JP2694368B2 - Method for producing silicon nitride based sintered body - Google Patents

Method for producing silicon nitride based sintered body

Info

Publication number
JP2694368B2
JP2694368B2 JP1308617A JP30861789A JP2694368B2 JP 2694368 B2 JP2694368 B2 JP 2694368B2 JP 1308617 A JP1308617 A JP 1308617A JP 30861789 A JP30861789 A JP 30861789A JP 2694368 B2 JP2694368 B2 JP 2694368B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
rare earth
strength
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1308617A
Other languages
Japanese (ja)
Other versions
JPH03170373A (en
Inventor
正喜 寺園
祥二 高坂
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308617A priority Critical patent/JP2694368B2/en
Priority to US07/574,472 priority patent/US5168126A/en
Publication of JPH03170373A publication Critical patent/JPH03170373A/en
Application granted granted Critical
Publication of JP2694368B2 publication Critical patent/JP2694368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービンやターボロータ等の熱機関に
好適な高温における抗折強度、靱性に優れた窒化珪素質
焼結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body which is suitable for a heat engine such as a gas turbine or a turbo rotor and which has excellent bending strength and toughness at high temperatures. .

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックス、特に熱機関用材料として注目されてい
る。
(Prior Art) Conventionally, silicon nitride-based sintered bodies have attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermochemical stability at high temperatures.

一般にこれら窒化珪素質焼結体を製造するには窒化珪
素自体が難焼結性であることから、希土類元素酸化物等
の各種の焼結助剤を添加し、ホットプレス法、常圧焼成
法、ガス圧力焼成法等が採用されている。また、最近で
は高密度、高強度の焼結体が得られるとして、所望の組
成からなる窒化珪素質成形体の表面にガラス等からなる
不透過性シールを形成し、高圧力下で焼成する方法(以
下、シールHIPという)が研究されている。
Generally, in order to manufacture these silicon nitride sintered bodies, since silicon nitride itself is difficult to sinter, various sintering aids such as rare earth element oxides are added, and hot pressing method and atmospheric pressure firing method are added. The gas pressure firing method is adopted. In addition, recently, a method of forming an impermeable seal made of glass or the like on the surface of a silicon nitride molded body having a desired composition and firing it under high pressure, assuming that a sintered body having high density and high strength can be obtained (Hereinafter referred to as "Seal HIP") is being studied.

一方、組成の点からは、前述したようにY2O3等の希土
類元素酸化物の他、Al2O3、MgO等の酸化物が焼結助剤と
して最も一般的に使用されているが、焼結体の高温特性
を考慮した場合、Al2O3やMgOなど含まれると焼結体の粒
界に低融点物質が生成されるために高温強度や高温耐酸
化性が低下するという見地から上記の酸化物を実質的に
含まないSi3N4‐RE2O3(希土類酸化物)−SiO2の単純三
元系からなる組成が検討されている。
On the other hand, from the viewpoint of composition, as described above, in addition to rare earth element oxides such as Y 2 O 3, oxides such as Al 2 O 3 and MgO are most commonly used as sintering aids. In consideration of the high temperature characteristics of the sintered body, when Al 2 O 3 and MgO are included, a low melting point substance is generated at the grain boundary of the sintered body, and the high temperature strength and high temperature oxidation resistance are reduced. Therefore, a composition consisting of a simple ternary system of Si 3 N 4 -RE 2 O 3 (rare earth oxide) -SiO 2 which is substantially free of the above oxides has been investigated.

また、焼結体の組織の点からは、高温特性を決定する
要因として焼結体中の粒界相が注目されており、粒界相
自体の強度を向上させることを目的として粒界相を実質
上結晶化させる試みがなされている。そこで最近に至っ
ては、上記の単純三元系の組成に対し、焼成条件の検討
あるいは焼結体の熱処理等によって粒界にSi3N4‐RE2O3
(希土類酸化物)−SiO2からなる各種の結晶相、例えば
メリライト、アパタイト、YAM、ワラストナイト等を析
出させることも行われている。
Further, from the viewpoint of the structure of the sintered body, the grain boundary phase in the sintered body has been attracting attention as a factor that determines the high temperature characteristics, and the grain boundary phase is changed to improve the strength of the grain boundary phase itself. Attempts have been made to substantially crystallize. Therefore, recently, for the above-mentioned simple ternary composition, Si 3 N 4 -RE 2 O 3 was added to the grain boundaries by studying the firing conditions or heat treatment of the sintered body.
Various crystal phases composed of (rare earth oxide) -SiO 2 such as melilite, apatite, YAM, wollastonite, etc. are also deposited.

(発明が解決しようとする問題点) しかし、粒界相の結晶化は高温強度に対しある程度の
効果を有するものの、粒界に特定の結晶相のみを安定し
て析出させることは非常に困難であり、また、場合によ
っては粒界相に結晶相以外に低融点のガラス相が生成す
ることによって特性を劣化させる場合もある。
(Problems to be Solved by the Invention) However, although crystallization of the grain boundary phase has some effect on the high temperature strength, it is very difficult to stably precipitate only a specific crystal phase at the grain boundary. In some cases, the characteristics may be deteriorated by the formation of a glass phase having a low melting point in the grain boundary phase in addition to the crystal phase.

そこで、本発明者等は、上記の三元系の組成において
SiO2/RE2O3モル比が2を越え、25以下のSiO2を過剰に
含む組成をシールHIP法によって焼成することによって
微細粒状組織からなり、粒界相が珪素、希土類元素、酸
素、窒素から構成される室温強度、高温強度並びに耐酸
化性に優れた焼結体が得られることを提案した。
Therefore, the present inventors have considered that the above ternary composition
The composition having a SiO 2 / RE 2 O 3 molar ratio of more than 2 and an excess of 25 or less of SiO 2 is fired by the seal HIP method to have a fine granular structure, and the grain boundary phase is composed of silicon, a rare earth element, oxygen, It was proposed that a sintered body composed of nitrogen, which has excellent room temperature strength, high temperature strength, and oxidation resistance, can be obtained.

上記の焼結体は、従来品に比較して抗折強度、耐酸化
性については優れた特性を有するが、微細粒状組織であ
ることに起因して、外部からのクラックの進展に対し、
充分な効力を持たなくなり、所謂焼結体自体の靱性が劣
化しやすいという欠点を有することがわかった。
The above-mentioned sintered body has excellent properties in bending strength and oxidation resistance as compared with conventional products, but due to the fine granular structure, with respect to the development of cracks from the outside,
It has been found that there is a drawback that the toughness of the so-called sintered body itself is apt to be deteriorated because it does not have sufficient effect.

(発明の目的) 本発明は、上記の優れた強度並び耐酸化性を維持しつ
つ、優れた靱性をも備えた焼結体の製造方法を提供する
ことを目的とするものである。
(Object of the Invention) It is an object of the present invention to provide a method for producing a sintered body having excellent toughness while maintaining the above-mentioned excellent strength and oxidation resistance.

(問題点を解決するための手段) 本発明者等は、上記の問題点に対して検討を加えた結
果、α型窒化珪素を多量に含む特定比率の窒化珪素質高
緻密体に対し、高温で熱処理することによって、窒化珪
素結晶粒を針状化することによって繊維状組織が形成さ
れ、これにより焼結体の室温抗折強度並びに高温抗折強
度を維持しつつ高い靱性(K1c)を付与することができ
ることを知見した。
(Means for Solving Problems) As a result of studying the above problems, the inventors of the present invention have found that a high-density silicon nitride dense body with a specific ratio containing a large amount of α-type silicon nitride has a high temperature. The silicon nitride crystal grains are needle-shaped to form a fibrous structure by the heat treatment at, which allows the sintered body to have high toughness (K 1c ) while maintaining room temperature bending strength and high temperature bending strength. It was found that it can be given.

即ち、本発明は、窒化珪素70乃至99モル%と、希土類
元素酸化物0.1〜5モル%と、過剰酸素(SiO2換算量)2
5モル%以下からなり、(過剰酸素/希土類元素)モル
比が2より大きく、25以下の範囲にあり、窒化珪素のα
化率30%以上、対理論密度比95%以上の窒化珪素質焼結
体を1500〜1800℃の非酸化性雰囲気で処理することを特
徴とする窒化珪素質焼結体の製造方法が提供される。
That is, according to the present invention, 70 to 99 mol% of silicon nitride, 0.1 to 5 mol% of rare earth element oxide, and excess oxygen (SiO 2 conversion amount) 2
5 mol% or less, the (excess oxygen / rare earth element) molar ratio is greater than 2 and within the range of 25 or less.
Provided is a method for producing a silicon nitride sintered body, which comprises treating a silicon nitride sintered body having a conversion rate of 30% or more and a theoretical density ratio of 95% or more in a non-oxidizing atmosphere at 1500 to 1800 ° C. It

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明によれば、組成が窒化珪素が70〜99モル%、特
に80〜93.5モル%と、希土類元素酸化物0.1〜5モル
%、特に0.5〜4モル%、過剰酸素(SiO2換算量)で25
モル%以下、特に6〜20モル%の割合からなるとともに
(過剰酸素/希土類元素酸化物)モル比が2より大きく
25以下、特に3〜20の割合からなり、且つ窒化珪素のα
化率が30%以上、対理論密度比が95%以上の焼結体を準
備する。なお、過剰酸素とは焼結体の系全体に含まれる
全酸素量から希土類元素酸化物として化学量論的量で混
入した酸素を除いた酸素量で、具体的には窒化珪素原料
中の不純物酸素、あるいはSiO2として添加された酸素か
ら構成されるもので、本発明ではいずれもSiO2換算量を
示す。
According to the present invention, the composition is 70 to 99 mol% of silicon nitride, especially 80 to 93.5 mol%, and 0.1 to 5 mol% of rare earth element oxides, especially 0.5 to 4 mol%, and excess oxygen (SiO 2 conversion amount). At 25
Molar ratio is less than or equal to 6% to 20%, and the molar ratio (excess oxygen / rare earth oxide) is greater than 2.
25 or less, especially 3 to 20 and the α of silicon nitride
Prepare a sintered body with a conversion rate of 30% or more and a theoretical density ratio of 95% or more. The excess oxygen is the total oxygen amount contained in the entire system of the sintered body, which is the oxygen amount excluding oxygen mixed in as a rare earth element oxide in a stoichiometric amount, specifically, impurities in the silicon nitride raw material. It is composed of oxygen or oxygen added as SiO 2 , and in the present invention, all show the equivalent amount of SiO 2 .

本発明において、高いα化率の窒化珪素質焼結体を製
造する方法としては、本発明者等が先に特願昭63-33241
1号にて提案した方法に従い、ガラスシールHIP法を採用
することができる。具体的には、原料粉末として窒化珪
素粉末、希土類元素酸化物粉末、さらに場合によりSiO2
粉末を用いる。窒化珪素粉末は焼結性を促進するためBE
T比表面積が3〜20m2/g、α化率95%以上であることが
望ましく、また酸素含有量は一般に市販品で0.8〜1.4重
量%程度含有されるが、SiO2の添加によって任意に調整
できる。
In the present invention, as a method for producing a silicon nitride-based sintered body having a high α-conversion rate, the present inventors have previously proposed Japanese Patent Application No. 63-33241.
According to the method proposed in No. 1, the glass seal HIP method can be adopted. Specifically, as raw material powder, silicon nitride powder, rare earth element oxide powder, and optionally SiO 2
Use powder. Silicon nitride powder is used for BE because it promotes sinterability.
It is desirable that the T specific surface area is 3 to 20 m 2 / g and the α-conversion rate is 95% or more, and the oxygen content is generally 0.8 to 1.4 wt% as a commercial product, but it can be arbitrarily added by adding SiO 2. Can be adjusted.

これらの粉末を用いて前述した組成に秤量混合し、バ
インダーを添加して造粒後、成形する。成形は周知の方
法を採用でき、具体的にはプレス成形、押出し成形、鋳
込み成形、射出成形等が採用できる。
These powders are weighed and mixed with the above-mentioned composition, a binder is added and granulated, and then molded. A well-known method can be adopted for the molding, and specifically, press molding, extrusion molding, casting molding, injection molding and the like can be adopted.

このようにして得られた成形体を脱バインダーした
後、焼成工程においてシール材であるガラス等との反応
を防止することを目的としてBN粉末等のガラスと濡れ性
の悪い粉末を成形体表面に塗布する。成形体表面へのBN
等のガラスとの濡れ性の悪い粉末の塗布は、BN等の粉末
をスラリー化して成形体に塗布するか、またはスラリー
をスプレー塗布することもできる。なお、成形体表面へ
の塗布量はその厚みが1〜10mm程度が望ましい。
After debinding the molded body obtained in this manner, a glass such as BN powder and a powder having poor wettability are formed on the surface of the molded body in order to prevent the reaction with the glass or the like as the sealing material in the firing step. Apply. BN on surface of compact
For the coating of powder having poor wettability with glass, etc., powder of BN or the like may be made into a slurry and applied to the molded body, or the slurry may be spray-applied. The coating amount on the surface of the molded body is preferably about 1 to 10 mm.

次に、BNが塗布された成形体に対し、焼成時にシール
を形成するガラス粉末をその表面に塗布するかあるいは
上記成形体をガラス製カプセル内に封入する。また他の
方法として、前記成形体を内部にガラス粉末が充填され
た耐熱容器内に埋めることもできる。その後、成形体を
HIP法により高温高圧下で焼成する。
Next, a glass powder that forms a seal at the time of firing is applied to the surface of the molded body to which BN has been applied, or the molded body is encapsulated in a glass capsule. As another method, the molded body can be buried in a heat-resistant container filled with glass powder. After that, the molded body
Baking at high temperature and high pressure by HIP method.

焼成は、まず成形体表面に存在するガラスの軟化点以
上、焼成温度にまで昇温すると同時に該温度における窒
化珪素の分解平衡圧と同等もしくはそれより0.01〜0.2M
Pa程度高い分圧窒素ガスを導入し、ガラスを軟化させ成
形体表面にガラスによるガス不透過性膜を形成する。ガ
ス不透過性膜が成形体表面に完全に形成された後、にお
いて炉内圧力を充分に緻密化しうる条件下、例えば、50
MPa以上の圧力まで上昇させる。この時の圧力媒体とし
ては、窒素、アルゴン等の不活性ガスが使用される。こ
の段階で希土類酸化物、SiO2及び窒化珪素により液相が
生成され、焼成が進行しその緻密化はほぼ終了する。そ
の後温度、圧力を共に下げ焼成を終了する。なお、この
焼成時の焼成温度は1450〜1800℃、特に1500〜1750℃に
設定される。
Firing is first at least the softening point of the glass present on the surface of the molded body, and at the same time the temperature is raised to the firing temperature, which is equal to or higher than the decomposition equilibrium pressure of silicon nitride at that temperature 0.01 to 0.2 M
A partial pressure nitrogen gas having a high Pa level is introduced to soften the glass and form a gas impermeable film of glass on the surface of the molded body. After the gas impermeable film is completely formed on the surface of the molded body, under the condition that the pressure in the furnace can be sufficiently densified, for example, 50
Increase the pressure to above MPa. An inert gas such as nitrogen or argon is used as the pressure medium at this time. At this stage, a liquid phase is generated by the rare earth oxide, SiO 2 and silicon nitride, and firing progresses, and the densification of the liquid phase is almost completed. Thereafter, the temperature and the pressure are both reduced to end the firing. The firing temperature during this firing is set to 1450 to 1800 ° C, particularly 1500 to 1750 ° C.

このような方法によれば、その焼成温度が低いことに
起因してα−β転移が生じ難いため多量のα型窒化珪素
を残存させることができ、また焼結体自体の高密度化が
達成できる。
According to such a method, since the α-β transition is unlikely to occur due to the low firing temperature, a large amount of α-type silicon nitride can be left, and the sintered body itself can be densified. it can.

本発明における特徴は、上記特定の性質からなる窒化
珪素焼結体を1500〜1800℃、特に1550〜1750℃の非酸化
性雰囲気、具体的には窒素、アルゴン等の雰囲気で熱処
理する点にある。
A feature of the present invention is that the silicon nitride sintered body having the above-mentioned specific properties is heat-treated in a non-oxidizing atmosphere of 1500 to 1800 ° C., particularly 1550 to 1750 ° C., specifically, an atmosphere of nitrogen, argon or the like. .

このような熱処理によって、焼結体中に残存したα型
の窒化珪素がα−β転移すると同時に窒化珪素結晶の針
状化が進行し、焼結体中に窒化珪素の繊維状組織が形成
される。また、処理時における針状化が高緻密質の中で
進行することから窒化珪素粒子間に圧縮応力が発生し、
これによって処理前の優れた強度、耐酸化性を維持しつ
つ焼結体の靱性を大幅に向上させることができる。
By such heat treatment, the α-type silicon nitride remaining in the sintered body undergoes α-β transition, and at the same time, the acicularization of the silicon nitride crystal proceeds, and a fibrous structure of silicon nitride is formed in the sintered body. It In addition, since acicularization during processing progresses in a highly dense material, compressive stress occurs between silicon nitride particles,
This makes it possible to significantly improve the toughness of the sintered body while maintaining the excellent strength and oxidation resistance before the treatment.

このようにして得られる焼結体は、針状化したβ型窒
化珪素結晶相、具体的には平均アスペクト比が3以上の
結晶相と、場合により少量のα型窒化珪素結晶相、該結
晶相の粒界に珪素、希土類元素、酸素並びに窒素が存在
するが、上記のような製法によれば、通常高融点ガラス
相の他にSi2N2Oで表わさせるシリコンオキシナイトライ
ド結晶相あるいはRE2O3・2SiO2で表されるダイシリケー
ト結晶相が生成する場合もある。このような粒界組織は
従来から知られた各種結晶相に比較して高温強度、耐酸
化性において優れた特性を有するとともに安定して製造
することができるというメリットを有する。
The thus obtained sintered body is a needle-shaped β-type silicon nitride crystal phase, specifically, a crystal phase having an average aspect ratio of 3 or more, and optionally a small amount of α-type silicon nitride crystal phase, Although silicon, rare earth elements, oxygen and nitrogen are present at the grain boundaries of the phase, according to the above-mentioned manufacturing method, the silicon oxynitride crystal phase represented by Si 2 N 2 O is usually used in addition to the high melting point glass phase. Alternatively, a disilicate crystal phase represented by RE 2 O 3 .2SiO 2 may be formed. Such a grain boundary structure has advantages in that it has excellent properties in high-temperature strength and oxidation resistance as compared with conventionally known various crystal phases and can be manufactured stably.

なお、本発明において、処理に賦される焼結体の過剰
酸素と希土類元素酸化物とのモル比を上記の範囲に限定
した理由は、いずれも最終焼結体の特性に関わり、この
モル比が2以下では高温における耐酸化性が劣化し易
く、逆に25を越えると低融点のガラスが生成されやすく
なり、高温特性が劣化する。また窒化珪素、希土類酸化
物、過剰酸素のいずれかが前述の範囲を逸脱しても室温
強度ならびに高温強度が劣化する。さらに、窒化珪素の
α化率を上記の範囲に限定したのは、α化率が30%を下
回ると熱処理時のα−β転移に伴う窒化珪素の針状化が
不十分となり焼結体の高靱性化が達成されず、対理論密
度比が95%より低いと最終焼結体の緻密化が不十分とな
り、室温、高温における強度が劣化するためである。
In the present invention, the reason for limiting the molar ratio of excess oxygen and rare earth element oxide of the sintered body to be treated to the above range is all related to the characteristics of the final sintered body. If it is 2 or less, the oxidation resistance at high temperature tends to deteriorate, and conversely, if it exceeds 25, a glass having a low melting point is likely to be produced, and the high temperature characteristics deteriorate. Further, even if any of silicon nitride, rare earth oxide, and excess oxygen deviates from the above range, room temperature strength and high temperature strength deteriorate. Further, the α-conversion rate of silicon nitride is limited to the above range, because when the α-conversion rate is less than 30%, the acicularization of silicon nitride due to α-β transition during heat treatment becomes insufficient, and If the toughness is not achieved and the theoretical density ratio is lower than 95%, the final sintered body is insufficiently densified and the strength at room temperature and high temperature is deteriorated.

なお、本発明において用いられる希土類元素酸化物と
しては、Y2O3が最も一般的であるが、Yb2O3、Er2O3、Ho
2O3、Dy2O3等の重希土類元素酸化物が特性の安定性の点
から望ましい。
As the rare earth element oxide used in the present invention, Y 2 O 3 is most common, but Yb 2 O 3 , Er 2 O 3 , Ho
Heavy rare earth element oxides such as 2 O 3 and Dy 2 O 3 are preferable from the viewpoint of stability of characteristics.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 原料粉末として、窒化珪素粉末(BET比表面積5m2/
g、α化率99%、不純物酸素量1.0重量%)と、各種希土
類酸化物あるいはSiO2粉末を用いて、第1表に示す組成
に成るように調合し混合後、1t/cm2でプレス成形後、14
00℃で仮焼した。
(Example) Silicon nitride powder (BET specific surface area 5 m 2 /
g, α conversion rate 99%, impurity oxygen amount 1.0% by weight) and various rare earth oxides or SiO 2 powders are mixed and mixed to have the composition shown in Table 1, and then pressed at 1 t / cm 2 . 14 after molding
It was calcined at 00 ° C.

得られた成形体に対し粒径1〜5μmのBN粉末ペース
トを1〜10mmの厚みで塗布後、SiO2を主成分とするガラ
スを1〜10mmの厚みで塗布した。
A BN powder paste having a particle size of 1 to 5 μm was applied to the obtained molded body in a thickness of 1 to 10 mm, and then glass containing SiO 2 as a main component was applied in a thickness of 1 to 10 mm.

このように処理された成形体を熱間静水圧焼成炉に配
置して各種の条件で焼成を行い、第1表に示す特性の異
なる16種の焼結体を作成した。
The compact thus treated was placed in a hot isostatic firing furnace and fired under various conditions to prepare 16 kinds of sintered bodies having different characteristics shown in Table 1.

次に、これらの焼結体を用いて第2表に示す条件で熱
処理を行った。
Next, using these sintered bodies, heat treatment was performed under the conditions shown in Table 2.

熱処理前後の各焼結体に対し、JISR1601に従い、室
温、1400℃における4点曲げ抗折強度および1M法により
靱性値(K1c)を測定した。さらに、1400℃における酸
化重量増を調べた。また、熱処理後の焼結体の鏡面写真
から窒化珪素結晶粒の平均アスペクト比および平均粒径
(長径)を測定した。
For each sintered body before and after heat treatment, the four-point bending bending strength at room temperature and 1400 ° C. and the toughness value (K 1c ) were measured by the 1M method according to JIS R1601. Furthermore, the increase in the weight of oxidization at 1400 ° C was investigated. Further, the average aspect ratio and the average grain size (major axis) of the silicon nitride crystal grains were measured from a mirror surface photograph of the sintered body after the heat treatment.

結果は第2表に示した。 The results are shown in Table 2.

第1表ならびに第2表によれば、用いる焼結体の(過
剰酸素/希土類元素酸化物)モル比が2を下回る試料6
では室温及び1400℃の強度が低く、モル比が25を越える
試料5では高温強度の低下が見られた。また、HIP焼成
後の対理論密度比が95%を下回る焼結体に熱処理した試
料7は焼結体中のポアが熱処理後も残存し、強度が低下
した。α化率が30%以下の焼結体に熱処理をした試料8
では組織の針状化が見られず、靱性の向上効果が得られ
なかった。熱処理温度が1500℃より低い試料17では、組
織の変化が見られず、1800℃を越える温度で熱処理した
試料18では異常粒成長が観察され、強度が低いものあっ
た。
According to Table 1 and Table 2, Sample 6 in which the (excess oxygen / rare earth oxide) molar ratio of the sintered body used is less than 2
At room temperature and 1400 ° C., the strength was low, and in Sample 5, where the molar ratio exceeded 25, a decrease in high temperature strength was observed. Further, in Sample 7 in which the sintered body having the theoretical density ratio after HIP firing of less than 95% was heat-treated, the pores in the sintered body remained even after the heat treatment, and the strength decreased. Sample 8 obtained by heat-treating a sintered body with an alpha conversion rate of 30% or less
No needle-like structure was observed in the sample, and the effect of improving toughness was not obtained. In Sample 17, whose heat treatment temperature was lower than 1500 ° C, no change in the structure was observed, and in Sample 18, which was heat-treated at a temperature higher than 1800 ° C, abnormal grain growth was observed, and the strength was low.

これらの比較例に対し、本発明の試料はいずれも熱処
理により組織の針状化が顕著であり、これにより強度、
耐酸化性の劣化なく、靱性(K1c)を向上させることが
できた。因みに、室温強度が1000MPa以上、1400℃の強
度が600MPa以上、K1c6MPam1/2以上が達成された。
In contrast to these comparative examples, all of the samples of the present invention have a remarkable acicular structure by heat treatment, which results in strength,
The toughness (K 1c ) could be improved without deterioration of the oxidation resistance. By the way, room temperature strength was 1000MPa or more, 1400 ℃ strength was 600MPa or more, and K 1c 6MPam 1/2 or more was achieved.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体によれ
ば、α型窒化珪素を多量に含む特定組成の高密度窒化珪
素焼結体に対し、熱処理を施すことによって、α−β転
移に伴う窒化珪素の針状化を促進し繊維状組織からなる
焼結体を得ることができ、これにより初期の焼結体の特
性を維持したまま靱性を大幅に向上させることができ
る。
(Effects of the Invention) As described above in detail, according to the silicon nitride sintered body of the present invention, the high-density silicon nitride sintered body of a specific composition containing a large amount of α-type silicon nitride is subjected to heat treatment. , The acicularization of silicon nitride due to α-β transition can be promoted, and a sintered body having a fibrous structure can be obtained, thereby significantly improving the toughness while maintaining the characteristics of the initial sintered body. You can

よって、窒化珪素質焼結体の熱機関をはじめとする各
種産業用構造部品材料としての応用をさらに拡充するこ
とができる。
Therefore, the application of the silicon nitride sintered body as a material for various industrial structural parts such as a heat engine can be further expanded.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素70乃至99モル%と、希土類元素酸
化物0.1〜5モル%と、過剰酸素(SiO2換算量)25モル
%以下からなり、(過剰酸素/希土類元素)モル比が2
より大きく、25以下の範囲にあり、且つ窒化珪素のα化
率が30%以上、対理論密度比が95%以上の焼結体を1500
〜1800℃の非酸化性雰囲気で処理することを特徴とする
窒化珪素質焼結体の製造方法。
1. A method comprising 70 to 99 mol% of silicon nitride, 0.1 to 5 mol% of a rare earth element oxide, and 25 mol% or less of excess oxygen (equivalent to SiO 2 ), and having a (excess oxygen / rare earth element) molar ratio. Two
1500 for a larger sintered body having a ratio of α of silicon nitride of 30% or more and a theoretical density ratio of 95% or more.
A method for producing a silicon nitride sintered body, which comprises treating at 1800C in a non-oxidizing atmosphere.
JP1308617A 1989-08-25 1989-11-27 Method for producing silicon nitride based sintered body Expired - Fee Related JP2694368B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308617A JP2694368B2 (en) 1989-11-27 1989-11-27 Method for producing silicon nitride based sintered body
US07/574,472 US5168126A (en) 1989-08-25 1990-08-27 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308617A JP2694368B2 (en) 1989-11-27 1989-11-27 Method for producing silicon nitride based sintered body

Publications (2)

Publication Number Publication Date
JPH03170373A JPH03170373A (en) 1991-07-23
JP2694368B2 true JP2694368B2 (en) 1997-12-24

Family

ID=17983205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308617A Expired - Fee Related JP2694368B2 (en) 1989-08-25 1989-11-27 Method for producing silicon nitride based sintered body

Country Status (1)

Country Link
JP (1) JP2694368B2 (en)

Also Published As

Publication number Publication date
JPH03170373A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP2742619B2 (en) Silicon nitride sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2980342B2 (en) Ceramic sintered body
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPH025711B2 (en)
JPH1121175A (en) Silicon nitride sintered compact
JP2811493B2 (en) Silicon nitride sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2691294B2 (en) Silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH07115936B2 (en) Method for manufacturing silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees