JPH01183460A - Production of sintered ceramic material - Google Patents

Production of sintered ceramic material

Info

Publication number
JPH01183460A
JPH01183460A JP63004709A JP470988A JPH01183460A JP H01183460 A JPH01183460 A JP H01183460A JP 63004709 A JP63004709 A JP 63004709A JP 470988 A JP470988 A JP 470988A JP H01183460 A JPH01183460 A JP H01183460A
Authority
JP
Japan
Prior art keywords
powder
weight
alumina
average particle
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004709A
Other languages
Japanese (ja)
Inventor
Masaaki Sagawa
佐川 雅昭
Junji Asaumi
浅海 順治
Hideto Ueaka
上赤 日出人
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP63004709A priority Critical patent/JPH01183460A/en
Publication of JPH01183460A publication Critical patent/JPH01183460A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered material having improved fracture toughness, by forming a mixed raw material composed of alumina-silica powder, SiC power and ZrO2 powder, sintering under normal pressure and subjecting to hot hydrostatic press forming. CONSTITUTION:A formed article is produced by forming a mixed raw material composed of (A) 15-92wt.% of alumina-silica powder having an average particle diameter of <=1mum and composed of 60-86wt.% of Al2O3 and 40-14wt.% of SiO2, (B) 5-50wt.% of SiC powder having an average particle diameter of <=1mum and (C) 1-62wt.% of ZrO2 powder having an average particle diameter of <=1mum. The formed article is dried as necessary, sintered at 1600-1750 deg.C under normal pressure and subjected to hot hydrostatic press forming in a non-oxidizing atmosphere at 1500-1800 deg.C under a pressure of 200-2,000kgf/cm<2>.

Description

【発明の詳細な説明】 〔イ、産業上の利用分野〕 本発明は主にムライト、炭化けい素および酸化ジルコニ
ウムからなる複合セラミックス焼結体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [A. Field of Industrial Application] The present invention mainly relates to a method for manufacturing a composite ceramic sintered body consisting of mullite, silicon carbide and zirconium oxide.

〔口、従来の技術〕[Mouth, conventional technology]

従来からムライト(3^JtOs・2SiOt)および
炭化けい素(SiC)からなる2組成複合セラミックス
は知られており、その焼結体は耐熱性、耐食性さらには
耐摩耗性、硬度等、優れている点が多いことから、構造
材料として、またエンジン部品、バーナーノズル部品等
、高温部品用材料としてその利用が試みられつつある。
Two-component composite ceramics consisting of mullite (3^JtOs/2SiOt) and silicon carbide (SiC) have been known for a long time, and their sintered bodies have excellent heat resistance, corrosion resistance, wear resistance, hardness, etc. Because of its large number of points, attempts are being made to use it as a structural material and as a material for high-temperature parts such as engine parts and burner nozzle parts.

しかしながら、上記2組成複合セラミックス焼結体は強
度において難点があった。そこで強度改善のために最近
組成や製法についていくつかの提案がなされた。
However, the two-component composite ceramic sintered body has a drawback in strength. Therefore, several proposals regarding composition and manufacturing methods have recently been made to improve strength.

たとえば、一つはムライトとアルカリガラスの混合物に
水、SiCウィスカーを加え、攪拌してスラリーとし、
このスラリーを乾燥し、造粒したのちホットプレス焼結
させてつくるムライト−ガラス−5iC複合セラミック
ス焼結体がそれであり(特開昭62−176964) 
、もう一つは、本願発明者らが提案したアルミナ・シリ
カ系粉末25〜92重量%、SiC粉末5〜50重量%
、およびZrO,粉末3〜37重量%からなる混合物を
成形し、常圧焼結してつくるムライト−5iC−ZrO
,複合セラミックス焼結体がそれである(特願昭62−
278405)。
For example, one is to add water and SiC whiskers to a mixture of mullite and alkali glass and stir to form a slurry.
This slurry is dried, granulated, and then hot-press sintered to produce a mullite-glass-5iC composite ceramic sintered body (Japanese Unexamined Patent Publication No. 176964/1983).
, the other is alumina-silica powder 25-92% by weight and SiC powder 5-50% by weight proposed by the inventors of the present application.
Mullite-5iC-ZrO is produced by molding a mixture consisting of 3 to 37% by weight of ZrO powder and sintering it under pressure.
, a composite ceramic sintered body (Patent application 1986-
278405).

〔ハ1発明が解決しようとする問題点〕前記従来法によ
って得た焼結体の強度は、大巾に改善され、いずれも所
期の目的は一応達成された。
[C1. Problems to be Solved by the Invention] The strength of the sintered body obtained by the above-mentioned conventional method has been greatly improved, and the intended objectives have been achieved to a certain extent.

しかしながら、これら焼結体をエンジニアリング部材と
して摺動部位などに使用した場合、その破壊靭性が低い
ために、傷ができ、それが原因となって、部材に多数の
マイクロクランクを発生させ破壊に到ることもしばしば
であった。そのため、従来法の焼結体でつくられた部材
は、その用途が著しく限定され、また寿命を短かくして
いた。
However, when these sintered bodies are used as engineering components in sliding parts, their low fracture toughness causes scratches, which can cause numerous microcranks to occur in the component, leading to fracture. This was often the case. Therefore, members made from sintered bodies using conventional methods have extremely limited uses and shortened lifespans.

〔二1問題点を解決するための手段〕 そこで本発明者らは焼結体の破壊靭性(以下KICと云
う)を改善することを目的として鋭意研究した結果、ム
ライトを含むアルミナ・シリカ系粉末、SiC粉末およ
びZr0z粉末を特定配合してつくった常圧焼結体をさ
らに熱間静水圧プレス(以下、HIPと云う)すること
により、著しくK+cが改善されることを知見して、本
発明を完成させた。
[Means for Solving Problem 21] Therefore, as a result of intensive research aimed at improving the fracture toughness (hereinafter referred to as KIC) of sintered bodies, the present inventors have developed an alumina-silica powder containing mullite. The present invention was based on the discovery that K+c was significantly improved by further hot isostatic pressing (hereinafter referred to as HIP) a pressureless sintered body made with a specific blend of SiC powder and Zr0z powder. completed.

すなわち、本発明は、アルミナ・シリカ系粉末15〜9
2重量%、SiC粉末5〜50重量%およびZrO,粉
末1〜62重量%からなる混合原料を酸処理してつくる
セラミックス焼結体の製造方法を要旨とするものである
That is, the present invention provides alumina-silica powders 15 to 9
The gist of this invention is a method for producing a ceramic sintered body by acid-treating a mixed raw material consisting of 2% by weight of SiC powder, 5 to 50% by weight of SiC powder, and 1 to 62% by weight of ZrO powder.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず使用原料について説明する。First, the raw materials used will be explained.

アルミナ・シリカ系粉末とは例えばムライト単味かある
いは、ムライトとAltChおよび/またはSingと
の共存物であり、化学的にはAIZO3と5iftとか
らなる。再酸化物の割合は本発明では特に限定するもの
ではないが、好ましいのはA I go3が60〜86
重量%、SiO□が40〜14重量%であり、これら範
囲外でもKICの改善効果は多少見られるが、強度低下
、クリープの増大などが見られ、その点で焼結体の用途
制限を受ける。なお、該粉末がアルカリ金属酸化物など
の不純物を含むと高温強度を低下させるので、できるだ
け少ない方が望ましい。
The alumina-silica powder is, for example, mullite alone or a coexistence of mullite and AltCh and/or Sing, and chemically consists of AIZO3 and 5ift. The ratio of reoxidation is not particularly limited in the present invention, but it is preferable that A I go3 is 60 to 86.
Weight%, SiO□ is 40 to 14% by weight, and although some improvement in KIC can be seen even outside these ranges, there is a decrease in strength and an increase in creep, which limits the use of the sintered body. . Note that if the powder contains impurities such as alkali metal oxides, the high-temperature strength will be lowered, so it is desirable that the amount be as small as possible.

アルミナ・シリカ系粉末の細かさは平均粒子径1μm以
下のものを用いるのが望ましく、それ以上では焼結性が
悪くなり、KICも低下傾向になるので望ましくない。
As for the fineness of the alumina-silica powder, it is preferable to use one having an average particle diameter of 1 μm or less; if it is larger than that, the sinterability will deteriorate and the KIC will also tend to decrease, which is not desirable.

SiC粉末は、焼結の際緻密化を妨げる作用があるため
、できるだけ細かいものを用いるのが望ましく、平均粒
子径が1μm以下のものを用いるのが好ましい。また不
純物が多いと複合体組織に局部的に固溶し組織を乱し、
粒成長を促進して強度を低下させるため、できるだけ高
純度のものが良い。
Since SiC powder has the effect of hindering densification during sintering, it is desirable to use as fine a powder as possible, and it is preferable to use one with an average particle diameter of 1 μm or less. In addition, if there are many impurities, they will dissolve locally in the composite structure and disturb the structure.
Since it promotes grain growth and reduces strength, it is best to use it as highly pure as possible.

ZrO,粉末は、Zr01や、安定化Zr0g、部分安
定化Zr(h (安定化剤YzOs+ CeOx+ M
gO,Cab)いずれも用いる事ができ、るが、焼結を
均一に促進させるためには、細かい粒子を広く分散させ
た方が良いため、平均粒子径1μm以下のものを用いる
のが好ましい。
ZrO, powder is Zr01, stabilized Zr0g, partially stabilized Zr(h (stabilizer YzOs + CeOx + M
(gO, Cab) can be used, but in order to uniformly promote sintering, it is better to widely disperse fine particles, so it is preferable to use those with an average particle diameter of 1 μm or less.

次に、使用原料の配合割合について述べる。Next, the blending ratio of the raw materials used will be described.

使用原料の配合において、アルミナ・シリカ系粉末、お
よびZr01粉末がそれぞれ、15重量%および1重量
%未満であると、焼結による緻密化が低いため、またS
iC粉末が5重量%未満だとその配合量が少な過ぎるた
め、いずれの場合においてもKIC改善の効果がほとん
どない、アルミナ・シフリカ系粉末が92重量%を超え
た場合もI(weの改善が見られない、 SiC粉末が
50重量%を超えると、常圧焼結して得た焼結体には多
数の開気孔を有しているため、またZrO,粉末が62
重量%を超えると常圧焼結後の冷却時に転移による体積
変化から焼結体に無数のクランクが発生するため、HI
P処理をしてもKICの向上は見られない。
In the blending of the raw materials used, if the alumina-silica powder and Zr01 powder are less than 15% by weight and 1% by weight, respectively, densification due to sintering will be low, and S
If the amount of iC powder is less than 5% by weight, the blended amount is too small, so there is almost no effect of improving KIC in any case. If the SiC powder exceeds 50% by weight, the sintered body obtained by pressureless sintering will have many open pores, and the
If the weight percentage exceeds HI, numerous cranks will occur in the sintered body due to volume changes due to transition during cooling after pressureless sintering.
No improvement in KIC was observed even after P treatment.

使用原料の好ましい配合割合はアルミナ・シリカ系粉末
15〜63重量%、SiC粉末23〜50重量%および
ZrO□粉末8〜55重量%である。
The preferred blending ratios of the raw materials used are 15 to 63% by weight of alumina-silica powder, 23 to 50% by weight of SiC powder, and 8 to 55% by weight of ZrO□ powder.

以上説明した原料およびその配合割合に基づいた配合物
を慣用の方法(乾式、湿式いずれでもよい)で混合し、
成形しくたとえば、加圧成形、押出成形など)、得られ
た成形体を、必要に応じて乾燥したのち、1600〜1
750℃で常圧焼結する。
Mixing the ingredients based on the raw materials and their blending ratios explained above by a conventional method (either dry or wet),
After molding (for example, pressure molding, extrusion molding, etc.) and drying the obtained molded product as necessary,
Sinter under normal pressure at 750°C.

得られた常圧焼結体をHIP処理することが本発明にお
いて重要である。
It is important in the present invention to subject the obtained pressureless sintered body to HIP treatment.

HIP処理はN!l Arなどの非酸化雰囲気のもとて
1500〜1800℃、200 kgf/cj以上の条
件で行なうのが好ましい。1500℃未満あるいは20
0kgf/d未満ではHIPによる焼結が進行せず、K
ICの改善も見られず、また温度が1800.℃を超え
ると、アルミナ・シリカ系粉末中のムライトが分解し、
焼結体が脆弱となるのでいずれも好ましくない。
HIP processing is N! It is preferable to carry out the process under conditions of 1500 to 1800° C. and 200 kgf/cj or more in a non-oxidizing atmosphere such as Ar. Less than 1500℃ or 20
Below 0 kgf/d, sintering by HIP does not proceed, and K
There was no improvement in the IC, and the temperature was 1800. When the temperature exceeds ℃, the mullite in the alumina-silica powder decomposes,
Both are unfavorable because the sintered body becomes brittle.

なお、圧力の上限は、経済性、装置の安全性等から20
00kgf/−以下で行なうのが望ましい。
Note that the upper limit of the pressure is 20% due to economic efficiency, equipment safety, etc.
It is desirable to carry out the test at 00 kgf/- or less.

以下、本発明を実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

〔実施例〕〔Example〕

実施例1〜19、比較例1〜4 まず下記の要領で各原料をそろえた。 Examples 1 to 19, Comparative Examples 1 to 4 First, each raw material was prepared in the following manner.

アルミニウムイソプロポキシドとエチルシリケートとを
A’zOs/SiO□重量比が表1に示す割合になるよ
うに配合し水を加えて混合し、生成した沈殿を濾過し乾
燥したのち、1350℃、1時間仮焼し、粉砕し、5種
類のA’ zOz/ 5in2重量比の異なるムライト
を含むアルミナ・シリカ系粉末(平均粒子径0.2μm
)を準備した。
Aluminum isopropoxide and ethyl silicate were blended so that the A'zOs/SiO□ weight ratio was as shown in Table 1, water was added and mixed, the resulting precipitate was filtered and dried, and then heated at 1350°C for 1 hour. Alumina-silica powder (average particle size 0.2μm) containing 5 types of mullite with different weight ratios of A'zOz/5in2
) was prepared.

SiC粉末およびZrO□粉末はいずれも市販品を用い
た。
Both SiC powder and ZrO□ powder were commercially available products.

上記原料を表1に示す割合に配合し、得られた各配合物
を〆ットミルに投入し、32時間湿式混合してスラリー
をつくったφ そのスラリーを200℃のスプレードライヤーで乾燥し
、得られた乾燥粉末を静水圧プレス法で5X4XQ、5
cmの成形体を各配合物につき2箇ずつ作製した。
The above raw materials were blended in the proportions shown in Table 1, each of the resulting blends was put into a hot mill, and mixed wet for 32 hours to create a slurry. The slurry was dried with a spray dryer at 200°C to obtain the The dried powder was 5X4XQ, 5
Two molded bodies of cm were produced for each formulation.

各成形体は詰め粉(SiC粉末)で覆い、1700℃、
2時間、大気中で常圧焼結した。得られた常圧焼結体の
うち1箇はIM法(Indentation Micr
o −crack Method)でKICを測定し、
結果を表1に記載した。
Each molded body was covered with packing powder (SiC powder) and heated to 1700°C.
Normal pressure sintering was carried out in the atmosphere for 2 hours. One of the obtained pressureless sintered bodies was manufactured using the IM method (Indentation Micro
o -crack Method) to measure KIC,
The results are shown in Table 1.

他の1箇はAr雰囲気、1600℃、15001qrf
/aJ、2時間HIP処理した。
The other one is Ar atmosphere, 1600℃, 15001qrf
/aJ, HIP treatment was performed for 2 hours.

得たHIP処理体は前記IM法でKIcを測定し、その
結果を同表に併記した。
The KIc of the obtained HIP-treated body was measured by the above-mentioned IM method, and the results are also shown in the same table.

〔ホ0発明の効果〕 本発明はムライトを含むアルミナ・シリカ系粉末、Si
C粉末およびZrO□粉末を特定配合した混合原料を常
圧焼結後、HIP処理するセラミックス焼結体の製法で
あり、単に常圧焼結しただけの従来法による焼結体より
破壊靭性値が格段に優れた焼結体が得られ、該焼結体の
用途が著しく拡大できる。
[Effects of the invention] The present invention provides alumina-silica powder containing mullite, Si
This is a method for manufacturing ceramic sintered bodies in which a mixed raw material containing a specific blend of C powder and ZrO□ powder is sintered under pressure and then subjected to HIP treatment, and the fracture toughness value is higher than that of the sintered bodies produced by the conventional method, which is simply sintered under pressure. A significantly superior sintered body can be obtained, and the uses of the sintered body can be significantly expanded.

特許出願人  日本セメント株式会社Patent applicant: Nippon Cement Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  アルミナ・シリカ系粉末15〜92重量%、炭化けい
素粉末5〜50重量%および酸化ジルコニウム粉末1〜
62重量%からなる混合原料を成形し、常圧焼結したの
ち、熱間静水圧プレス処理するセラミックス焼結体の製
造方法。
Alumina/silica powder 15-92% by weight, silicon carbide powder 5-50% by weight, and zirconium oxide powder 1-1% by weight
A method for producing a ceramic sintered body, in which a mixed raw material containing 62% by weight is molded, pressureless sintered, and then subjected to hot isostatic pressing.
JP63004709A 1988-01-14 1988-01-14 Production of sintered ceramic material Pending JPH01183460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004709A JPH01183460A (en) 1988-01-14 1988-01-14 Production of sintered ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004709A JPH01183460A (en) 1988-01-14 1988-01-14 Production of sintered ceramic material

Publications (1)

Publication Number Publication Date
JPH01183460A true JPH01183460A (en) 1989-07-21

Family

ID=11591412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004709A Pending JPH01183460A (en) 1988-01-14 1988-01-14 Production of sintered ceramic material

Country Status (1)

Country Link
JP (1) JPH01183460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062231A (en) * 1992-06-11 1994-01-11 Maruu Seitoushiyo:Kk Yarn guide and its production
EP1771266A1 (en) * 2004-06-16 2007-04-11 Nucor Corporation Zirconia refractories for making steel
US10994234B2 (en) 2016-07-25 2021-05-04 Jinan Shengquan Doublesurplus Ceramic Filter Co., Ltd. Ceramic foam filter and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062231A (en) * 1992-06-11 1994-01-11 Maruu Seitoushiyo:Kk Yarn guide and its production
EP1771266A1 (en) * 2004-06-16 2007-04-11 Nucor Corporation Zirconia refractories for making steel
EP1771266A4 (en) * 2004-06-16 2007-09-26 Nucor Corp Zirconia refractories for making steel
US10994234B2 (en) 2016-07-25 2021-05-04 Jinan Shengquan Doublesurplus Ceramic Filter Co., Ltd. Ceramic foam filter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH04228471A (en) Sintered ceramic material based on aluminum titanate, preparation thereof and use thereof
JPH08268755A (en) Zirconia-based composite ceramic sintered compact and its production
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPS58213679A (en) Composite ceramic cutting tool and manufacture
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US4806510A (en) Silicon nitride sintered body and method for producing same
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
JPH01183460A (en) Production of sintered ceramic material
US5302329A (en) Process for producing β-sialon based sintered bodies
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
US5362691A (en) Sintered material based on Si3 N4 and processes for its production
CN1089249A (en) High-temperature aging resisting and high tenacity PSZ pottery
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JPS6337064B2 (en)
JPH0694390B2 (en) Silicon nitride sintered body
JPH0526749B2 (en)
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH04104944A (en) Al2o3-sic-zro2 composite sinter