1 0 mo 1%含有し、  (i) containing 6 to 10 mo 1% of MgO,
(ii) C a O及び Y 2 03 の少なく とも 1種を 0. 2〜 2 mol%含有し、 (ii) C a O and Y 2 0 3 of at least one 0. 2 containing 2 mol%,
(ill) 単斜晶 Z r 02 含有量が 5 0体積%以下であり、 (iv) 嵩密度が 5. 5 5 g /cm3 以上であって、 (ill) monoclinic Z r 0 2 content is 5 0% by volume or less, there is (iv) a bulk density of 5. 5 5 g / cm 3 or more,
(v) 結晶粒径が 4 // m以下である、  (v) the crystal grain size is 4 // m or less,
こ とを特徵とする耐摩耗性ジルコニァ焼結体。 A wear-resistant zirconia sintered body characterized by this.
2. (a)M g O粉末 6〜 1 0 mol%並びに (b) C a O粉末 及び Y 2 03 粉末の少な く と も 1種 0. 2〜 2 mol%を含 有する Z r 02 系粉末を比表面積 3 111 ノ g以上に粉砕し た後、 成形し、 焼成するこ とを特徴とする上記第 1項の耐 摩耗性ジルコニァ焼結体の製造方法。 2. (a) M g O powder. 6 to 1 0 mol% and (b) C a O powder and Y 2 0 3 Z r 0 2 also have contains one 0.. 2 to 2 mol% powder least for the in 2. The method for producing a wear-resistant zirconia sintered body according to the above item 1, wherein the system powder is pulverized to a specific surface area of 3111 ng or more, then molded and fired.
3. Z r 09 粉末と してバッテライ ト鉱石又はその精製原 料を用いる上記第 2項記載の耐摩耗性ジルコニァ焼結体の 製造方法。 3. the Z r 0 9 powder Batterai preparative ores or refining raw 3. The method for producing a wear-resistant zirconia sintered body according to the above item 2, using a material.
本発明の耐摩耗性ジルコニァ焼結体は、 (i) M g Oを 6 〜: L 0 mol%含有し、 (ii) C a 0及び YQ 0 ^ の少なく とも 1種を 0. 2〜 2 mol%含有し、 (iii) 単斜晶 Z r 0 2 含有量が 5 0体積%以下であり、 (iv)嵩密度が 5. 5 5 g cm3 以上であって、 (V) 結晶粒径が 4 m以下である、 という特徵を有している。 Abrasion resistance Jirukonia sintered body of the present invention, (i) M g O to 6 ~: L 0 contains mol%, (ii) C a 0 and Y Q 0 ^ least 0.1 2 one of 2 containing mol%, (iii) monoclinic Z r 0 2 content is 5 0% by volume or less, there is (iv) a bulk density of 5. 5 5 g cm 3 or more, (V) grain It has the feature that the diameter is 4 m or less.
M g Oは、 本発明の焼結体に耐摩耗性を付与するために 必要な成分である。 従って、 上記含有量が 6 mol%を下回 ると単斜晶ジルコニァの占める割合が多く なり、 焼成時に おける冷却過程での正方晶から単斜晶への変態によるマイ クロクラ ッ クが多く生ずる。 その結果、 焼結体の崩壌まで は起こ らなく ても、 マイクロクラ ッ クの存在により耐摩耗 性の低下が惹き起こされる。 一方、 1 0 mol%を上回る場 合には、 立方晶ジルコニァの割合が多く なり、 その結晶粒 径が大きくなるので、 この場合にも耐摩耗性の低下を来す。  MgO is a component necessary for imparting wear resistance to the sintered body of the present invention. Therefore, when the above content is less than 6 mol%, the proportion of monoclinic zirconia increases, and a large number of microcracks due to transformation from tetragonal to monoclinic during the cooling process during firing occur. As a result, the wear resistance is reduced due to the presence of the microcracks, even if the collapse of the sintered body does not occur. On the other hand, if it exceeds 10 mol%, the proportion of cubic zirconia increases, and the crystal grain size increases. In this case, the wear resistance also decreases.
一方、 本発明の範囲内の単斜晶量、 嵩密度及び結晶粒径 を有する焼結体を得よう とする場合、 M g O単味の添加で は、 焼成工程における正方晶から単斜晶への変態を制御す ることが非常に困難である。 従って、 かかる制御をできる だけ容易なものとし、 さ らに耐摩耗特性に適した微細構造 制御を行なうため、 本発明では C a O及び Y 2 0 3 の少な く とも 1種を用いる。 なお、 その含有量が 0 . 2 mol %未 満の場合には焼結性が低下し、 上記微細構造が得られなく なり、 2 . 0 mol %を超える場合には立方晶ジルコニァの 割合が増加し、 その結晶粒径が大き く なつて耐摩耗性が低 下してしま うので好ま し く ない。 On the other hand, when trying to obtain a sintered body having a monoclinic amount, bulk density, and crystal grain size within the range of the present invention, the addition of MgO alone may cause the monoclinic to monoclinic in the firing step. It is very difficult to control the transformation to Therefore, such control is made as easy as possible, and a microstructure suitable for wear resistance For controlling, using a C a O and Y 2 0 3 1 or even least for of the present invention. If the content is less than 0.2 mol%, the sinterability decreases, and the above microstructure cannot be obtained.If the content exceeds 2.0 mol%, the proportion of cubic zirconia increases. However, it is not preferable because the crystal grain size becomes large and the wear resistance is reduced.
単斜晶ジルコニァの占める割合 (単斜晶量) は 5 0体積 %以下である。 本発明焼結体における単斜晶のジルコニァ 粒子は粒界及び粒内に存在しており、 体積膨張を起こ した 単斜晶ジルコニァ粒子によって焼結体内部に圧縮応力が発 生し、 この圧縮応力が耐摩耗性の向上に寄与する。 単斜晶 量が 5 0体積%を上回る場合には、 その体積膨張が過大に なり、 マイ ク ロクラ ッ クが発生して耐摩耗性を低下させて しま う。 また、 単斜晶以外のジルコニァは、 好ま し く は、 本発明焼結体中、 立方晶ジルコニァが 8 0体積%以下、 正 方晶ジルコニァが 7 0体積%以下となるのが良い。 尚、 上 記単斜晶ジルコニァの量は、 得られた焼結体表面を鏡面に まで研磨し、 次いで X線回折分析により回折角 2 7 〜  The proportion (monoclinic amount) of monoclinic zirconia is less than 50% by volume. The monoclinic zirconia particles in the sintered body of the present invention are present at the grain boundaries and in the grains, and the monoclinic zirconia particles that have undergone volume expansion generate a compressive stress inside the sintered body. Contributes to the improvement of wear resistance. If the amount of monoclinic crystal is more than 50% by volume, the volume expansion will be excessive, and micro cracks will occur, reducing wear resistance. The zirconia other than the monoclinic crystal is preferably 80% by volume or less of cubic zirconia and 70% by volume or less of tetragonal zirconia in the sintered body of the present invention. The amount of the monoclinic zirconia was determined by polishing the surface of the obtained sintered body to a mirror surface and then performing X-ray diffraction analysis at a diffraction angle of 27 to
3 4 ° の範囲で測定し、 単斜晶回折ピーク I M 、 立方晶回 折ピーク I ハ 及び正方晶回折ピーク I τ から次式により求 めた。 M= [I MC111) + I M (111) ] / [I M (111) + I M(llT) + I C+T (111)] It was measured in the range of 34 ° and determined from the following formula from the monoclinic diffraction peak I M , the cubic diffraction peak I c, and the tetragonal diffraction peak I τ . M = [I MC111) + IM (111)] / [IM (111) + IM (llT) + I C + T (111)]
X誦 (体積 また、 立方晶 (c) 及び正方晶 (T) は単斜晶量を求め るのと同じようにして回折角 7 0〜了 7 ° の範囲で測定し、 立方晶回折ピーク I と正方晶回折ピーク I τ のピーク高 さから次式により求めた。 X recitation (Volume The cubic (c) and tetragonal (T) are measured in the range of 70 to 7 ° in the same way as the amount of monoclinic crystal is determined. And the height of the tetragonal diffraction peak I τ were determined by the following equation.
C= [I C+T(111) [IM(IID + ΙΜ(ΙΙΪ) + i C+Tdll) ] J X C = [I C + T (111) [IM (IID + ΙΜ (ΙΙΪ) + i C + Tdll)] J X
[Ic(400)/IC(400)+ IT(400)+ l T(004)] XlOOC体積[Ic (400) / I C (400) + IT (400) + l T (004)] XlOOC volume
T=l 00-M-C (体積 ¾) 嵩密度は 5. 5 5 g Zcm3 以上、 好ま しく は 5. 6 0 g /cm3 以上とする。 嵩密度が 5. 5 5 g Xcmu 未満の場合 は、 それだけポアの数が多く なり、 耐摩耗性の低下につな がるので望ま しく ない。 T = l 00-MC (volume ¾) The bulk density is 5.55 g Zcm 3 or more, preferably 5.60 g / cm 3 or more. If the bulk density is less than 5. 5 5 g Xcm u, correspondingly increases the number of pores, not properly desirable because tuna want to decrease the abrasion resistance.
結晶粒径は 4 m以下とする。 焼成温度からの冷却中に、 正方晶から単斜晶への変態に伴い、 体積膨張が起こつてマ イク口クラ ッ クが生成するが、 結晶粒径が 4 mを上回る とマイ クロクラッ ク密度が増加し、 衝撃あるいは摺動によ つて焼結体表面で粒子脱離等が起こ り、 耐摩耗性を低下さ せるので好ましくない。 尚、 本発明において、 結晶粒径は、 得られた焼結体表面を鏡面にまで研磨し、 次いで熱エッチ ング又は化学エッチングをした後、 走査電子顕微鏡で観察 してイ ンターセプ ト法により 1 0点平均を求める。 算出式 は D = l . 5 X n / L ( D : 平均結晶粒径、 !! : 長さ 当 たりの結晶の数、 L : 測定長さ) により求めた。 The crystal grain size shall be 4 m or less. During cooling from the sintering temperature, volume expansion occurs due to the transformation from tetragonal to monoclinic, and a crack at the mouth is formed.However, when the crystal grain size exceeds 4 m, the microcrack density increases. It is not preferable because particles are detached on the surface of the sintered body due to impact or sliding, thereby reducing wear resistance. In the present invention, the crystal grain size is observed by a scanning electron microscope after polishing the surface of the obtained sintered body to a mirror surface and then performing thermal etching or chemical etching. Then, an average of 10 points is obtained by the intercept method. The calculation formula was D = l.5Xn / L (D: average crystal grain size, !!: number of crystals per length, L: measured length).
次に、 本発明の耐摩耗性ジルコニァ焼結体の製造方法に ついて説明する。 まず、 ジルコニァ粉末に上記所定量のマ グネシァ、 イ ッ ト リ ア及び力ルシアの粉末を添加する。 ジ ルコニァ粉末と しては、 特にその種類は制限されず、 例え ばジルコ ンサン ドより精製したジルコニァ等が使用できる が、 特にコス ト上の見地よりバッテライ ト鉱石又はその精 製原料を用いることがより好ま しい。 ジルコニァ粉末の粒 径は通常 l〜 5 w m程度で用いるこ とが好ま しい。 また、 マグネシア粉末と して、 マグネシアのほかに水酸化マグネ シゥム、 炭酸マグネシウム、 マグネシウム塩等の粉末を用 いても良い。 マグネシア粉末の粒径は通常 0 . 5〜 2 a m 程度で用いるこ とが好ま しい。 イ ツ ト リ ァ及び力ルシアの 粉末と しては、 イ ツ ト リ ァ及び力ルシアのほか、 イ ツ ト リ ゥム及びカルシウムの水酸化物、 炭酸塩等の粉末を使用で きる。 イ ツ ト リ ァ粉末及び力ルシア粉末の粒径は通常 0 . 5〜 2 m程度で用いるこ とが好ま しい。  Next, a method for producing a wear-resistant zirconia sintered body of the present invention will be described. First, the above-mentioned predetermined amounts of powder of magnesium, yttria, and potassium lucia are added to the zirconia powder. The type of zirconia powder is not particularly limited, and for example, zirconia purified from zircon sand can be used.Battery ore or its refined raw material can be used from the viewpoint of cost. More preferred. It is preferable that the particle size of the zirconia powder is usually about l to 5 wm. Further, as magnesia powder, powder of magnesium hydroxide, magnesium carbonate, magnesium salt, etc. may be used in addition to magnesia. The magnesia powder preferably has a particle size of usually about 0.5 to 2 am. As the powder of yttria and lucia, powders of hydroxide and carbonate of yttrium and calcium can be used in addition to yttria and lucia. It is preferable that the particle size of the italian powder and the raw lucia powder is usually about 0.5 to 2 m.
これらの各原料を混合し、 粉砕して成形用粉末とする。 この場合、 混合 · 粉砕は、 常法に従えば良く、 例えば湿式 法によって水又は有機溶媒中でポッ ト ミ ル、 ァ ト リ ッ シ ョ ンミル等の粉砕機を用いて行なうことができる。 この場合、 必要に応じて、 乾燥後に 1 1 0 0〜 1 4 0 0 °C程度で仮焼 し、 これを再度粉砕し、 分散し、 乾燥したものを成形用粉 末としても良い。 上記成形用粉末は、 その比表面積が 3 m2 Zg以上とする。 比表面積が 3 m" Zg未満の場合に は焼結性が悪く なるので好ま しく ない。 These raw materials are mixed and pulverized to form a molding powder. In this case, mixing and pulverization may be performed in accordance with a conventional method, for example, pot milling or abrasion in water or an organic solvent by a wet method. This can be performed using a pulverizer such as a mill. In this case, if necessary, after drying, it may be calcined at about 110 to 140 ° C., pulverized again, dispersed, and dried to obtain a powder for molding. The powder for molding has a specific surface area of 3 m 2 Zg or more. If the specific surface area is less than 3 m "Zg, the sinterability deteriorates, which is not preferable.
次いで、 上記の成形用粉末を所定の形状に成形する。 こ の場合の成形方法は、 例えば铸込み成形、 射出成形、 押し 出し成形、 プレス成形 (C I P、 H I P) 等の公知の各種 成形方法がそのまま採用できる。  Next, the above-mentioned molding powder is molded into a predetermined shape. In this case, as a molding method, various known molding methods such as, for example, injection molding, injection molding, extrusion molding, and press molding (CIP, HIP) can be employed as they are.
その後、 得られた成形体を、 常法に従って焼成する。 焼 成温度は通常 1 4 0 0〜 1 7 0 0 °C程度、 好ま しく は 1 4 5 0〜 1 6 0 0 °C程度とする。 以上のようにして本発明の 耐摩耗性ジルコニァ焼結体が得られる。  Thereafter, the obtained molded body is fired according to a conventional method. The sintering temperature is usually about 140 to 170 ° C, preferably about 150 to 160 ° C. As described above, the wear-resistant zirconia sintered body of the present invention is obtained.
本発明の製造方法によれば、 特定構造を有するジルコ二 ァ焼結体を比較的容易に得ることができる。  According to the production method of the present invention, a zirconium sintered body having a specific structure can be obtained relatively easily.
そして、 このジルコニァ焼結体は特定の構造を有するこ とにより、 実質的にあらゆる用途において優れた耐摩耗性 を発揮することができる。 特に、 (ィ) 強度、 靱性及び耐 衝撃性に優れるため、 高負荷での耐摩耗性に優れ、 (口) 耐熱衝撃性に優れるため、 高速条件下での耐摩耗性にも優 れている。 また、 耐摩耗性に優れているにも拘らず、 弾性率がアル ミ ナ等に比して小さいので相手の材料を傷つけにく い。 さ らに、 本発明焼結体を粉砕機用部材と して使用する場合に は摩耗粉の混入がほとんどな く 、 また仮に摩耗粉が被粉砕 物に混入しても、 その生成する摩耗粉は非常に微細である ために実質的に被粉砕物の均一性を害することはない。 The zirconia sintered body having a specific structure can exhibit excellent wear resistance in practically all uses. In particular, (a) It has excellent wear resistance under high load due to its excellent strength, toughness and impact resistance, and (mouth) It has excellent wear resistance under high-speed conditions because of its excellent thermal shock resistance. . Also, despite its excellent wear resistance, it has a low elastic modulus compared to aluminum etc., so it does not easily damage the mating material. Furthermore, when the sintered body of the present invention is used as a pulverizer member, there is almost no mixing of abrasion powder, and even if the abrasion powder mixes with the material to be pulverized, the generated abrasion powder is generated. Since they are very fine, they do not substantially impair the uniformity of the material to be ground.
このよ うな優れた効果を発揮できる本発明の耐摩耗性ジ ルコニァ焼結体は、 粉砕用ボール、 内張材、 粉砕用容器、 ノ ズル、 ローラー、 ゲージ、 ダイス等の各種用途に最適で ある。  The abrasion-resistant zirconia sintered body of the present invention, which can exhibit such excellent effects, is most suitable for various uses such as crushing balls, lining materials, crushing containers, nozzles, rollers, gauges, dies, and the like. .
以下に実施例および比較例を示し、 本発明の特徴とする ところをより一層明確にする。  Examples and comparative examples are shown below to further clarify the features of the present invention.
実施例 1〜 9  Examples 1 to 9
平均粒径 1 . 0 mのジルコニァ原料、 平均粒径 0 . 5 // mのマグネシア若しく は炭酸マグネシウム、 及びカルシ ァ若し く はイ ツ ト リ ァ又はその塩の成分を表 1 に示す組成 になるように配合し、 これをポッ ト ミ ルに投入して、 比表 面積が 8 m / g となるまで粉砕し、 成形用粉末を得た。 なお、 ジルコニァ原料は、 実施例 1、 3、 5及び 8につい てはバッテライ ト ( Z r 0 n 9 9 . 5 %、 S i 0 2 0 . 2 %、 A 1 2 0 3 0 . 0 1 % ) を用い、 その他はジルコ ンサ ン ドより精製したジルコニァ原料を用いた。 0 Zirconia raw material with an average particle size of 1.0 m, magnesia or magnesium carbonate with an average particle size of 0.5 // m, and calcium or yttria or its salt are shown in Table 1. The resulting mixture was mixed into a pot mill, and the mixture was pulverized until the specific surface area became 8 m / g to obtain a molding powder. Incidentally, Jirukonia raw material, in Example 1, 3, 5 and Batterai DOO For the 8 (Z r 0 n 9 9 . 5%, S i 0 2 0. 2%, A 1 2 0 3 0. 0 1% ) And zirconia raw materials purified from zircon sand. 0
次いで、 成形用粉末を静水圧プレス成形法 (C I P ) に より、 圧力 1 ton /cm2 で直径 1 5 mmのボールを成形し、 その成形体を 1 4 5 0〜 1 7 0 0 °Cで焼成した。 焼成後、 ボールをバレル研磨を施し、 本発明の耐摩耗性ジルコニァ 焼結体によるボールを得た。 この焼結体について、 嵩密度 (g Zcmu ) 、 結晶粒径 ( fi m) 、 単斜晶量 (体積 ) 及び摩耗率 (%) について 調べた。 その結果を表 1に示す。 なお、 摩耗率は次の方法 により測定した。 Next, the molding powder is formed into a ball having a diameter of 15 mm at a pressure of 1 ton / cm 2 by an isostatic press molding method (CIP), and the formed body is heated at a temperature of 1450 to 170 ° C. Fired. After firing, the ball was barrel-polished to obtain a ball made of the wear-resistant zirconia sintered body of the present invention. This sintered body, a bulk density (g ZCM u), were examined for grain size (fi m), monoclinic Akiraryou (volume) and wear rate (%). The results are shown in Table 1. The wear rate was measured by the following method.
ぐ摩耗率 > 容量 2 リ ッ トルのァルミナ製ポッ ト ミル (アルミナ純度  Wear rate> 2 liters of aluminum pot mill (alumina purity)
9 296) に本発明焼結体ボール 1 k g と水 0. 8 リ ッ トル を入れ、 回転数 1 0 0 r p mで 4 8時間空ずりテス 卜をし、 テス ト後のボールの重量減をテス ト前のボール重量に対す る百分率 ( ) にて評価した。 9 296), 1 kg of the sintered body ball of the present invention and 0.8 liter of water were put into it, and subjected to a slip test at 100 rpm for 48 hours to reduce the weight of the ball after the test. The ball was evaluated as a percentage () of the weight of the ball before the test.
表 1  table 1
NO. MgO γ2 03 CaO かさ密度 結晶粒径 単斜晶量 摩 率 NO. MgO γ 2 0 3 CaO bulk density grain size monoclinic Akiraryou milling rate
(モル %) (モル 5 (モル) g/cm3 ) (体積 (%) 実施例 1 9. 0 0, 5 5. 73 1, 6 40 1. 3 実施例 2 9. 5 0. 5 5. 65 3. 5 25 2. 4 難例 3 8. 5 0. 5 1. 0 5. 63 3. 8 28 2. 0 難例 4 8. 0 1. 0 5. 68 1. 9 45 1, 6 難例 5 9. 0 1. 0 5. 74 2. 0 30 1. 2 難例 6 9. 0 0. 5 5. 62 2. 8 35 2. 2 (Mol%) (mol 5 (mol) g / cm 3 ) (volume (%) Example 1 9.0 0, 5 5.73 1, 6 40 1.3 Example 2 9.5 0.5 5. 65 3.5 5 25 2.4 Difficult 3 8.5 0.5 0.5 1. 0 5.63 3.8 8 2.0 Difficult 4 8.0 1.0 5.68 1. 9 45 1, 6 Difficult Example 5 9. 0 1. 0 5. 74 2. 0 30 1.2 Difficult 6 9.0 0 0.5 5. 62 2. 8 35 2.2
7. 0 1. 5 5. 65 1, 8 28 1. 6 嫌例 8 9. ひ 1. 5 5. 70 3. 5 5 1. 9 実施例 9 8. 5 1, 0 1. 0 5. 66 2. 8 15 2. 0 1 7. 0 1. 5. 5. 65 1, 8 28 1.6 Dislike 8 9. H 1. 5. 5. 70 3. 5 1. 9 Example 9 8. 5, 0 1. 0 5. 66 2.8 15 2.0 1
表 1 より、 本発明の耐摩耗性ジルコニァ焼結体は、 本発 明特有の構造により優れた耐摩耗性を発揮しているこ とが わかる。 比較例 1〜 7 表 2に示す組成になるように配合した以外は、 実施例と 同様にして焼結体のボールを製造し、 その特性を調べた。 その結果を表 2に示す。 なお、 ジルコニァ原料は、 比較例 1、 3、 5及び 7についてはバッテライ ト (Z r 〇2 9 9. 5 %、 S i 09 0. 2 %、 A 12 03 0. 0 1 % ) を用い、 その他はジルコ ンサン ドより精製したジルコニァ原料を用 いた。 Table 1 shows that the wear-resistant zirconia sintered body of the present invention exhibits excellent wear resistance due to the structure unique to the present invention. Comparative Examples 1 to 7 Sintered balls were manufactured in the same manner as in the example except that the compositions were as shown in Table 2, and the characteristics were examined. The results are shown in Table 2. Incidentally, Jirukonia raw material, Comparative Example 1, 3, 5 and 7 Batterai you for the other (Z r 〇 2 9 9. 5%, S i 0 9 0. 2%, A 1 2 0 3 0. 0 1%) The other materials used were zirconia raw materials purified from zircon sand.
表 2  Table 2
Figure imgf000013_0001
Figure imgf000013_0001
表 2より、 比較例の各ボールは、 その原料組成が本発明 の範囲外であるため、 本発明特有の焼結体特性を有さず、 耐摩耗性に劣っている こ とがわかる。  From Table 2, it can be seen that each ball of the comparative example has a raw material composition out of the range of the present invention, and thus does not have a sintered body characteristic peculiar to the present invention and is inferior in wear resistance.

Claims

請 求 の 範 囲  The scope of the claims
① Z r 02 — M g 0系焼結体において、 In M g 0-based sintered body, - ① Z r 0 2
(i) M g Oを 6〜: 1 0 mol%含有し、  (i) containing 6 to 10 mol% of MgO,
(ii) C a O及び Y。 0。 の少なく とも 1種を 0. 2〜 2 mol%含有し、  (ii) C a O and Y. 0. Contains at least one of 0.2 to 2 mol%
(iii) 単斜晶 Z r 02 含有量が 5 0体積%以下であり、 (iv) 嵩密度が 5. 5 5 g / cm3 以上であって、 (iii) monoclinic Z r 0 2 content is 5 0% by volume or less, there is (iv) a bulk density of 5. 5 5 g / cm 3 or more,
(V) 結晶粒径が 4 m以下である、  (V) the crystal grain size is 4 m or less,
こ とを特徵とする耐摩耗性ジルコニァ焼結体。 A wear-resistant zirconia sintered body characterized by this.
② (3)]^ 0粉末6〜 1 0 moI%並びに (b) C a O粉末 及び Y2 03 粉末の少なく とも 1種 0. 2〜 2 mol%を含 有する Z r 0。 系粉末を比表面積 3 Z g以上に粉砕し た後、 成形し、 焼成することを特徵とする ② (3)] ^ 0 powder. 6 to 1 0 moi% and (b) C a O powder and Y 2 0 3 Z r 0 where at least the powder having including one 0. 2~ 2 mol%. It is characterized by pulverizing the system powder to a specific surface area of 3 Zg or more, then molding and firing
(i) M g Oを 6〜: L 0 mol%含有し、  (i) M g O 6-: containing L 0 mol%,
(ii) C a O及び Y23 の少なく とも 1種を 0. 2〜 2 mol%含有し、 (ii) C a O and Y 23 of at least one 0.2-2 containing mol%,
(iii) 単斜晶 Z r 02 含有量が 5 0体積%以下であり、 (iv) 嵩密度が 5 · 5 5 g Xcm° 以上であつて、 (iii) monoclinic Z r 0 2 content is 5 0% by volume or less, shall apply in (iv) the bulk density is 5 · 5 5 g Xcm, ° or more,
(V) 結晶粒径が 4 m以下である、  (V) the crystal grain size is 4 m or less,
耐摩耗性ジルコニァ焼結体の製造方法。 A method for producing a wear-resistant zirconia sintered body.
③ Z r 02 粉末と してバッテラィ ト鉱石又はその精製原 料を用いる請求項 2記載の耐摩耗性ジルコニァ焼結体の製 3 ③ Z r 0 2 Made in powder and to Batterai preparative ore or wear resistant Jirukonia sintered body according to claim 2, wherein using the purified raw material Three
造方法 Construction method
PCT/JP1993/000627 1992-05-14 1993-05-12 Wear-resistant zirconia sinter and production thereof WO1993023347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4120963A JP2676008B2 (en) 1992-05-14 1992-05-14 Abrasion resistant zirconia sintered body and method for producing the same
JP4/120963 1992-05-14

Publications (1)

Publication Number Publication Date
WO1993023347A1 true WO1993023347A1 (en) 1993-11-25

Family

ID=14799341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000627 WO1993023347A1 (en) 1992-05-14 1993-05-12 Wear-resistant zirconia sinter and production thereof

Country Status (2)

Country Link
JP (1) JP2676008B2 (en)
WO (1) WO1993023347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267807B1 (en) 1996-06-20 2001-07-31 Lexmark International, Inc. Method for grinding colorants

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093228B2 (en) * 2013-04-09 2017-03-08 曙ブレーキ工業株式会社 Friction material
JP6772592B2 (en) * 2016-06-30 2020-10-21 東ソー株式会社 Translucent zirconia sintered body, its manufacturing method, and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918906A (en) * 1972-04-11 1974-02-19
JPS6031796B2 (en) * 1981-09-14 1985-07-24 東レ株式会社 Zirconia sintered body
JPS63103864A (en) * 1986-10-10 1988-05-09 シユトーラ フエルトミユーレ アクチエンゲゼルシヤフト Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPS63277560A (en) * 1987-05-11 1988-11-15 Toshiba Ceramics Co Ltd Zro2-mgo-y2o3 ceramic and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918906A (en) * 1972-04-11 1974-02-19
JPS6031796B2 (en) * 1981-09-14 1985-07-24 東レ株式会社 Zirconia sintered body
JPS63103864A (en) * 1986-10-10 1988-05-09 シユトーラ フエルトミユーレ アクチエンゲゼルシヤフト Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPS63277560A (en) * 1987-05-11 1988-11-15 Toshiba Ceramics Co Ltd Zro2-mgo-y2o3 ceramic and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267807B1 (en) 1996-06-20 2001-07-31 Lexmark International, Inc. Method for grinding colorants

Also Published As

Publication number Publication date
JP2676008B2 (en) 1997-11-12
JPH05319923A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
US4977114A (en) Zirconia ceramics and method for producing same
US20070179041A1 (en) Zirconia Ceramic
US3929498A (en) Sintered zirconia bodies
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JPH0553751B2 (en)
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
WO1993023347A1 (en) Wear-resistant zirconia sinter and production thereof
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
CN112500834B (en) Composite zirconium oxide grinding ball for grinding high-purity zirconium carbide powder and preparation method thereof
EP0351827B1 (en) Zirconia-based sintered material and process for producing the same
JP5036271B2 (en) Zirconia conductive sintered body
JP2645894B2 (en) Method for producing zirconia ceramics
JP2900118B2 (en) Abrasion resistant alumina ceramics
JP3153637B2 (en) Method for producing calcia clinker
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPS647030B2 (en)
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JPH0544428B2 (en)
JP3078430B2 (en) High-strength alumina sintered body
JPH0615191A (en) Member for crushing machine
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JPH0687650A (en) Alumina-based sintered compact and its production
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 178254

Date of ref document: 19940113

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 550229

Date of ref document: 19951030

Kind code of ref document: A

Format of ref document f/p: F