JP2742619B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP2742619B2
JP2742619B2 JP1312736A JP31273689A JP2742619B2 JP 2742619 B2 JP2742619 B2 JP 2742619B2 JP 1312736 A JP1312736 A JP 1312736A JP 31273689 A JP31273689 A JP 31273689A JP 2742619 B2 JP2742619 B2 JP 2742619B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
rare earth
temperature
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1312736A
Other languages
Japanese (ja)
Other versions
JPH03174364A (en
Inventor
彰 斉藤
正喜 寺園
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1312736A priority Critical patent/JP2742619B2/en
Priority to US07/618,480 priority patent/US5114889A/en
Publication of JPH03174364A publication Critical patent/JPH03174364A/en
Application granted granted Critical
Publication of JP2742619B2 publication Critical patent/JP2742619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービンやターボロータ等の熱機関に
好適で高温における抗折強度、靱性に優れた窒化珪素質
焼結体に関する。
Description: TECHNICAL FIELD The present invention relates to a silicon nitride sintered body which is suitable for heat engines such as gas turbines and turbo rotors and has excellent bending strength and toughness at high temperatures.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックス、特に熱機関用材料として注目されてい
る。
(Prior Art) Conventionally, silicon nitride-based sintered bodies have attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermochemical stability at high temperatures.

一般に、これら窒化珪素質焼結体を製造するには窒化
珪素自体が難焼結性であることから、希土類元素酸化物
等の各種の焼結助剤を添加し、ホットプレス法、常圧焼
成法またはガス圧力焼成法等が採用されている。また、
最近では所望の組成からなる窒化珪素成形体の表面にガ
ラス等からなる不透過性シールを形成し、高圧力下で焼
成する(以下、シールHIPという)ことにより高密度、
高強度の焼結体を得る方法が提案されている。
Generally, in order to manufacture these silicon nitride sintered bodies, various sintering aids such as rare earth element oxides are added because silicon nitride itself is difficult to sinter. Or a gas pressure firing method. Also,
Recently, a high-density material has been formed by forming an opaque seal made of glass or the like on the surface of a silicon nitride molded body having a desired composition and firing it under high pressure (hereinafter referred to as seal HIP).
A method for obtaining a high-strength sintered body has been proposed.

一方、組成の点からは、前述したようにY2O3等の希土
類元素酸化物の他、Al2O3、MgO等の酸化物が焼結助剤と
して最も一般的に使用されているが、焼結体の高温特性
を考慮した場合、Al2O3やMgOなどが焼結体中に含まれる
と焼結体の粒界に低融点物質が生成されるために高温強
度や高温耐酸化性が低下するという見地から、上記の酸
化物を実質的に含まないSi3N4‐RE2O3(希土類酸化物)
−SiO2の単純三元組成系が検討されている。
On the other hand, from the viewpoint of composition, in addition to rare earth element oxides such as Y 2 O 3 as described above, oxides such as Al 2 O 3 and MgO are most commonly used as sintering aids. Considering the high-temperature characteristics of the sintered body, if Al 2 O 3 or MgO is contained in the sintered body, a low-melting substance is generated at the grain boundaries of the sintered body, resulting in high-temperature strength and high-temperature oxidation resistance. Si 3 N 4 -RE 2 O 3 (rare earth oxide) which does not substantially contain the above oxides
Simple ternary composition system of -SiO 2 has been studied.

また、焼結体の組織の点からは、強度並びに高温特性
を決定する要因として焼結体中の粒界相が注目されてお
り、粒界相自体の強度を向上させることを目的として粒
界相を実質上結晶化させる試みがなされている。そこで
最近に至っては、上記の単純三元系の組成に対し、焼結
条件の検討あるいは焼結体の熱処理等によって粒界にSi
3N4‐RE2O3(希土類酸化物)−SiO2からなる各種の結晶
相、例えばアパタイト、YAM、ワラストナイト等を析出
させることも行われている。
From the viewpoint of the structure of the sintered body, the grain boundary phase in the sintered body has been attracting attention as a factor that determines the strength and high-temperature characteristics, and the grain boundary phase is intended to improve the strength of the grain boundary phase itself. Attempts have been made to substantially crystallize the phase. Therefore, recently, for the above simple ternary composition, the sintering conditions were examined or the heat treatment of the sintered body resulted in the formation of Si at the grain boundaries.
3 N 4 -RE 2 O 3 (rare earth oxide) consisting -SiO 2 various crystal phases, for example apatite, YAM, has also been possible to precipitate wollastonite like.

しかし、粒界相の結晶化は高温強度に対しある程度の
効果を有するものの、粒界に特定の結晶相のみを安定し
て析出させることは非常に困難であり、また、場合によ
っては粒界相に結晶相以外に低融点のガラス相が生成す
ることによって特性を劣化させる場合もある。
However, although crystallization of the grain boundary phase has a certain effect on the high-temperature strength, it is very difficult to stably precipitate only a specific crystal phase at the grain boundary. In some cases, a low melting point glass phase other than the crystalline phase is formed, thus deteriorating the characteristics.

そこで、本発明者等は、上記の三元系の組成において
SiO2/RE2O3モル比が2を越え、25以下からなるSiO2
過剰に含む組成をシールHIP法によって低温焼成するこ
とによって、微細な窒化組織からなり、粒界相が珪素、
希土類元素、酸素および窒素から構成される室温強度、
高温強度並びに耐酸化性に優れた焼結体が得られること
を提案した。
Therefore, the present inventors have considered that the above ternary composition
A composition having an SiO 2 / RE 2 O 3 molar ratio of more than 2 and an excess of SiO 2 of 25 or less is fired at a low temperature by the seal HIP method to form a fine nitrided structure, and the grain boundary phase is silicon,
Room temperature strength composed of rare earth elements, oxygen and nitrogen,
It has been proposed that a sintered body excellent in high-temperature strength and oxidation resistance can be obtained.

(発明が解決しようとする問題点) しかしながら、上記の焼結体は従来品に比較して抗折
強度、耐酸化性については優れた特性を有するが、特性
のバラツキが未だ解決されず、生産性において特性の安
定した焼結体を得ることが困難であるという欠点を有し
ていた。
(Problems to be Solved by the Invention) However, although the above-mentioned sintered body has superior characteristics in bending strength and oxidation resistance as compared with conventional products, variations in characteristics have not been solved yet, and However, it has a disadvantage that it is difficult to obtain a sintered body having stable properties in terms of properties.

(発明の目的) よって、本発明は上記の優れた強度並びに耐酸化性を
有し、量産性に優れた窒化珪素質焼結体を提供すること
を目的とするものである。
(Object of the Invention) Accordingly, an object of the present invention is to provide a silicon nitride-based sintered body having the above-mentioned excellent strength and oxidation resistance and excellent in mass productivity.

(問題点を解決するための手段) 本発明者等は、先のSi3N4‐RE2O3(希土類酸化物)−
SiO2系の焼結体において、そのバラツキの原因について
低強度を示した試験片の組織やその破壊源等を観察した
ところ、その殆どの組織内に異常粒成長が存在すること
がわかった。さらに、この異常粒成長部分について組織
分析したところ、鉄(Fe)が存在し、これが焼結助剤と
の反応によって低融点物質が生成され、これによって窒
化珪素が異常粒成長していることを突き止めた。
(Means for Solving the Problems) The present inventors have studied the above-mentioned Si 3 N 4 -RE 2 O 3 (rare earth oxide)-
Observation of the structure of the test piece which showed low strength as to the cause of the variation in the SiO 2 -based sintered body and the source of the fracture showed that abnormal grain growth was present in almost all of the structure. Further, when the structure of the abnormal grain growth portion was analyzed, it was found that iron (Fe) was present, and a low-melting substance was generated by the reaction with the sintering aid, which caused abnormal growth of silicon nitride. I found it.

そこで、原料あるいは製造過程において鉄(Fe)の混
入を極力低減させることにって異常粒成長が殆ど発生せ
ず、特性のバラツキが解消されることを知見し、本発明
に至った。
Therefore, the present inventors have found that abnormal grain growth hardly occurs by minimizing the mixing of iron (Fe) in the raw material or the production process, and the variation in characteristics is eliminated, and the present invention has been accomplished.

即ち、本発明は、窒化珪素が70乃至99モル%と、希土
類元素酸化物が0.1〜5モル%と、過剰酸素がSiO2換算
で25モル%以下からなり、(過剰酸素/希土類元素酸化
物)モル比が2より大きく、25以下の範囲にあり、且つ
窒化珪素結晶の平均結晶粒径が7μm以下の微細な組織
からなる窒化珪素質焼結体中の鉄(Fe)含有量を30ppm
以下に低減することによって前記目的が達成されるもの
である。
That is, the present invention relates to a method for producing silicon nitride of 70 to 99 mol%, rare earth element oxide of 0.1 to 5 mol%, and excess oxygen of 25 mol% or less in terms of SiO 2 (excess oxygen / rare earth element oxide). The iron (Fe) content in the silicon nitride sintered body having a fine structure in which the molar ratio is larger than 2 and is 25 or less and the average crystal grain size of the silicon nitride crystal is 7 μm or less is 30 ppm.
The object is achieved by reducing the following.

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明における大きな特徴は、その組成が窒化珪素70
〜99モル%、特に80〜93.5モル%と、希土類元素酸化物
0.1〜5モル%、特に0.5〜4モル%、過剰酸素(SiO2
算)で25モル%以下、特に6〜20モル%の割合からなる
とともに、(過剰酸素/希土類元素酸化物)モル比が2
より大きく、25以下、特に3〜20の割合からなる点にあ
る。なお、過剰酸素とは焼結体の系全体に含まれる全酸
素量から希土類元素酸化物として混入した化学量論的量
で混入した酸素を除いた酸素量で、具体的には窒化珪素
原料中の不純物酸素、あるいはSiO2として添加された酸
素から構成されるものであり、本発明ではいずれもSiO2
換算量を示すものである。
A major feature of the present invention is that the composition is silicon nitride 70
~ 99 mol%, especially 80-93.5 mol%, rare earth element oxide
0.1 to 5 mol%, especially 0.5 to 4 mol%, excess oxygen (SiO 2 conversion) is 25 mol% or less, especially 6 to 20 mol%, and the molar ratio of (excess oxygen / rare earth element oxide) is 2
Larger, less than or equal to 25, especially 3 to 20. The excess oxygen is the amount of oxygen obtained by removing the stoichiometric amount of oxygen mixed as a rare earth element oxide from the total amount of oxygen contained in the entire sintered body system. Impurity oxygen or oxygen added as SiO 2 , and in the present invention, any of SiO 2
It shows the conversion amount.

本発明は、上記組成を用いて比較的低温で焼成し、微
細な組織構造を有する焼結体を得る場合、特に不純物と
して鉄(Fe)がその特性に対し大きく影響を与えること
に着目したものである。
The present invention focuses on the fact that iron (Fe) as an impurity has a great effect on its properties when sintering at a relatively low temperature using the above composition to obtain a sintered body having a fine structure structure. It is.

その理由は明らかではないが、本発明者等は次のよう
に考察する。
Although the reason is not clear, the present inventors consider as follows.

この組成系を用いて、例えばガス圧力焼成等で高温焼
成する場合は、助剤成分によって粘度の低い液相が生成
されることによって焼結が進行するが、この時、焼結体
内に存在する不純物金属はほとんど粘度の低い粒界に分
散されるために、不純物による特性への影響は殆どない
と考えられる。しかしながら、上記の組成系を熱間静水
圧焼成等の手法によって低温焼成すると、焼結過程にお
いて助剤成分によって液相が生成されるもののその粘度
は非常に高い状態に保たれたままで焼結は進行する。こ
の時、粒界内に鉄等の不純物金属が存在すると、助剤等
との反応により低融点物質が生成されるとともに他の粒
界自体の粘度が高いことに起因して生成された低融点物
質のみが粒界内を移動し凝集し、その凝集部で窒化珪素
が異常粒成長し、破壊源となるためと推察される。
When sintering is performed at a high temperature by, for example, gas pressure sintering or the like using this composition system, sintering proceeds due to the generation of a low-viscosity liquid phase by the auxiliary component. It is considered that the impurity metal has almost no influence on the characteristics because the impurity metal is dispersed in the grain boundary having a low viscosity. However, when the above composition is fired at a low temperature by a method such as hot isostatic firing, a liquid phase is generated by an auxiliary component in the sintering process, but the sintering is carried out while the viscosity is kept very high. proceed. At this time, if an impurity metal such as iron is present in the grain boundary, a low melting point substance is generated by a reaction with an auxiliary agent and the like, and a low melting point generated due to a high viscosity of the other grain boundary itself. It is presumed that only the substance moves in the grain boundary and agglomerates, and silicon nitride grows abnormally in the agglomerated portion and becomes a destructive source.

本発明は、上記の知見からその鉄(Fe)の量について
検討をおこなったところ、その量が焼結体中に30ppm以
下に制御することを特徴とし、これにより前述したよう
な特性への影響を抑制し、焼結体の特性のバラツキを低
減できる。
The present invention has been studied on the amount of iron (Fe) based on the above findings, and is characterized in that the amount is controlled to 30 ppm or less in the sintered body, thereby affecting the characteristics as described above. And the variation in the characteristics of the sintered body can be reduced.

上記の構成からなる窒化珪素質焼結体を製造する方法
としては、前述した組成を低温で焼成することを基本と
し、鉄の混入を極力避けることが必要である。具体的な
例としてはシールHIP法が好適である。以後、シールHIP
法を例にとって説明する。
As a method for producing a silicon nitride-based sintered body having the above-described configuration, it is basically necessary to bake the above-described composition at a low temperature, and it is necessary to minimize the mixing of iron. As a specific example, the seal HIP method is suitable. After that, seal HIP
The method will be described as an example.

まず、原料粉末として窒化珪素粉末、希土類元素酸化
物粉末、さらに場合によりSiO2粉末を用いる。窒化珪素
粉末は、焼結性を促進するためBET比表面積が3〜20m2/
g、α化率95%以上であることが望ましい。また、酸素
含有量は一般に市販品で0.8〜1.4重量%程度含有される
が、SiO2の添加によって任意に調整できる。
First, a silicon nitride powder, a rare earth element oxide powder, and optionally a SiO 2 powder are used as raw material powders. Silicon nitride powder has a BET specific surface area of 3 to 20 m 2 /
g, desirably at least 95%. The oxygen content is generally but contained about 0.8 to 1.4% by weight commercially available, it can be arbitrarily adjusted by the addition of SiO 2.

まず、系内に混入する鉄の殆どは原料粉末中の不純物
である。通常、窒化珪素粉末中には金属不純物として鉄
が60ppm以上存在する。本発明によれば、まずこの窒化
珪素粉末中の鉄を除去することが最も効率的である。
First, most of the iron mixed into the system is an impurity in the raw material powder. Normally, iron is present as 60 ppm or more as a metal impurity in the silicon nitride powder. According to the present invention, it is most efficient to first remove the iron in the silicon nitride powder.

原料中の鉄を除去する方法としては、例えば原料を塩
酸、硝酸等の酸で洗浄することによって用意に除去する
ことができる。
As a method for removing iron in the raw material, for example, the raw material can be easily removed by washing with an acid such as hydrochloric acid or nitric acid.

次に、このようにして処理された粉末を用いて前述し
た組成に秤量混合し、バインダーを添加して造粒後、成
形する。成形は周知の方法を採用でき、具体的にはプレ
ス成形、押し出し成形、鋳込み成形、射出成形等が採用
できる。
Next, the powder thus treated is weighed and mixed with the composition described above, a binder is added, and the mixture is granulated and then molded. The molding can be performed by a known method, and specifically, press molding, extrusion molding, casting molding, injection molding, or the like can be employed.

成形体は脱バインダーした後、焼成工程においてシー
ル材であるガラス等との反応を防止することを目的とし
てBN粉末等のガラスと濡れ性の悪い粉末を成形体表面に
塗布する。成形体表面へのBN等のガラスとの濡れ性の悪
い粉末の塗布は、BN等の粉末をスラリー化して成形体に
塗布するか、またはスラリーをスプレー塗布することも
できる。なお、成形体表面への塗布量はその厚みが1〜
10mm程度が望ましい。
After debinding the molded body, a powder having poor wettability with glass, such as BN powder, is applied to the surface of the molded body for the purpose of preventing a reaction with glass or the like as a sealing material in a firing step. The powder such as BN or the like having poor wettability with glass may be applied to the surface of the molded body by slurrying the powder of BN or the like and applying the slurry to the molded body, or by spraying the slurry. The thickness of the coating on the surface of the molded product is 1 to
About 10 mm is desirable.

上記BN等の粉末塗布後に乾燥工程が必要であり、この
時成形体にクラックが生じやすいため、BN塗布前の成形
体を一旦1200〜1600℃の不活性ガス雰囲気下で仮焼して
おくことが望ましい。
A drying step is required after powder application of the above BN etc., and cracks are likely to occur in the molded body at this time. Therefore, the molded body before BN application should be calcined once in an inert gas atmosphere at 1200 to 1600 ° C. Is desirable.

また、BN粉末中には、B2O3等の不純物が存在し、これ
が焼成時、焼結体中に混入して低融点の粒界を形成し焼
結体の高温特性を劣化させることから、焼成前に1200〜
1450℃の減圧下で熱処理し、この不純物を除去すること
が望ましい。なお、この時の条件は窒化珪素の分解が生
じない条件で行うことが必要である。
In addition, impurities such as B 2 O 3 are present in the BN powder and are mixed into the sintered body during sintering to form low melting point grain boundaries and deteriorate the high temperature characteristics of the sintered body. Before firing, 1200 ~
It is desirable to perform a heat treatment under a reduced pressure of 1450 ° C. to remove the impurities. Note that it is necessary to perform the conditions at this time under conditions that do not cause decomposition of silicon nitride.

次に、BNが塗布された成形体に対し焼成時シールを形
成するガラス粉末をその表面に塗布するかあるいはガラ
ス製カプセル内に封入する。また他の方法として、前記
成形体を内部にガラス粉末が充填された耐熱容器内に埋
めることもできる。その後、成形体をHIP法により高温
高圧下で焼成する。
Next, a glass powder that forms a seal at the time of firing is applied to the surface of the molded body coated with BN, or is encapsulated in a glass capsule. As another method, the molded body can be buried in a heat-resistant container filled with glass powder. Thereafter, the molded body is fired under high temperature and high pressure by the HIP method.

HIP法による焼成では、減圧下で炉内の温度を昇温し
て成形体に含まれる水分を除去した後、成形体表面に存
在するガラスの軟化点以上の焼成温度にまで昇温すると
同時に、該温度における窒化珪素の分解平衡圧と同等も
しくはそれより0.01〜0.2MPa程度高い分圧の窒素ガスを
導入しつつガラスを軟化させ成形体表面にガラスによる
ガス不透過性膜を形成する。ガス不透過性膜が成形体表
面に完全に形成された後は、圧力媒体として窒素、アル
ゴンの不活性ガスを用いて炉内圧力を充分に緻密化しう
る条件下、例えば50MPa以上の圧力まで上昇させる。こ
の段階で、希土類酸化物、SiO2および窒化珪素により液
相が生成されて焼成が進行し、その緻密化はほぼ終了す
る。その後、最高温度圧力下で所定温度時間保持して結
晶を成長させた後、温度と圧力を下げ焼成を終了する。
なお、この時の最高温度は、緻密化の上では、1450〜18
00℃の範囲がよいが、特に窒化珪素結晶を7μm以下に
微細化する上では1500〜1750℃が望ましい。
In the firing by the HIP method, after removing the water contained in the molded body by raising the temperature in the furnace under reduced pressure, at the same time as raising the temperature to the firing temperature equal to or higher than the softening point of the glass present on the surface of the molded body, The glass is softened while introducing a nitrogen gas having a partial pressure equivalent to or higher than the decomposition equilibrium pressure of silicon nitride at the temperature by about 0.01 to 0.2 MPa to form a gas impermeable film made of glass on the surface of the molded body. After the gas-impermeable membrane is completely formed on the surface of the molded body, the pressure is raised to a pressure of, for example, 50 MPa or more under conditions where the pressure in the furnace can be sufficiently densified using an inert gas such as nitrogen or argon as a pressure medium. Let it. At this stage, a liquid phase is generated by the rare earth oxide, SiO 2 and silicon nitride, and the firing proceeds, and the densification is almost completed. Thereafter, the crystal is grown while maintaining the maximum temperature and pressure for a predetermined temperature period, and then the temperature and pressure are reduced to complete the firing.
The maximum temperature at this time is 1450-18
The temperature is preferably in the range of 00 ° C, but in particular, 1500 to 1750 ° C is desirable for miniaturizing silicon nitride crystal to 7 µm or less.

このようにして得られる焼結体は、微細なβ−窒化珪
素結晶相とともにα−窒化珪素結晶相が残存しており、
これらの結晶相は平均粒径7μm以下の微細な粒子から
なり、その結晶粒子の粒界には、珪素、希土類元素、酸
素、窒素が存在する。上記のような製法によれば高融点
ガラス相の他にSi2N2Oで表わさせるシリコンオキシナイ
トライド結晶相あるいはRE2O3・2SiO2(RE:希土類元
素)で表されるダイシリケート結晶相が生成する場合も
ある。このような粒界組織は従来から知られた各種結晶
相に比較して高温強度、耐酸化性において優れた特性を
有するとともに安定して製造することができるというメ
リットを有する。
In the sintered body thus obtained, the α-silicon nitride crystal phase remains together with the fine β-silicon nitride crystal phase,
These crystal phases consist of fine particles having an average particle size of 7 μm or less, and silicon, rare earth elements, oxygen and nitrogen are present at the grain boundaries of the crystal particles. According to the above manufacturing method, a silicon oxynitride crystal phase represented by Si 2 N 2 O or a disilicate represented by RE 2 O 3 .2SiO 2 (RE: rare earth element) in addition to a high melting point glass phase A crystalline phase may form. Such a grain boundary structure has advantages in that it has excellent properties in high-temperature strength and oxidation resistance as compared with conventionally known various crystal phases and can be manufactured stably.

それに加え、鉄の含有量が低減されていることに起因
して窒化珪素の異常粒成長が抑制され、特性の安定性に
優れた焼結体を得ることができる。
In addition, abnormal grain growth of silicon nitride is suppressed due to the reduced iron content, and a sintered body having excellent property stability can be obtained.

また、この焼結体に対し、所定の条件、例えば非酸化
性雰囲気で1200〜1700℃の温度で熱処理し、あるいは酸
化性雰囲気で熱処理することによって特性の改善を図る
こともできる。
In addition, the characteristics can be improved by subjecting this sintered body to heat treatment under a predetermined condition, for example, at a temperature of 1200 to 1700 ° C. in a non-oxidizing atmosphere, or heat treatment in an oxidizing atmosphere.

本発明において焼結体の組成を前述した割合に限定し
たのはいずれも優れた特性を得るために重要な要因であ
り、窒化珪素、希土類酸化物、過剰酸素のいずれかが前
述の範囲を逸脱しても室温強度ならびに高温強度が低下
し、また(過剰酸素/希土類元素酸化物)モル比が2以
下では高温における耐酸化性が劣化し易く、逆に25を越
えると低融点のガラスが生成されやすくなり高温特性が
劣化するためである。さらに、平均結晶粒径を7μm以
下に設定したのは、室温強度、高温強度を高めるため
で、粒成長を促進し粒径が7μmを越えると所望を強度
が得られないためである。
In the present invention, the composition of the sintered body is limited to the above-described ratio, which is an important factor for obtaining excellent characteristics, and any one of silicon nitride, rare earth oxide, and excess oxygen deviates from the above-described range. However, the room-temperature strength and the high-temperature strength are reduced, and when the molar ratio (excess oxygen / rare earth element oxide) is 2 or less, the oxidation resistance at high temperatures is liable to be deteriorated. This is because high-temperature characteristics are easily deteriorated. Further, the average crystal grain size is set to 7 μm or less, because the room temperature strength and the high temperature strength are increased, and the grain growth is promoted. If the grain size exceeds 7 μm, the desired strength cannot be obtained.

なお、本発明おいて用いられる希土類元素としてはY
が最も一般的であるが、Er、Yb、Ho、Dy、Gd等の重希土
類元素が特性の安定性の点で望ましい。
The rare earth element used in the present invention is Y
Is most common, but heavy rare earth elements such as Er, Yb, Ho, Dy, and Gd are desirable in view of stability of characteristics.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 原料粉末として、窒化珪素粉末(BET比表面積5m2/
g、α化率99%、不純物酸素量1.0重量%、Fe含有量62pp
m)と、各種希土類酸化物あるいはSiO2粉末を用いた。
なお、窒化珪素粉末に対し、塩酸による酸洗浄処理を施
し、鉄の含有量の低減を図った。
(Example) Silicon nitride powder (BET specific surface area 5 m 2 /
g, α conversion 99%, impurity oxygen content 1.0 wt%, Fe content 62pp
m) and various rare earth oxides or SiO 2 powders.
Note that the silicon nitride powder was subjected to an acid cleaning treatment with hydrochloric acid to reduce the iron content.

これらの粉末を用い、第1表に示す組成に成るように
調合し混合後、1t/cm2でプレス成形後1400℃で仮焼し
た。
Using these powders, they were blended to have the composition shown in Table 1, mixed, press-molded at 1 t / cm 2 , and then calcined at 1400 ° C.

得られた成形体に対し、粒径1〜5μmののBN粉末の
ペーストを1〜10mmの厚みで塗布後、0.2Torrの減圧下
で1350℃で熱処理し、不純物の除去を行った。
After applying a paste of BN powder having a particle size of 1 to 5 μm to a thickness of 1 to 10 mm on the obtained molded body, heat treatment was performed at 1350 ° C. under a reduced pressure of 0.2 Torr to remove impurities.

その後、SiO2を主成分とするガラスを1〜10mmの厚み
で塗布した。
Thereafter, a glass containing SiO 2 as a main component was applied in a thickness of 1 to 10 mm.

このように処理された成形体を熱間静水圧焼成炉に配
置して、第1表の焼成条件で焼成した。
The green body thus treated was placed in a hot isostatic firing furnace and fired under the firing conditions shown in Table 1.

次に、ガラス除去後の焼結体に対し、鉄の含有量をIC
P分析で定量するとともに、各焼結体から試験片をそれ
ぞれ14個切り出し、JISR1601に従い、室温、1200℃およ
び1400℃における4点曲げ抗折強度および1400℃におけ
る酸化重量増の各平均値を求めた。
Next, the iron content of the sintered body after removing the glass was
In addition to quantification by P analysis, 14 test pieces were cut out from each sintered body, and the average values of the four-point bending strength at room temperature, 1200 ° C and 1400 ° C and the increase in oxidized weight at 1400 ° C were determined in accordance with JISR1601. Was.

また、各試料について8個の抗折試験片の破壊源を観
察し、破壊源が鉄による異常粒成長であったものの個数
を調べた。
In addition, the fracture sources of eight bending test specimens were observed for each sample, and the number of fracture sources whose abnormal grain growth was caused by iron was examined.

また、焼結体の電子顕微鏡写真から窒化珪素結晶粒子
の平均粒径を算出した。
The average particle size of the silicon nitride crystal particles was calculated from an electron micrograph of the sintered body.

結果は第1表に示した。 The results are shown in Table 1.

また比較例として、鉄の量の異なる2種の原料を用い
て成形体を作製し、ガス圧力焼成法により第1表の条件
で焼成し、同様に特性の評価を行った。
Further, as a comparative example, a molded body was produced using two kinds of raw materials having different amounts of iron, fired by a gas pressure firing method under the conditions shown in Table 1, and the characteristics were similarly evaluated.

第1表中、No.4の試料についてその抗折試験片の破壊
源となった異常粒成長部の組織構造の電子顕微鏡写真を
第1図に示した。
FIG. 1 shows an electron micrograph of the microstructure of the abnormal grain growth portion, which was the fracture source of the bending test piece, for the sample No. 4 in Table 1.

第1表によれば、鉄の含有量が30ppmを越える試料No.
3、4では、低温焼成により窒化珪素結晶粒径が7μm
以下の微細組織からなるもの、破壊源が鉄による異常粒
成長によるものの個数が2/8以上と多く、バラツキの大
きな原因となっており、その結果、同じ成分、組成から
なる他の試料に比較して強度が劣化した。また、それら
の破壊源を示した第1図の破壊源中心部からFeおよびSi
が検出され、その周囲が異常粒成長していることが理解
された。
According to Table 1, Sample No. whose iron content exceeds 30 ppm
In cases 3 and 4, the silicon nitride crystal grain size was 7 μm due to low-temperature firing.
As many as 2/8 or more of the following microstructures and fracture sources caused by abnormal grain growth due to iron, this is a major cause of variation, and as a result, compared to other samples of the same component and composition As a result, the strength deteriorated. In addition, from the center of the fracture source shown in FIG.
Was detected, and it was understood that the surrounding area was abnormally grown.

これに対して、Fe量を30ppm以下に抑えた本発明品はF
eによる異常粒成長からなる破壊源個数が1/8以下と低
く、その殆どが粒界破壊を示し、異常粒成長も殆どな
く、特性も良好であった。
In contrast, the product of the present invention in which the amount of Fe was suppressed to 30 ppm or less
The number of fracture sources due to abnormal grain growth due to e was as low as 1/8 or less, most of them showed grain boundary fracture, there was almost no abnormal grain growth, and the properties were good.

一方、組成の上では(過剰酸素/希土類元素酸化物)
モル比が2より低いNo.7の試料では耐酸化性が悪く、上
記モル比が25を越えるNo.10の試料では1400℃における
強度が低い。
On the other hand, in terms of composition (excess oxygen / rare earth element oxide)
The sample of No. 7 having a molar ratio of less than 2 has poor oxidation resistance, and the sample of No. 10 having a molar ratio of more than 25 has a low strength at 1400 ° C.

また、比較例として本発明の範囲内にある組成物を窒
素ガス加圧下で高温焼成したNo.17、18の試料ではいず
れも組織上に鉄による異常粒成長はなく、破壊源も粒界
破壊であり、鉄の影響が殆どないことが分かった。しか
し両者とも結晶粒径が大きく、特性的には本発明品より
劣るものであった。
In addition, as a comparative example, in the samples of Nos. 17 and 18 in which the composition within the scope of the present invention was fired at a high temperature under nitrogen gas pressure, there was no abnormal grain growth due to iron on the structure, and the fracture source was grain boundary fracture. It was found that there was almost no influence of iron. However, both had a large crystal grain size, and were inferior in characteristics to the product of the present invention.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体によれ
ば、SiO3N4‐RE2O3(希土類酸化物)−SiO2(過剰酸
素)の単純三元組成においてその過剰酸素量を多く含む
系において、焼結体中に含まれる鉄含有量を低減するこ
とにより、室温、高温強度に優れた焼結体の特性バラツ
キを低減できる。
(Effects of the Invention) As described in detail above, according to the silicon nitride sintered body of the present invention, a simple ternary composition of SiO 3 N 4 —RE 2 O 3 (rare earth oxide) —SiO 2 (excess oxygen) In a system containing a large amount of excess oxygen, by reducing the iron content in the sintered body, it is possible to reduce the variation in characteristics of the sintered body having excellent strength at room temperature and high temperature.

これにより、窒化珪素質焼結体の熱機関等の高温用構
造材料をはじめ、各種機械構造部品としてその量産化を
さらに推進することができるともにその特性の信頼性を
高めることができる。
Accordingly, it is possible to further promote mass production of various mechanical structural parts, such as a high-temperature structural material such as a heat engine of a silicon nitride sintered body, and to enhance the reliability of its characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、鉄による異常粒成長部の組織構造を示す電子
顕微鏡写真である。
FIG. 1 is an electron micrograph showing the microstructure of the abnormal grain growth part due to iron.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素70乃至99モル%と、希土類元素酸
化物0.1〜5モル%と過剰酸素(SiO2換算量)25モル%
以下からなり、(過剰酸素/希土類元素酸化物)モル比
が2より大きく、25以下の範囲にあり、且つ窒化珪素結
晶の平均粒径が7μm以下の窒化珪素質焼結体であっ
て、該焼結体中における鉄(Fe)の含有量が30ppm以下
であることを特徴とする窒化珪素質焼結体。
1. 70 to 99 mol% of silicon nitride, 0.1 to 5 mol% of rare earth oxide and 25 mol% of excess oxygen (in terms of SiO 2 )
A silicon nitride-based sintered body having a molar ratio (excess oxygen / rare earth element oxide) of more than 2 and not more than 25, and having an average particle diameter of silicon nitride crystal of 7 μm or less, A silicon nitride-based sintered body characterized in that the content of iron (Fe) in the sintered body is 30 ppm or less.
JP1312736A 1989-11-27 1989-11-30 Silicon nitride sintered body Expired - Fee Related JP2742619B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1312736A JP2742619B2 (en) 1989-11-30 1989-11-30 Silicon nitride sintered body
US07/618,480 US5114889A (en) 1989-11-27 1990-11-27 Silicon nitride sintered body and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312736A JP2742619B2 (en) 1989-11-30 1989-11-30 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03174364A JPH03174364A (en) 1991-07-29
JP2742619B2 true JP2742619B2 (en) 1998-04-22

Family

ID=18032803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312736A Expired - Fee Related JP2742619B2 (en) 1989-11-27 1989-11-30 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2742619B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537241B2 (en) * 1995-12-07 2004-06-14 電気化学工業株式会社 Method for producing silicon nitride sintered body
JP2004214075A (en) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT
JP5430389B2 (en) * 2009-12-24 2014-02-26 京セラ株式会社 Non-contact type seal ring and shaft seal device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211575A (en) * 1984-04-05 1985-10-23 Fujitsu Ltd Quantized projecting method
JPS62223066A (en) * 1986-03-19 1987-10-01 工業技術院長 Manufacture of high temperature strength silicon nitride sintered body

Also Published As

Publication number Publication date
JPH03174364A (en) 1991-07-29

Similar Documents

Publication Publication Date Title
JP2742619B2 (en) Silicon nitride sintered body
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JP2811493B2 (en) Silicon nitride sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP2746759B2 (en) Silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPS63195170A (en) Manufacture of silicon nitride sintered body
JPH0585823A (en) Sintered silicon carbide-silicon nitride-mixed oxide and its production
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JPH06100376A (en) Sintered beta-sialon and its production
JPH04243972A (en) Sintered substance of silicon nitride
JPH05178667A (en) Production of silicon nitride-silicon carbide composite sintered body
JPH0745345B2 (en) Method for manufacturing silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees