JPH0696471B2 - Method for manufacturing zirconia ceramics - Google Patents

Method for manufacturing zirconia ceramics

Info

Publication number
JPH0696471B2
JPH0696471B2 JP59192936A JP19293684A JPH0696471B2 JP H0696471 B2 JPH0696471 B2 JP H0696471B2 JP 59192936 A JP59192936 A JP 59192936A JP 19293684 A JP19293684 A JP 19293684A JP H0696471 B2 JPH0696471 B2 JP H0696471B2
Authority
JP
Japan
Prior art keywords
tetragonal
crystals
monoclinic
powder
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59192936A
Other languages
Japanese (ja)
Other versions
JPS6172683A (en
Inventor
健一郎 宮原
正基 嶽本
康男 斉藤
Original Assignee
東芝モノフラックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝モノフラックス株式会社 filed Critical 東芝モノフラックス株式会社
Priority to JP59192936A priority Critical patent/JPH0696471B2/en
Publication of JPS6172683A publication Critical patent/JPS6172683A/en
Publication of JPH0696471B2 publication Critical patent/JPH0696471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高強度ジルコニアセラミツクスの製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength zirconia ceramics.

〔従来の技術〕[Conventional technology]

近年機械用材料として高強度セラミツクスが種種開発さ
れ、そして使用されている。その中で部分安定化ジルコ
ニアセラミツクスはセラミツクスの脆さを改良した高靱
性材料として注目されており、その製法として (1)ジルコニウム化合物と安定化元素化合物とを中和
共沈、加水分解、あるいは噴霧熱分解して作製されるい
わゆる湿式法による微粉末を原料にして成形、焼結する
方法 (2)ジルコニアと安定化元素酸化物の微粉末を混合
し、等軸晶が安定な温度領域で焼結して、等軸晶単一相
とし、その後これを正方晶が安定相となるより低温領域
で長時間エージング処理をし、この処理の後室温まで急
冷して高靱性に寄与する正方晶結晶を折出→凍結する方
法といつたものが、一般に良く行なわれている。
In recent years, various types of high-strength ceramics have been developed and used as mechanical materials. Among them, partially stabilized zirconia ceramics is attracting attention as a high toughness material with improved brittleness of ceramics. As its manufacturing method, (1) neutralization coprecipitation, hydrolysis, or spraying of a zirconium compound and a stabilizing element compound is performed. Method of forming and sintering fine powder by so-called wet method produced by thermal decomposition as raw material (2) Mixing zirconia and fine powder of stabilizing element oxide and firing in a temperature range where equiaxed crystals are stable A tetragonal crystal that contributes to high toughness by consolidating to form an equiaxed single phase, and then subjecting this to a long-term aging treatment at a lower temperature region where the tetragonal crystal becomes a stable phase, and then rapidly cooling to room temperature. Generally, the method of squeezing out and freezing and the methods of doing so are commonly performed.

発明が解決しようとする問題点 しかしながら、これ等の方法において(1)の場合、原
料文末は、一次粒子の固く結合した二次粒子から成り易
く、また残留陰イオンが含まれ易いので、その除去をし
なければ高強度セラミツクスが得られない。(2)の場
合エージング後の急冷中にセラミツクス製品に熱衝撃に
起因する亀裂が発生し易いという欠点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in these methods, in the case of (1), the raw material ends are likely to be composed of firmly bonded secondary particles of primary particles and are likely to contain residual anions. High strength ceramics cannot be obtained unless In the case of (2), there was a drawback that cracks due to thermal shock were likely to occur in the ceramic product during rapid cooling after aging.

本発明は前述のような欠点を解消することを目的として
いる。
The present invention aims to eliminate the above-mentioned drawbacks.

[問題点を解決するための手段] 本願の第1発明の要旨は、1.6〜3.4モル%のY2O3を含
み、残部が実質的にZrO2からなる組成物を溶融し、しか
るのち、その溶融した組成物を正方晶を含むように冷却
して凝固体を得て、この凝固体を破砕粉砕して粒子径3
μm以下の粉体を作り、その破砕粉砕の際に前記正方晶
をマルテンサイト転移させて単斜晶を生成させて、粉体
が正方晶と単斜晶からなるようにし、その粉体の成形お
よび焼結を行い、その焼結の際に前記単斜晶を逆転移さ
せて準安定正方晶を生成させて、焼結体が、正方晶と単
斜晶の組合せ、または正方晶単独、または正方晶と等軸
晶の組合せから成るようにすることを特徴とするジルコ
ニアセラミックスの製造方法にある。
[Means for Solving the Problems] The gist of the first invention of the present application is to melt a composition containing 1.6 to 3.4 mol% of Y 2 O 3 and the balance substantially consisting of ZrO 2 , and then, The melted composition is cooled to contain tetragonal crystals to obtain a solidified body, and the solidified body is crushed and pulverized to have a particle size of 3
A powder having a size of μm or less is produced, and when the powder is crushed and pulverized, the tetragonal crystal is transformed into martensite to generate a monoclinic crystal so that the powder is composed of a tetragonal crystal and a monoclinic crystal. And sintering, and at the time of the sintering, the monoclinic crystal is reversely transformed to generate a metastable tetragonal crystal, and the sintered body is a combination of a tetragonal crystal and a monoclinic crystal, or a tetragonal crystal alone, or A method for producing zirconia ceramics is characterized by comprising a combination of a tetragonal crystal and an equiaxed crystal.

粉末成形体の焼結には1500℃以上の高温を必要とし、さ
らに1600℃以上の高温では、粒子成長が生じて、焼結体
の強度が低下する傾向がある。一方、1500℃以下の低い
温度での焼結では、焼結体中に粒子成長は生じないもの
の生焼けの素焼き状であり、このような焼結体では勿論
強度は小さい。したがつて、溶融凝固体を原料として製
造されるイツトリアによる部分安定化ジルコニア焼結体
においては、粒子成長のない、または、あつたとしても
小さい低温での焼結→高強度化が望まれた。
The sintering of the powder compact requires a high temperature of 1500 ° C. or higher, and at a high temperature of 1600 ° C. or higher, grain growth occurs and the strength of the sintered body tends to decrease. On the other hand, when sintered at a low temperature of 1500 ° C. or lower, grain growth does not occur in the sintered body, but the sintered body is in a ware-fired state, and such a sintered body is naturally low in strength. Therefore, in the partially stabilized zirconia sintered body by Itutria that is produced from the melt-solidified body as the raw material, there is no particle growth, or even if it is small, sintering at low temperature → high strength is desired. .

そこで、本願の第2発明は、この点を改良して、1.6〜
3.4モル%のY2O3を含んでいて残部が実質的にZrO2から
なる組成物を溶融し、しかるのち、その溶融した組成物
を正方晶を含むように冷却して凝固体を得て、この凝固
体を破砕粉砕して粒子径3μm以下の粉体を作り、その
破砕粉砕の際に前記正方晶をマルテンサイト転移させて
単斜晶を生成させ、粉体が正方晶と単斜晶からなるよう
にし、さらに前記粉体に全体の0.005〜6モル%となる
ようにMgO、Fe2O3、CeO2、La2O3、Al2O3、CaO、TiO2
1種または2種以上の添加混合して混合物を作り、その
混合物の成形および焼結を行い、その焼結の際に前記単
斜晶を逆転移させて準安定正方晶を生成させることを特
徴とするジルコニアセラミックスの製造方法を要旨とし
ている。
Therefore, the second invention of the present application improves on this point to provide 1.6-
A composition containing 3.4 mol% Y 2 O 3 and the balance substantially consisting of ZrO 2 was melted, and then the melted composition was cooled to contain tetragonal crystals to obtain a solidified body. The solidified material is crushed and crushed to form a powder having a particle size of 3 μm or less, and the crushed and crushed powder is transformed into a monoclinic crystal by the martensite transition of the tetragonal crystal. as consisting of, further having a total of from 0.005 to 6% by mole so as to MgO in the powder, Fe 2 O 3, CeO 2 , La 2 O 3, Al 2 O 3, CaO, 1 kind of TiO 2 or 2 A zirconia ceramic characterized in that a mixture is prepared by adding and mixing one or more species, the mixture is shaped and sintered, and the monoclinic crystal undergoes a reverse transition during the sintering to generate a metastable tetragonal crystal. The manufacturing method is as a gist.

[実施例] 本発明は種々の実施例を含むものであり、以下に説明す
る実施例のみに限定されるものではない。
[Examples] The present invention includes various examples and is not limited to the examples described below.

本発明について詳しく説明すればZrO2,Y2O3原料とし
て、工業用粉末(純度ZrO2:99.0%、Y2O3:99.9%)を用
いて、Y2O3の含有量が1.1,1.6,1.9,2.2,2.8,3.4,4.0,4.
5,5.1モル%になるようにZrO2とY2O3とを混合した配合
物各18kgを作製し、各配合物を100KVAカーボン電極アー
ク炉で溶解し、アーク炉を傾斜して溶融物を厚さ約5cm
の黒鉛板上に、約1.5cmの厚さに流し出した後、別の黒
鉛板上に移し換えて急冷するか、溶融物の細流に圧縮空
気を当てて、吹き飛ばせて瞬時に冷却させた。いずれの
場合も前述のように18kgの配合物を処理した場合、溶融
状態から常温まで数時間以内で冷却される。
The present invention will be described in detail. Industrial powder (purity ZrO 2 : 99.0%, Y 2 O 3 : 99.9%) was used as the ZrO 2 , Y 2 O 3 raw material, and the content of Y 2 O 3 was 1.1, 1.6,1.9,2.2,2.8,3.4,4.0,4.
18 kg of each mixture was prepared by mixing ZrO 2 and Y 2 O 3 so as to be 5,5.1 mol%, and each mixture was melted in a 100 KVA carbon electrode arc furnace and the arc furnace was tilted to melt the melt. About 5 cm thick
On a graphite plate of about 1.5 cm, and then transferred to another graphite plate for rapid cooling, or compressed air was applied to the narrow stream of the melt to blow it off and instantly cool it. . In either case, when 18 kg of the composition is treated as described above, it is cooled from the molten state to room temperature within a few hours.

これ等凝固体をクラツシヤーで100メツシユに粗粉砕
後、この粗粉砕物2.5kgを鉄製ボールミルで72時間粉砕
し、塩酸で混入鉄分を溶解し、水洗、乾燥して中心粒径
0.5〜0.8μmの微粉体を得た。次にこれ等の粉体を成形
圧1トン/cm2で55×55×6mmの寸法にラバープレス成形
し、大気中1550℃で2時間常圧焼成し、Y2O3含有量の異
なる部分安定化ジルコニア焼結体を得た。
After roughly crushing these coagulated bodies to 100 mesh with a crusher, 2.5 kg of this coarsely crushed material is crushed with an iron ball mill for 72 hours, dissolved iron content is mixed with hydrochloric acid, washed with water and dried to obtain a central particle size.
A fine powder of 0.5 to 0.8 μm was obtained. Next, these powders were rubber-press molded at a molding pressure of 1 ton / cm 2 to a size of 55 × 55 × 6 mm, and fired in the air at 1550 ° C. for 2 hours under normal pressure, and the parts with different Y 2 O 3 contents A stabilized zirconia sintered body was obtained.

このようにして得られた凝固体、粉体、焼結体の相構成
を、凝固体、焼結体については粉末にせずに、鏡面研磨
面を用いてX線回折により測定した。凝固体については
Y2O3量が少ない範囲では、単斜晶+正方晶からなり、Y2
O32.8モル%以上の組成物では正方晶単一相からなる。
粉体については全ての組成物で単斜晶+正方晶である。
焼結体についてはY2O3が1.9モル%以下で単斜晶+正方
晶、2.2モル%で正方晶単一相、2.8モル%以上で正方晶
+等軸晶からなる。単斜晶量および正方晶量の定量を単
斜晶(111),(11)回折線の積分強度Im(111),Im
(11)正方晶(111)回折線の積分強度It(111)、等
軸晶(111)回折線の積分強度Ic(111)を用いてガーヴ
ィ(Garvie)とニコルソン(Nicholson)により提案された
次式を用いて行なつた。その量は体積分率で表わされ
る。
The phase constitution of the solidified body, the powder, and the sintered body thus obtained was measured by X-ray diffraction using a mirror-polished surface instead of converting the solidified body and the sintered body into powder. For coagulum
Y 2 In the O 3 amount is small range consists monoclinic + tetragonal, Y 2
The composition containing O 3 2.8 mol% or more is composed of a tetragonal single phase.
The powders are monoclinic + tetragonal in all compositions.
Regarding the sintered body, Y 2 O 3 is composed of monoclinic crystal + tetragonal when it is 1.9 mol% or less, tetragonal single phase when it is 2.2 mol%, and tetragonal + equiaxed crystal when it is 2.8 mol% or more. Quantitative determination of monoclinic and tetragonal amounts was performed using the integrated intensities of monoclinic (111) and (11) diffraction lines Im (111), Im
(11) Proposed by Garvie and Nicholson using integrated intensity It (111) of tetragonal (111) diffraction line and integrated intensity Ic (111) of equiaxed (111) diffraction line. It was done using a formula. The amount is expressed as a volume fraction.

正方晶+単斜晶よりなる場合 正方晶+等軸晶よりなる場合 この定量結果を表−1に示した。In case of tetragonal + monoclinic In case of tetragonal + equiaxed crystal The quantitative results are shown in Table 1.

ここで粉体中の単斜晶量は、凝固体中の単斜晶量に比べ
て増加しており、(91−92,78−84,46−69,34−75)こ
の増加分の単斜晶は凝固体中の正方晶がマルテンサイト
転移して生成したものである。また、焼結体においては
原料粉体中に含まれていた単斜晶が激減もしくは消失し
ている。(92−92,84−79,69−9,75−0)これは粉体中
に含まれるマルテンサイト転移により生成した単斜晶が
再び正方晶に逆転移したものと考えられる。なおY2O32.
8モル%以上の焼結体中には等軸晶が含まれるが、これ
は粉体中の正方晶が等軸晶に転移したと見なされる。こ
のような凝固体中の正方晶量、粉体中のマルテンサイト
転移により生成した単斜晶量および焼結体中の逆転移に
より生成した正方晶量とY2O3含有量との関係を第1図に
示したが、第1図からY2O31.6〜3.4モル%の組成範囲
で、凝固体中の正方晶量がY2O3量の増加にしたがつて増
加し、かつ凝固体中の正方晶が破砕、粉砕によりマルテ
ンサイト転移した単斜晶が粉体中に最も多く含まれ、ま
た焼結体中にはこの粉体中の単斜晶が逆転移して生成す
る正方晶が最も多く含まれることは明らかで 凝固体中の正方晶 ↓ マルテンサイト転移(破砕、粉砕による) 粉体中の単斜晶 ↓ 逆転移(焼結による) 焼結体中の正方晶 という特徴が最も顕著に現われる組成範囲である。なお
○印は急冷凝固体中の正方晶、△印は急冷凝固体を微粉
砕した粉体中のマルテンサイト転移により生成した単斜
晶、□印は焼結体中の逆転移により生成した正方晶であ
り、体積%で示した。
Here, the amount of monoclinic crystals in the powder increased compared to the amount of monoclinic crystals in the solidified body (91-92, 78-84, 46-69, 34-75). The orthorhombic crystals are formed by the martensite transformation of tetragonal crystals in the solidified body. Further, in the sintered body, the monoclinic crystals contained in the raw material powder are drastically reduced or disappeared. (92-92, 84-79, 69-9, 75-0) It is considered that this is because the monoclinic crystal produced by the martensite transition contained in the powder was again transformed to the tetragonal reverse transition. Note that Y 2 O 3 2.
Equiaxed crystals are contained in the sintered body of 8 mol% or more, and it is considered that the tetragonal crystals in the powder are transformed into equiaxed crystals. The relationship between the content of tetragonal crystals in the solidified body, the amount of monoclinic crystals formed by the martensite transition in the powder, and the amount of tetragonal crystals formed by the reverse transition in the sintered body and the content of Y 2 O 3 are described below. As shown in Fig. 1, it can be seen from Fig. 1 that in the composition range of Y 2 O 3 of 1.6 to 3.4 mol%, the amount of tetragonal crystals in the solidified body increased as the amount of Y 2 O 3 increased, and the solidification The powder contains the most monoclinic crystals that have undergone martensite transformation by crushing and crushing the tetragonal crystals in the body, and the tetragonal crystals formed by the reverse transformation of the monoclinic crystals in the powder in the sintered body. It is clear that it is contained in the largest amount. Tetragonal crystal in solidified body ↓ Martensite transition (by crushing and pulverization) Monoclinic crystal in powder ↓ Inverse transition (due to sintering) Characteristic of tetragonal crystal in sintered body This is the composition range in which it appears most remarkably. In addition, ○ mark is a tetragonal crystal in the rapidly solidified body, △ mark is a monoclinic crystal formed by the martensite transition in the powder obtained by pulverizing the rapidly solidified body, and □ is a tetragonal crystal formed by the reverse transition in the sintered body. Crystals, expressed as a volume%.

本発明において、用いうるZrO2−Y2O3系の組成範囲をY2
O31.6〜3.4モル%に限定したのは、このような理由によ
る。
In the present invention, the composition range of the ZrO 2 —Y 2 O 3 system that can be used is Y 2
This is the reason why the O 3 is limited to 1.6 to 3.4 mol%.

次に焼結温度について説明する。ZrO2−Y2O3系の組成物
は1500〜1550℃の焼結温度において、それぞれ高強度が
達成されるが、1500℃より低い温度で得た焼結体は、緻
密化が十分でなく、吸水性のある素焼き状で、曲げ強度
も十分ではない。一方焼結温度が1550°を越えると、焼
結体の吸水率は略0に等しくなるが、ジルコニアの粒子
成長が起り、曲げ強度も低下する。
Next, the sintering temperature will be described. The ZrO 2 -Y 2 O 3 -based composition achieves high strength at each of the sintering temperatures of 1500 to 1550 ° C, but the sintered body obtained at a temperature lower than 1500 ° C does not have sufficient densification. It is unglazed with water absorption and its bending strength is not sufficient. On the other hand, when the sintering temperature exceeds 1550 °, the water absorption of the sintered body becomes substantially equal to 0, but the zirconia particles grow and the bending strength also decreases.

そこで本発明者等は、前述の如き性状を示すZrO2−Y2O3
系の溶融凝固体、粉体、焼結体の製造方法において、15
00℃以下の焼成で、焼結体の緻密化が達成できれば、粒
子成長がないあるいはあつたとしてもその程度は小さい
高強度セラミツクスが得られるものと考え種々研究を重
ね、0.005〜3.0モル%の範囲でMgOを添加したZrO2−Y2O
3−MgO系セラミツクスが、緻密で高強度を有する事実が
見出された。すなわち焼成温度による曲げ強度の違いを
調べた組成物のうちで、各焼成温度で高い強度値を示し
たY2O3を2.2モル%含むZrO2−Y2O3組成物粉体に試薬
(特級)のMgOを0.005〜8.0モル%の範囲で添加し、ポ
リエチレン製容器にアルミナボールを入れ、メタノール
を溶媒として24時間湿式混合後、溶媒を揮散させた後、
成形圧1トン/cm2で55×55×6mmの寸法にラバープレス
成形し、大気中において1400℃2時間焼成し、MgOを含
む部分安定化ジルコニア焼結体を得た。これら焼結体は
MgOを含まないものが素焼き状であるのに対し、いずれ
も吸水性はなく緻密化していたが、各MgO添加量の異な
る焼結体組成物について三点曲げ強度を測定したところ
第2図に示されるような結果が得られた。これはMgO無
添加焼結体の強度が38.8kg/mm2であるのに対し、MgOを
0.005〜3.0モル%の範囲で添加したときに、その強度増
大効果が見られることを示している。
Therefore, the present inventors have found that ZrO 2 —Y 2 O 3 having the above-mentioned properties.
In the method for producing melt-solidified body, powder, and sintered body of the system, 15
It is believed that if densification of the sintered body can be achieved by firing at 00 ° C or less, high strength ceramics with little or no grain growth can be obtained, and various studies are repeated, and 0.005 to 3.0 mol% ZrO 2 −Y 2 O with MgO added in range
It was found that the 3- MgO ceramics are dense and have high strength. That is, among the compositions in which the difference in bending strength depending on the firing temperature was examined, the ZrO 2 —Y 2 O 3 composition powder containing 2.2 mol% Y 2 O 3 showing a high strength value at each firing temperature was added as a reagent ( (Special grade) MgO is added in the range of 0.005 to 8.0 mol%, alumina balls are put in a polyethylene container, and after wet mixing for 24 hours with methanol as a solvent, the solvent is volatilized,
Rubber press molding was carried out at a molding pressure of 1 ton / cm 2 to a size of 55 × 55 × 6 mm, followed by firing in air at 1400 ° C. for 2 hours to obtain a partially stabilized zirconia sintered body containing MgO. These sintered bodies
The ones that did not contain MgO were unglazed, but both had no water absorption and were densified, but the three-point bending strength was measured for the sintered body compositions with different amounts of MgO added. Results were obtained as shown. This is because the strength of the MgO-free sintered body is 38.8 kg / mm 2 , while MgO
It shows that the strength increasing effect is observed when added in the range of 0.005 to 3.0 mol%.

同様にして、Fe2O3、CeO2、La2O3、Al2O3、CaO、TiO2
ついて試験をしたところ、高強度セラミツクスが得られ
た。これを第3図〜第8図について説明する。これらの
酸化物を添加したものは、いずれも低温度(1400℃)で
の焼結が促進され、強度も強いものであつた。(1400℃
で2時間焼成) 第3図についてはFe2O3を添加したものの曲げ強度をし
らべたもので、Fe2O3が0.08〜6モル%がよく、第4図
についてはCeO2を添加したもので、0.01〜4.0モル%が
よく、第5図は、La2O3を添加したもので0.02〜2モル
%がよく、第6図は、Al2O3を添加したもので0.05〜5
モル%がよく、第7図はCaOを添加したもので0.005〜3
モル%がよく、第8図はTiO2を添加したもので0.005〜
3モル%がよいものである。
Similarly, when Fe 2 O 3 , CeO 2 , La 2 O 3 , Al 2 O 3 , CaO, and TiO 2 were tested, high-strength ceramics were obtained. This will be described with reference to FIGS. All of these oxides with added oxides had high strength because they promoted the sintering at low temperature (1400 ℃). (1400 ° C
In about 2 hours calcining) Figure 3 which was examined flexural strength of a material obtained by adding Fe 2 O 3, those Fe 2 O 3 is from 0.08 to 6 mol% C., the fourth figure with the addition of CeO 2 0.01 to 4.0 mol% is preferable, Fig. 5 is 0.02 to 2 mol% with La 2 O 3 added, and Fig. 6 is 0.05 to 5 with Al 2 O 3 added.
The mol% is good, and Fig. 7 shows 0.005 to 3 with CaO added.
Mol% is good, and Fig. 8 shows that TiO 2 is added and 0.005〜
3 mol% is a good one.

【図面の簡単な説明】[Brief description of drawings]

第1図は、凝固体、粉体、焼結体の相構成(体積%)を
示すグラフ、第2図はMgOを添加したときの曲げ強度を
示すグラフ、第3図はFe2O3を添加したときの曲げ強度
を示すグラフ、第4図はCeO2を添加したときの曲げ強度
を示すグラフ、第5図はLa2O3を添加したときの曲げ強
度を示すグラフ、第6図はAl2O3を添加したときの曲げ
強度を示すグラフ、第7図はCaOを添加したときの曲げ
強度を示すグラフ、第8図はTiO2を添加したときの曲げ
強度を示すグラフである。
FIG. 1 is a graph showing the phase composition (volume%) of a solidified body, a powder and a sintered body, FIG. 2 is a graph showing the bending strength when MgO is added, and FIG. 3 is Fe 2 O 3 A graph showing the bending strength when added, FIG. 4 is a graph showing the bending strength when CeO 2 is added, FIG. 5 is a graph showing the bending strength when La 2 O 3 is added, and FIG. 6 is FIG. 7 is a graph showing the bending strength when Al 2 O 3 is added, FIG. 7 is a graph showing the bending strength when CaO is added, and FIG. 8 is a graph showing the bending strength when TiO 2 is added.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 康男 千葉県香取郡神崎町武田字八幡平20番8 東芝モノフラツクス株式会社神崎工場内 (56)参考文献 特開 昭60−65726(JP,A) 特開 昭56−50169(JP,A) 特開 昭56−134564(JP,A) 特開 昭57−140375(JP,A) 特開 昭58−156577(JP,A) 特公 昭61−59265(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Saito 20-8 Hachimantai, Takeda, Kanzaki-cho, Katori-gun, Chiba Prefecture Toshiba Monoflats Co., Ltd. Kanzaki Plant (56) References JP-A-60-65726 (JP, A) Special Kai 56-50169 (JP, A) JP 56-134564 (JP, A) JP 57-140375 (JP, A) JP 58-156577 (JP, A) JP 61-59265 ( JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1.6〜3.4モル%のY2O3を含み、残部が実質
的にZrO2からなる組成物を溶融し、しかるのち、その溶
融した組成物を正方晶を含むように冷却して凝固体を得
て、この凝固体を破砕粉砕して粒子径3μm以下の粉体
を作り、その破砕粉砕の際に前記正方晶をマルテンサイ
ト転移させて単斜晶を生成させて、粉体が正方晶と単斜
晶からなるようにし、その粉体の成形および焼結を行
い、その焼結の際に前記単斜晶を逆転移させて準安定正
方晶を生成させて、焼結体が、正方晶と単斜晶の組合
せ、または正方晶単独、または正方晶と等軸晶の組合せ
から成るようにすることを特徴とするジルコニアセラミ
ックスの製造方法。
1. A composition comprising 1.6 to 3.4 mol% Y 2 O 3 and the balance being essentially ZrO 2 is melted, and then the melted composition is cooled to contain tetragonal crystals. A solidified body is obtained by crushing and crushing the solidified body to form a powder having a particle diameter of 3 μm or less, and during the crushing and crushing, the tetragonal crystal is transformed into martensite to generate a monoclinic crystal. Is composed of tetragonal crystals and monoclinic crystals, and the powder is molded and sintered, and during the sintering, the monoclinic crystals are reversely transformed to generate metastable tetragonal crystals. Is a combination of tetragonal crystals and monoclinic crystals, or tetragonal crystals alone, or a combination of tetragonal crystals and equiaxed crystals.
【請求項2】1.6〜3.4モル%のY2O3を含んでいて残部が
実質的にZrO2からなる組成物を溶融し、しかるのち、そ
の溶融した組成物を正方晶を含むように冷却して凝固体
を得て、この凝固体を破砕粉砕して粒子径3μm以下の
粉体を作り、その破砕粉砕の際に前記正方晶をマルテン
サイト転移させて単斜晶を生成させて、粉体が正方晶と
単斜晶からなるようにし、前記粉体に全体の0.005〜6
モル%となるようにMgO、Fe2O3、CeO2、La2O3、Al2O3
CaO、TiO2の1種または2種以上の添加混合して混合物
を作り、その混合物の成形および焼結を行い、その焼結
の際に前記単斜晶を逆転移させて準安定正方晶を生成さ
せることを特徴とするジルコニアセラミックスの製造方
法。
2. A composition containing 1.6 to 3.4 mol% Y 2 O 3 and the balance substantially consisting of ZrO 2 is melted, and then the melted composition is cooled to contain tetragonal crystals. To obtain a solidified body, and the solidified body is crushed and pulverized to prepare a powder having a particle diameter of 3 μm or less. The crushed and pulverized powder is transformed into a monoclinic crystal by martensite transition of the tetragonal crystal. The body is composed of tetragonal and monoclinic crystals, and the powder contains 0.005-6
MgO so that mol%, Fe 2 O 3, CeO 2, La 2 O 3, Al 2 O 3,
One or two or more kinds of CaO and TiO 2 are added and mixed to form a mixture, and the mixture is molded and sintered, and the monoclinic crystal undergoes a reverse transition during the sintering to form a metastable tetragonal crystal. A method for producing zirconia ceramics, which comprises producing the zirconia ceramics.
JP59192936A 1984-09-14 1984-09-14 Method for manufacturing zirconia ceramics Expired - Lifetime JPH0696471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192936A JPH0696471B2 (en) 1984-09-14 1984-09-14 Method for manufacturing zirconia ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192936A JPH0696471B2 (en) 1984-09-14 1984-09-14 Method for manufacturing zirconia ceramics

Publications (2)

Publication Number Publication Date
JPS6172683A JPS6172683A (en) 1986-04-14
JPH0696471B2 true JPH0696471B2 (en) 1994-11-30

Family

ID=16299462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192936A Expired - Lifetime JPH0696471B2 (en) 1984-09-14 1984-09-14 Method for manufacturing zirconia ceramics

Country Status (1)

Country Link
JP (1) JPH0696471B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205662A (en) * 1985-03-07 1986-09-11 日本曹達株式会社 Manufacture of high density and high toughness partially stabilized zirconia sintered body
GB9120780D0 (en) * 1991-10-01 1991-11-13 Tioxide Group Services Ltd Stabilised metal oxides
CN1453242A (en) * 2002-04-27 2003-11-05 艾默生电气(中国)投资有限公司 Shape memory ceramic and its prepn
JP5235909B2 (en) * 2008-02-07 2013-07-10 京セラ株式会社 Zirconia sintered body and method for producing the same
CN108017389B (en) * 2017-12-11 2020-08-25 苏州卫优知识产权运营有限公司 Ceramic material for die

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU577291B2 (en) * 1983-06-20 1988-09-22 Norton Company Stabilized zirconia body

Also Published As

Publication number Publication date
JPS6172683A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
JPS6140621B2 (en)
JPH0455143B2 (en)
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JPH0755855B2 (en) Spinel ceramics
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPH027910B2 (en)
JPS6131071B2 (en)
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH0696467B2 (en) Method for producing MgO-based β ″ -alumina sintered body
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP3153637B2 (en) Method for producing calcia clinker
JPS647030B2 (en)
RU2235701C1 (en) Periclase-spinel refractory products and a method for manufacture thereof
JPS6317210A (en) Production of aluminum nitride powder
JPS6337075B2 (en)
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact
JPS6316359B2 (en)
WO1993023347A1 (en) Wear-resistant zirconia sinter and production thereof
JPH0624834A (en) Composition for producing beta-alumina sintered compact
JP2616773B2 (en) Method for producing zirconia ceramics
JPH0335260B2 (en)
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JPH06116017A (en) High toughness alumina-zirconia sintered compact
JPH0813701B2 (en) Abrasion resistant alumina-zirconia sintered body and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term