JPH0987009A - Alumina-mullite combined sintered compact and its production - Google Patents

Alumina-mullite combined sintered compact and its production

Info

Publication number
JPH0987009A
JPH0987009A JP7253438A JP25343895A JPH0987009A JP H0987009 A JPH0987009 A JP H0987009A JP 7253438 A JP7253438 A JP 7253438A JP 25343895 A JP25343895 A JP 25343895A JP H0987009 A JPH0987009 A JP H0987009A
Authority
JP
Japan
Prior art keywords
alumina
mullite
metal oxide
crystal
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7253438A
Other languages
Japanese (ja)
Inventor
Usou Ou
雨叢 王
Hiroshi Maruyama
博 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7253438A priority Critical patent/JPH0987009A/en
Publication of JPH0987009A publication Critical patent/JPH0987009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the strength and toughness of crystals themselves, to considerably improve resistance to cracking and plastic deformation at high temp. and to ensure high strength and high toughness over the range from room temp. to high temp. by dispersing metal oxide crystal grains different from alumina and mullite crystal phases in the grains of the alumina and mullite crystal phases of a combined sintered compact contg. the crystal phases as the principal crystal phases. SOLUTION: This sintered compact contains metal oxide crystal grains contg. one or more among Ti, Mg and Fe and preferably having <=500μm grain diameter preferably by 0.5-10wt.% (expressed in terms of oxide) of the total amt. The amt. of mullite in this sintered compact is not especially limited but is preferably 5-80wt.% of the total amt. A powdery mixture of alumina and mullite or silicon oxide with the above-mentioned metal oxide having different solubility limits in alumina and mullite in correspondence with different atmospheres is compacted in an arbitrary shape, the resultant compact is sintered in an atmosphere in which the solubility limit is increased and the sintered compact is heat-treated in an atmosphere in which the solubility limit is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温から1300
℃の高温強度に優れるとともに、高靱性を有するアルミ
ナ−ムライト系の複合酸化物焼結体に関するもので、特
に、航空関連部材、精錬部材、宇宙環境下で使用される
部材、熱機関用部品に使用されるものである。
TECHNICAL FIELD The present invention relates to room temperature to 1,300
Alumina-mullite composite oxide sintered body that has excellent high temperature strength at ℃ and high toughness, especially for aviation related parts, refining parts, parts used in space environment, heat engine parts Is what is used.

【0002】[0002]

【従来技術】従来より、アルミナ質焼結体は、代表的な
セラミック材料として、その優れた強度、耐薬品性から
あらゆる分野に使用されている。また、このアルミナ質
焼結体は、強度、破壊靭性、特に高温強度が十分でない
ため、これらの特性を向上するために各種の改良がなさ
れている。
2. Description of the Related Art Conventionally, an alumina-based sintered body has been used as a typical ceramic material in various fields because of its excellent strength and chemical resistance. Further, since this alumina-based sintered body is insufficient in strength, fracture toughness, especially high temperature strength, various improvements have been made in order to improve these characteristics.

【0003】例えば、アルミナに対して炭化珪素やジル
コニアを添加した複合材料が特開昭61−122164
号、特開昭63−139044号に提案されている。ま
た、アルミナに対して希土類元素を含有させた形状異方
性のβ型アルミナ結晶を分散させた材料も特開昭63−
134551号にて提案されている。さらに、アルミナ
にムライトを複合した材料、例えば特開平1−1195
59に提案されている。
For example, a composite material obtained by adding silicon carbide or zirconia to alumina is disclosed in JP-A-61-2122164.
And Japanese Patent Laid-Open No. 63-139044. Further, a material in which β-alumina crystals having a shape anisotropy in which a rare earth element is contained is dispersed in alumina is also disclosed in JP-A-63-
Proposed in issue No. 134551. Further, a material in which mullite is mixed with alumina, for example, Japanese Patent Laid-Open No. 1-1195.
59 have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記A
2 3 −SiC複合材料では、非酸化物のSiCを分
散含有するため、高温酸化雰囲気において耐酸化性に欠
け、Al2 3 −ZrO2 複合材料は900℃付近の温
度で強度が急激に低下するという問題があり、SiCや
ZrO2 などの第2相を含まない系での強度および靱性
の向上が望まれる。
[Problems to be Solved by the Invention] However, the above A
Since the l 2 O 3 —SiC composite material contains non-oxide SiC in a dispersed state, it lacks oxidation resistance in a high temperature oxidizing atmosphere, and the Al 2 O 3 —ZrO 2 composite material has a sharp strength at a temperature near 900 ° C. Therefore, it is desired to improve the strength and toughness in a system containing no second phase such as SiC or ZrO 2 .

【0005】一方、希土類元素を含有するβ型アルミナ
が分散した複合材料は、耐酸化性に優れ、しかも室温か
ら高温までの強度と靱性は無添加のアルミナ質焼結体に
比較して優れた材料ではあるが、1200℃の高温強度
はせいぜい380MPa程度であり、強度が十分でない
という問題があった。
On the other hand, the composite material in which β-type alumina containing a rare earth element is dispersed is excellent in oxidation resistance, and the strength and toughness from room temperature to high temperature are superior to those of the unsintered alumina sintered body. Although it is a material, the high temperature strength at 1200 ° C. is at most about 380 MPa, and there is a problem that the strength is not sufficient.

【0006】さらに、アルミナ−ムライト複合材料は、
純アルミナ焼結体に比べ、室温と高温の強度が向上され
たが、破壊靭性が低い等の問題があった。
Further, the alumina-mullite composite material is
Although the strength at room temperature and high temperature was improved as compared with the pure alumina sintered body, there were problems such as low fracture toughness.

【0007】[0007]

【課題を解決するための手段】本発明者らは、特にアル
ミナ−ムライト複合材料を基礎として、その強度および
靱性を高める方法について検討を重ねた結果、焼結体の
組織的な改良に加え、焼結体を構成する結晶相自体の強
度を高めることが重要であるとの見地から検討を重ねた
結果、アルミナ結晶相およびムライト結晶相の粒内にそ
れぞれの結晶相とは異なる金属酸化物を微細な結晶とし
て分散させることにより、高温強度および靱性を向上で
きることを見いだしたものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies on a method for increasing the strength and toughness of an alumina-mullite composite material. As a result, in addition to the structural improvement of the sintered body, As a result of repeated studies from the viewpoint that it is important to increase the strength of the crystal phase itself that constitutes the sintered body, a metal oxide different from each crystal phase is formed in the grains of the alumina crystal phase and the mullite crystal phase. It has been found that high temperature strength and toughness can be improved by dispersing them as fine crystals.

【0008】即ち、本発明のアルミナ−ムライト複合焼
結体は、アルミナ結晶相と、ムライト結晶相とを主結晶
相とする複合焼結体であって、前記アルミナ結晶相およ
びムライト結晶相の粒内に、それぞれの結晶相とは異な
る金属酸化物結晶粒子が分散してなることを特徴とする
ものである。なお、前記金属酸化物結晶粒子が500n
m以下の粒子径を有するものである。また、前記金属酸
化物結晶粒子は、チタン、マグネシウム、鉄のうちの少
なくとも1種を含むことを特徴とするものである。
That is, the alumina-mullite composite sintered body of the present invention is a composite sintered body having an alumina crystal phase and a mullite crystal phase as main crystal phases, and the particles of the alumina crystal phase and the mullite crystal phase. It is characterized in that metal oxide crystal particles different from each crystal phase are dispersed therein. The metal oxide crystal particles are 500 n
It has a particle diameter of m or less. Further, the metal oxide crystal particles contain at least one of titanium, magnesium, and iron.

【0009】さらに、本発明のアルミナ−ムライト複合
焼結体の製造方法によれば、アルミナに対して、ムライ
トあるいは酸化珪素と、雰囲気の違いによりアルミナや
ムライトへの固溶限界量が異なる金属酸化物とを添加混
合したものを成形する工程と、得られた成形体を前記金
属酸化物の前記固溶限界量が多くなる雰囲気中で焼成し
て、アルミナ結晶とムライト結晶とを主結晶相として含
み、前記金属酸化物が前記アルミナ結晶および前記ムラ
イト結晶内に固溶した焼結体を作製する工程と、該焼結
体を前記金属酸化物の前記固溶限界量が少なくなる雰囲
気中で熱処理して、前記アルミナ結晶および前記ムライ
ト結晶粒内に、前記金属酸化物の結晶粒子、あるいは前
記金属酸化物とアルミナまたは酸化珪素とが複合化した
金属酸化物の結晶粒子を析出させる工程とからなること
を特徴とする。また、前記金属酸化物の結晶粒子は、チ
タン、マグネシウム、鉄のうちの少なくとも1種を含む
ことを特徴とするものである。
Further, according to the method for producing an alumina-mullite composite sintered body of the present invention, mullite or silicon oxide is different from alumina and metal oxides having different solid solution limit amounts to alumina or mullite are different depending on the atmosphere. And a step of molding a mixture of the mixed product, and the molded body obtained is fired in an atmosphere in which the solid solution limit amount of the metal oxide is increased, and an alumina crystal and a mullite crystal are used as a main crystal phase. And a step of producing a sintered body in which the metal oxide is solid-solved in the alumina crystal and the mullite crystal, and heat-treating the sintered body in an atmosphere in which the solid solution limit amount of the metal oxide is reduced. Then, in the alumina crystals and the mullite crystal grains, crystal particles of the metal oxide, or a crystal of a metal oxide in which the metal oxide is complexed with alumina or silicon oxide. Characterized in that comprising the step of precipitating the child. Further, the crystal particles of the metal oxide are characterized by containing at least one of titanium, magnesium and iron.

【0010】[0010]

【作用】アルミナは、特に酸化雰囲気で室温から高温ま
で安定した特性を有するが、高温では転位が移動しやす
いため、軟化、塑性変形を示しやすい。また、室温で
は、結晶内でもクラックが進展しやすいため、破壊靭性
が低い。そこで、アルミナにムライトを複合化させるこ
とにより材料の室温と高温強度が向上されたが、特性面
ではまだ十分でなく、特に、破壊靭性が低い問題があ
る。
OPERATION Alumina has stable characteristics from room temperature to high temperature especially in an oxidizing atmosphere, but at high temperature, dislocations are likely to move, so that it tends to be softened and plastically deformed. Also, at room temperature, fracture toughness is low because cracks easily propagate within the crystal. Therefore, by combining mullite with alumina, the room temperature and high temperature strength of the material have been improved, but it is still insufficient in terms of characteristics and there is a problem that fracture toughness is particularly low.

【0011】本発明によれば、アルミナ結晶相とムライ
ト結晶相の粒内に、アルミナまたはムライト以外の金属
酸化物からなる微細な結晶粒子を分散させることによ
り、結晶自体の強度と靱性を高め、クラックの粒内経由
の進展に対する抵抗および高温での塑性変形に対する抵
抗が大きく向上でき、その結果、室温から1300℃の
高温まで高い強度と、高靱性を有する焼結体を得ること
ができる。
According to the present invention, by dispersing fine crystal particles made of a metal oxide other than alumina or mullite in the grains of the alumina crystal phase and the mullite crystal phase, the strength and toughness of the crystal itself is increased, The resistance to the propagation of cracks through the grains and the resistance to plastic deformation at high temperature can be greatly improved, and as a result, a sintered body having high strength from room temperature to a high temperature of 1300 ° C. and high toughness can be obtained.

【0012】[0012]

【発明の実施の形態】本発明のアルミナ−ムライト複合
焼結体は、組織上、図1に示すように、アルミナ結晶相
1と、ムライト結晶相2とからなる主結晶相と、それら
主結晶相粒内に析出した金属酸化物結晶粒子3とから構
成される。アルミナ結晶相1は、α型結晶構造からなる
ものである。ここで、ムライト結晶相2とは、アルミナ
と酸化珪素の複合酸化物であり、3Al2 3 ・2Si
2 と表記する。
BEST MODE FOR CARRYING OUT THE INVENTION The alumina-mullite composite sintered body of the present invention has a structure, as shown in FIG. 1, including a main crystal phase composed of an alumina crystal phase 1 and a mullite crystal phase 2, and the main crystal phases thereof. It is composed of metal oxide crystal particles 3 precipitated in the phase grains. Alumina crystal phase 1 has an α-type crystal structure. Here, the mullite crystal phase 2 is a composite oxide of alumina and silicon oxide, and is 3Al 2 O 3 .2Si.
Expressed as O 2 .

【0013】ムライト結晶は、それ自体が1400℃ま
での高温でも強度が低下しない特性がある。また、アル
ミナに添加する場合には、焼成中のアルミナ結晶の粒成
長を抑制でき、微細な組織を形成できる。よって、室温
から高温までの強度がアルミナよりも優れた焼結体が得
られる。
Mullite crystals themselves have the property that their strength does not decrease even at high temperatures up to 1400 ° C. When added to alumina, the grain growth of alumina crystals during firing can be suppressed and a fine structure can be formed. Therefore, a sintered body having a higher strength from room temperature to a higher temperature than alumina can be obtained.

【0014】しかし、ムライト結晶は、ヤング率と破壊
靭性が低いために、クラックの粒内の進展に対する抑制
効果がなく、アルミナとの複合焼結体は破壊靭性が低い
問題があった。また、アルミナは高温で結晶自体の軟
化、即ち転位の移動による塑性変形を生じるから、高温
強度もまだ充分ではない。
However, since the mullite crystal has a low Young's modulus and a low fracture toughness, it has no effect of suppressing the progress of cracks in the grain, and the composite sintered body with alumina has a problem of low fracture toughness. In addition, since the alumina itself softens at high temperature, that is, plastic deformation occurs due to the movement of dislocations, the high temperature strength is still insufficient.

【0015】本発明では、上記のようなアルミナ結晶相
およびムライト結晶相を主結晶相とする焼結体におい
て、図1に示すように、各結晶相の粒内にそれぞれの結
晶相とは異なる金属酸化物からなる微細な結晶粒子3が
分散してなることが重要である。ここで、粒内に分散さ
せる金属酸化物結晶粒子は、単一金属酸化物の他、2種
以上の金属が複合化した金属酸化物であってもよいし、
これらの金属酸化物とアルミナあるいはムライトとが反
応して形成された複合酸化物であってもよい。
According to the present invention, in the above-mentioned sintered body having the alumina crystal phase and the mullite crystal phase as the main crystal phases, as shown in FIG. 1, the crystal phases are different from each other within the grains. It is important that fine crystal particles 3 made of a metal oxide are dispersed. Here, the metal oxide crystal particles dispersed in the grains may be a metal oxide in which two or more kinds of metals are compounded, in addition to a single metal oxide,
It may be a composite oxide formed by reacting these metal oxides with alumina or mullite.

【0016】これら粒内に分散させる金属酸化物結晶粒
子は、アルミナまたはムライトに対して雰囲気によって
固溶限界量が変化する金属酸化物が含まれる。この金属
酸化物中には、酸化物のヤング率と高温での高い安定性
という見地から、Mg、Ca、Fe、Co、および周期
律表の3a、4a、5a、6a族金属の群から選ばれる
少なくとも1種の元素が含まれることが好ましいが、こ
れらの中でも固溶−析出の制御の容易性から、前記金属
酸化物結晶粒子中には、チタン(Ti)、マグネシウム
(Mg)、鉄(Fe)のうちの少なくとも1種を含むこ
とが望ましい。
The metal oxide crystal grains to be dispersed in these grains contain a metal oxide whose solid solution limit amount changes with alumina or mullite depending on the atmosphere. This metal oxide is selected from the group consisting of Mg, Ca, Fe, Co, and 3a, 4a, 5a, and 6a group metals of the periodic table from the viewpoint of Young's modulus of the oxide and high stability at high temperature. It is preferable that at least one kind of element contained in the metal oxide crystal particles is contained in the metal oxide crystal particles because of easy control of solid solution-precipitation. It is desirable to contain at least one of Fe).

【0017】なお、アルミナへの固溶は、MgはMgT
iO3 の形態で多量に固溶する。
The solid solution in alumina is Mg is MgT.
It forms a large amount of solid solution in the form of iO 3 .

【0018】このアルミナ結晶およびムライト結晶相の
粒内に分散する金属酸化物結晶粒子は、平均粒径が50
0nm以下であることが好ましい。この結晶粒子の粒径
が小さければ、主結晶相との界面に結晶の整合性を保
ち、歪みを生じることにより、さらに大きな強化、靭化
効果を示すことができる。粒内分散する結晶粒子の平均
粒径が500nmを越えると、上記結晶間の相互作用が
小さくなり、場合によっては熱応力により相界面に欠陥
を生じる。粒内分散する結晶粒子の平均粒径は200n
m以下であることが望ましい。
The metal oxide crystal particles dispersed in the particles of the alumina crystal and the mullite crystal phase have an average particle diameter of 50.
It is preferably 0 nm or less. If the grain size of the crystal grains is small, the consistency of the crystal is maintained at the interface with the main crystal phase, and strain is generated, so that a larger strengthening and toughening effect can be exhibited. If the average grain size of the crystal grains dispersed in the grains exceeds 500 nm, the interaction between the crystals becomes small, and in some cases, thermal stress causes defects at the phase interface. The average particle size of the crystal particles dispersed in the particle is 200 n
It is preferably m or less.

【0019】本発明のアルミナ−ムライト複合焼結体に
おいては、ムライト量は特に限定しないが、強度と靭性
特性の総合的な特性から、全量中5〜80重量%の割合
で含有することが望ましく、また、これらの結晶粒内に
析出する金属酸化物は、酸化物換算量で全量中0.5〜
10重量%の割合で含有されることが望ましい。金属酸
化物量が多くなるにつれて、粒界にでもこの金属酸化物
による反応相が生成することもあるが、これが材料の特
性に与える影響は小さい。
In the alumina-mullite composite sintered body of the present invention, the amount of mullite is not particularly limited, but it is desirable that the amount of mullite is 5 to 80% by weight based on the overall characteristics of strength and toughness. Further, the metal oxides precipitated in these crystal grains are 0.5 to 0.5 in the total amount in terms of oxides.
It is desirable that the content is 10% by weight. As the amount of metal oxide increases, a reaction phase due to this metal oxide may be generated at the grain boundaries, but this has little effect on the properties of the material.

【0020】本発明のアルミナ−ムライト複合焼結体の
製造方法によれば、まず、アルミナと、ムライトあるい
は酸化珪素と、雰囲気の違いによりアルミナおよびムラ
イトへの固溶限界量が異なる金属酸化物の混合粉末を準
備する。このような金属酸化物としては、前述したよう
なMg、Ca、Fe、Co、および周期律表の3a、4
a、5a、6a族金属の群から選ばれる少なくとも1種
の酸化物が挙げられるが、これらの中でも固溶−析出の
制御の容易性から、酸化チタン(TiO2 )、酸化マグ
ネシウム(MgO)、鉄(Fe2 3 )あるいはそれら
の複合酸化物、あるいは、それらとアルミナまたはムラ
イトとの複合酸化物など、少なくともTi、Mg、Fe
を含む金属酸化物であることが望ましい。
According to the method for producing an alumina-mullite composite sintered body of the present invention, first, alumina and mullite or silicon oxide are mixed with alumina and a metal oxide having different solid solution limit amounts in mullite due to a difference in atmosphere. Prepare a mixed powder. Examples of such metal oxides include Mg, Ca, Fe, Co, and 3a and 4 of the periodic table as described above.
Examples thereof include at least one oxide selected from the group of a, 5a, and 6a group metals. Among them, titanium oxide (TiO 2 ), magnesium oxide (MgO), At least Ti, Mg, Fe such as iron (Fe 2 O 3 ) or a composite oxide thereof, or a composite oxide thereof and alumina or mullite.
It is desirable that the metal oxide contains.

【0021】この混合粉末は、焼成工程で酸化物を形成
し得るものであれば、特に制限はなく、例えば、金属粉
末、その金属の炭酸塩、硝酸塩、酢酸塩などの、その金
属を含む有機、無機物およびその溶液、ゾルなどいずれ
でもよい。
The mixed powder is not particularly limited as long as it can form an oxide in the firing step, and examples thereof include metal powders, carbonates, nitrates, acetates of the metal, and organic materials containing the metal. Inorganic substances and their solutions, sols, etc. may be used.

【0022】この混合粉末を所望の成形手段、例えば、
金型プレス,冷間静水圧プレス,押出し成形等により任
意の形状に成形する。
The mixed powder is mixed with a desired molding means, for example,
Mold into any shape by die pressing, cold isostatic pressing, extrusion molding, etc.

【0023】次に、この成形体を公知の焼結法、例えば
ホットプレス法、常圧焼成法、ガス圧焼成法、マイクロ
波加熱焼成法、更に、これらの焼成後に熱間静水圧処理
(HIP)処理、およびガラスシール後HIP処理し
て、対理論密度比95%以上の緻密な焼結体を得る。
Next, this molded body is subjected to a known sintering method such as hot pressing method, normal pressure firing method, gas pressure firing method, microwave heating firing method, and hot isostatic treatment (HIP) after these firing. ) Treatment and HIP treatment after glass sealing to obtain a dense sintered body having a theoretical density ratio of 95% or more.

【0024】本発明によれば、この時の焼成は、焼成雰
囲気が前記金属酸化物のアルミナまたはムライトへの固
溶限界量が多くなる雰囲気であることが必要である。こ
の時の焼成温度は、1300℃〜1800℃、特に14
00℃〜1750℃であることが固溶性および母体結晶
の緻密性と粒成長の抑制から好ましい。
According to the present invention, the calcination at this time needs to be a calcination atmosphere in which the solid solution limit amount of the metal oxide in alumina or mullite is large. The firing temperature at this time is 1300 ° C to 1800 ° C, especially 14 ° C.
It is preferable that the temperature is 00 ° C to 1750 ° C from the viewpoint of solid solubility, denseness of host crystal, and suppression of grain growth.

【0025】その後、上記のようにして得た金属酸化物
を固溶させた焼結体を、金属酸化物の前記固溶限界量が
少なくなる雰囲気中で熱処理する。この時の処理温度は
1100〜1700℃が適当である。かかる条件で処理
することにより、過飽和の固溶元素をアルミナとムライ
ト結晶粒内に、酸化物あるいは複合酸化物の形で均一に
析出させることができる。
Thereafter, the sintered body obtained by solid-solving the metal oxide obtained as described above is heat-treated in an atmosphere in which the solid solution limit amount of the metal oxide is reduced. The appropriate treatment temperature at this time is 1100 to 1700 ° C. By treating under such conditions, the supersaturated solid solution element can be uniformly precipitated in the alumina and mullite crystal grains in the form of an oxide or a complex oxide.

【0026】上記の固溶−析出工程は、例えば、金属酸
化物としてTiO2 を用いる場合には、固溶工程をH2
などの還元雰囲気、析出工程を大気中の酸化性雰囲気で
実施される。Ti/Mg(Ti:Mg=1)、Feの酸
化物を用いた場合には、固溶工程を大気などの酸化性雰
囲気、析出工程を還元雰囲気で実施すればよい。
The above solid solution-precipitation step is carried out by using the solid solution step as H 2 when TiO 2 is used as the metal oxide.
And the like, and the deposition process is performed in an oxidizing atmosphere in the air. When an oxide of Ti / Mg (Ti: Mg = 1) or Fe is used, the solid solution step may be performed in an oxidizing atmosphere such as the air, and the precipitation step may be performed in a reducing atmosphere.

【0027】[0027]

【実施例】原料粉末としてアルミナ(Al2 3 )に対
して、ムライト(Al2 3 /SiO2 =72/28重
量比)、酸化チタン(TiO2 )、酸化マグネシウム
(MgO)、酸化鉄(Fe2 3 )を表1に示す組成比
で添加混合し、1t/cm2の圧力で金型成形した後、
さらに3t/cm2 の圧力で静水圧処理を加えた。そし
て、得られた成形体を表1に示す条件で固溶(焼成)、
析出処理を行った。
[Examples] Mullite (Al 2 O 3 / SiO 2 = 72/28 weight ratio), titanium oxide (TiO 2 ), magnesium oxide (MgO), iron oxide with respect to alumina (Al 2 O 3 ) as raw material powder (Fe 2 O 3 ) was added and mixed in the composition ratio shown in Table 1, and after molding with a pressure of 1 t / cm 2 ,
Further, hydrostatic pressure treatment was applied at a pressure of 3 t / cm 2 . Then, the obtained molded body is solid-solved (calcined) under the conditions shown in Table 1,
A precipitation treatment was performed.

【0028】得られた焼結体を鏡面に加工して、走査型
電子顕微鏡により組織を観察し、X線回折により結晶相
を同定し、α−アルミナ結晶相とムライト結晶相以外の
析出相を表2に示した。また電子顕微鏡写真により観察
しアルミナ結晶相やムライト結晶相内に析出した金属酸
化物の平均粒径を表2に示した。本実施例で得られた焼
結体の析出固溶処理後の組織を図1に示した。さらに機
械的特性として、JIS−R1601にて指定されてい
る形状まで研磨し抗折試料を作製した。この試料につい
てJIS−R1601に基づく室温および1300℃で
の4点曲げ抗折強度試験を実施した。また、ビッカース
圧痕法により破壊靭性(K1c)を測定した。結果は表2
に示した。
The obtained sintered body was processed into a mirror surface, the structure was observed by a scanning electron microscope, the crystal phase was identified by X-ray diffraction, and the precipitated phases other than the α-alumina crystal phase and the mullite crystal phase were identified. The results are shown in Table 2. Table 2 shows the average particle sizes of the metal oxides precipitated in the alumina crystal phase and the mullite crystal phase, which were observed by an electron micrograph. The structure of the sintered body obtained in this example after the precipitation solid solution treatment is shown in FIG. Further, as a mechanical property, a bending sample was prepared by polishing to a shape specified in JIS-R1601. This sample was subjected to a 4-point bending transverse strength test at room temperature and 1300 ° C. based on JIS-R1601. Further, the fracture toughness (K1c) was measured by the Vickers indentation method. The results are shown in Table 2.
It was shown to.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1、2の結果から明らかなように、アル
ミナ単味の試料No.1の焼結体に対して、ムライトと複
合化させた試料No.2は,強度が向上している。さら
に,本発明に基づき得られたアルミナ結晶相とムライト
結晶相の粒内に金属酸化物あるいは複合金属酸化物が微
細分散した試料No.5〜9の焼結体は、試料No.1およ
び試料No.2に比較していずれも優れており、強度が室
温で540MPa以上、1300℃で350MPa以
上,靱性3.6MPam0.5 以上が達成された。
As is clear from the results shown in Tables 1 and 2, the strength of the sample No. 2 compounded with mullite is improved as compared with the sintered body of the sample No. 1 of alumina alone. Furthermore, the sintered bodies of Samples No. 5 to 9 in which the metal oxide or the composite metal oxide is finely dispersed in the grains of the alumina crystal phase and the mullite crystal phase obtained according to the present invention are the sample No. 1 and the sample No. All of them are superior to No. 2, and strengths of 540 MPa or more at room temperature and 350 MPa or more at 1300 ° C. and toughness of 3.6 MPam 0.5 or more were achieved.

【0032】なお,金属酸化物を添加した組成系であっ
ても固溶−析出工程を経ずに金属酸化物が主結晶相内に
析出していない焼結体試料No.3、4はいずれも強度、
靱性ともに低いものであり、試料No.3では、粒内では
なく粒界に表2の複合酸化物が析出した。
It is to be noted that even in the composition system in which the metal oxide was added, the sintered body samples No. 3 and 4 in which the metal oxide was not precipitated in the main crystal phase without undergoing the solid solution-precipitation step Also strength,
The toughness is low, and in sample No. 3, the complex oxides in Table 2 were precipitated not at the grain boundaries but at the grain boundaries.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明によれば、ア
ルミナ結晶相とムライト結晶相の粒内に、微細な金属酸
化物を分散させることにより、結晶自体の強度と靱性を
高め、クラックの粒内経由の進展に対する抵抗および高
温での塑性変形に対する抵抗も大きく向上でき、その結
果、室温から1300℃の高温まで高い強度と、高靱性
を有する焼結体を得ることができる。
As described in detail above, according to the present invention, by dispersing a fine metal oxide in the grains of the alumina crystal phase and the mullite crystal phase, the strength and toughness of the crystal itself is increased and cracks are generated. It is possible to greatly improve the resistance against the propagation of the particles through the grains and the resistance to the plastic deformation at high temperature, and as a result, it is possible to obtain a sintered body having high strength and high toughness from room temperature to a high temperature of 1300 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミナ−ムライト複合焼結体の組織
を説明するための図である。
FIG. 1 is a diagram for explaining the structure of an alumina-mullite composite sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミナ結晶相 2 ムライト結晶相 3 金属酸化物結晶粒子 1 Alumina Crystal Phase 2 Mullite Crystal Phase 3 Metal Oxide Crystal Particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アルミナ結晶相と、ムライト結晶相とを主
結晶相とする複合焼結体であって、前記アルミナ結晶相
およびムライト結晶相の粒内に、それぞれの結晶相とは
異なる金属酸化物結晶粒子が分散してなることを特徴と
するアルミナ−ムライト複合焼結体。
1. A composite sintered body comprising an alumina crystal phase and a mullite crystal phase as main crystal phases, wherein metal oxides different from the respective crystal phases are present in the grains of the alumina crystal phase and the mullite crystal phase. An alumina-mullite composite sintered body, characterized in that crystal particles are dispersed.
【請求項2】前記金属酸化物結晶粒子が500nm以下
の粒子径を有する請求項1記載のアルミナ−ムライト複
合焼結体。
2. The alumina-mullite composite sintered body according to claim 1, wherein the metal oxide crystal particles have a particle diameter of 500 nm or less.
【請求項3】前記金属酸化物結晶粒子がチタン、マグネ
シウム、鉄のうちの少なくとも1種を含む請求項1また
は請求項2記載のアルミナ−ムライト複合焼結体。
3. The alumina-mullite composite sintered body according to claim 1 or 2, wherein the metal oxide crystal particles contain at least one of titanium, magnesium and iron.
【請求項4】アルミナと、ムライトあるいは酸化珪素
と、雰囲気の違いによりアルミナやムライトへの固溶限
界量が異なる金属酸化物とからなる混合物を成形する工
程と、 得られた成形体を前記金属酸化物の前記固溶限界量が多
くなる雰囲気中で焼成して、アルミナ結晶とムライト結
晶とを主結晶相として含み、前記金属酸化物が前記アル
ミナ結晶および前記ムライト結晶内に固溶した焼結体を
作製する工程と、 該焼結体を前記金属酸化物の前記固溶限界量が少なくな
る雰囲気中で熱処理して、前記アルミナ結晶および前記
ムライト結晶粒内に、前記金属酸化物の結晶粒子、ある
いは前記金属酸化物とアルミナまたは酸化珪素とが複合
化した金属酸化物の結晶粒子を析出させる工程とからな
ることを特徴とするアルミナ−ムライト複合焼結体の製
造方法。
4. A step of molding a mixture of alumina, mullite or silicon oxide, and a metal oxide having a different solid solution limit amount in alumina or mullite depending on a difference in atmosphere, and the obtained molded body containing the metal. Sintered by firing in an atmosphere in which the solid solution limit amount of the oxide is increased to include alumina crystals and mullite crystals as a main crystal phase, and the metal oxide is solid-solved in the alumina crystals and the mullite crystals. A step of producing a body, and subjecting the sintered body to a heat treatment in an atmosphere in which the solid solution limit amount of the metal oxide is reduced, so that crystal grains of the metal oxide are contained in the alumina crystals and the mullite crystal grains. Or a step of precipitating crystal particles of a metal oxide in which the metal oxide and alumina or silicon oxide are compounded. The method of production.
【請求項5】前記金属酸化物の結晶粒子が、チタン、マ
グネシウム、鉄のうちの少なくとも1種を含む請求項4
記載のアルミナ−ムライト複合焼結体の製造方法。
5. The crystal particles of the metal oxide contain at least one of titanium, magnesium and iron.
A method for producing the described alumina-mullite composite sintered body.
JP7253438A 1995-09-29 1995-09-29 Alumina-mullite combined sintered compact and its production Pending JPH0987009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253438A JPH0987009A (en) 1995-09-29 1995-09-29 Alumina-mullite combined sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253438A JPH0987009A (en) 1995-09-29 1995-09-29 Alumina-mullite combined sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0987009A true JPH0987009A (en) 1997-03-31

Family

ID=17251409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253438A Pending JPH0987009A (en) 1995-09-29 1995-09-29 Alumina-mullite combined sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0987009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213665A (en) * 1999-09-06 2001-08-07 Nippon Shokubai Co Ltd Ceramics, catalyst carrier, their manufacturing method, catalyst for manufacturing ethylene oxide using carrier, its manufacturing method and manufacturing method of ethylene oxide
JP2007522070A (en) * 2004-02-10 2007-08-09 マゴット アンテルナショナル エス.アー. Crushing ball and manufacturing method thereof
JP2008044814A (en) * 2006-08-15 2008-02-28 Ngk Insulators Ltd Ceramic composite material and bottom board for firing
KR100977448B1 (en) * 2010-05-12 2010-08-24 (주) 화인테크 A base plate composition for side dam in twin-roll strip caster
EP3712120A1 (en) * 2016-12-08 2020-09-23 Siemens Aktiengesellschaft Erosion-resistant ceramic material, powder, slurry and component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213665A (en) * 1999-09-06 2001-08-07 Nippon Shokubai Co Ltd Ceramics, catalyst carrier, their manufacturing method, catalyst for manufacturing ethylene oxide using carrier, its manufacturing method and manufacturing method of ethylene oxide
JP2007522070A (en) * 2004-02-10 2007-08-09 マゴット アンテルナショナル エス.アー. Crushing ball and manufacturing method thereof
JP2008044814A (en) * 2006-08-15 2008-02-28 Ngk Insulators Ltd Ceramic composite material and bottom board for firing
KR100977448B1 (en) * 2010-05-12 2010-08-24 (주) 화인테크 A base plate composition for side dam in twin-roll strip caster
EP3712120A1 (en) * 2016-12-08 2020-09-23 Siemens Aktiengesellschaft Erosion-resistant ceramic material, powder, slurry and component
US11028018B2 (en) 2016-12-08 2021-06-08 Siemens Energy Global GmbH & Co. KG Erosion-resistant ceramic material, powder, slip and component

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JP3777031B2 (en) High wear-resistant alumina sintered body and manufacturing method thereof
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP3311915B2 (en) Alumina sintered body
JP3121996B2 (en) Alumina sintered body
JPH08208317A (en) Alumina sintered body and production thereof
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH10212157A (en) Aluminous sintered compact and its production
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof
JPH01183460A (en) Production of sintered ceramic material
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production
JPH04104945A (en) Mullite-sic composite sinter
JP3078462B2 (en) Alumina sintered body and method for producing the same
JPH10158055A (en) Aluminous sintered compact
JP2564153B2 (en) Method for producing alumina-silica based sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body