JP2004214075A - HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT - Google Patents

HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT Download PDF

Info

Publication number
JP2004214075A
JP2004214075A JP2003000935A JP2003000935A JP2004214075A JP 2004214075 A JP2004214075 A JP 2004214075A JP 2003000935 A JP2003000935 A JP 2003000935A JP 2003000935 A JP2003000935 A JP 2003000935A JP 2004214075 A JP2004214075 A JP 2004214075A
Authority
JP
Japan
Prior art keywords
heating element
mosi
impurities
main component
element containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003000935A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Koichi Takemoto
幸一 竹本
Hiroshi Takamura
博 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2003000935A priority Critical patent/JP2004214075A/en
Publication of JP2004214075A publication Critical patent/JP2004214075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating element highly clustered, facilitating the raising of temperature and temperature control, composed by utilizing the feature of the heating element containing MoSi<SB>2</SB>as a main constituent hardly causing deformation (fluctuation) in heating or a failure such as a short circuit, containing little pollutant (impurities), and particularly useful for a heat treatment furnace for a semiconductor manufacturing device (including an oxidation/diffusion furnace). <P>SOLUTION: This heating element contains 80 wt.% or more of MoSi<SB>2</SB>as a main constituent, and comprises residual SiO<SB>2</SB>and impurities. In the heating element containing MoSi<SB>2</SB>as the main constituent, the total quantity of the impurities, within the impurities included in the heating element, having a vapor pressure above 1.0×10<SP>-3</SP>mmHg at 1,600°C is not more than 300 ppm. Therefore, there is provided a heat generation material highly clustered, facilitating the raising of temperature and temperature control, composed by utilizing the feature of the heating element containing MoSi<SB>2</SB>as a main constituent hardly causing deformation (fluctuation) in heating or a failure such as a short circuit, containing little pollutant (impurities) by reducing, at a low cost, impurities affecting the semiconductor device manufacturing from a MoSi<SB>2</SB>powder material slightly low in purity and particularly useful for a heat treatment furnace for a semiconductor manufacturing device (including oxidation/diffusion furnace). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発熱体の集積性が高く高温化及び温度制御が容易であり、また加熱時の変形(あばれ)やショート等の故障が少なく、さらに汚染物質(不純物)の少ない、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分として80wt%以上含む基材からなる発熱体及びコストを低減化できる同発熱体の製造方法に関する。
なお、本明細書で使用するMoSiを主成分として80wt%以上含む基材は、MoSi基材に絶縁性酸化物であるSiOを含有させて電気抵抗を増加させたMoSiを主成分とする発熱体である。
MoSiを主成分とする発熱体は、673°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)と言う低温酸化が起こるが、これを防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する。本発明は、このような緻密なシリカ保護被膜を形成した発熱体を含み、シリカ(SiO)であるガラス質成分の添加は、このような緻密なシリカ保護被膜の形成に有効である。
【0002】
【従来の技術】
従来、半導体製造装置に使用される熱処理炉においては、金属発熱体(発熱体)が使用されることが多い。
ところが、金属発熱体を半導体製造装置の熱処理炉等に使用した場合、発熱体の発熱とともに発熱体に含有される低融点の不純物や金属酸化物等の蒸気圧が高くなり、発熱体表面から炉雰囲気中に飛散される金属化合物量が多くなる。
これらの金属化合物中の金属は、デバイスの高集積化が進むとともに、極少量でもデバイスに悪影響を及ぼすため、特に熱処理中に混入するウエハの金属汚染が問題になってきている。
発熱体から飛散した金属は、発熱体とウエハとの間にたとえ石英管やSiC管が存在しても、これらの中を拡散し、最終的にはウエハにまで到達する。特に、シリコン結晶中の拡散係数が大きいCu,Fe,Mn,Mg,Na,K等の不純物元素は注意が必要であった。
【0003】
最近、金属発熱体では上記のような金属汚染の問題があるため、また半導体デバイスの微細化及びデバイス製造時間の短縮化と省エネルギー化のために、従来の金属発熱体に替えて、CVD装置や拡散炉等の半導体製造装置に、MoSiを主成分とする高出力性能の発熱体が利用されるようになってきた。
一般に、半導体製造装置に使用される熱処理炉は炉内の温度分布を厳密に制御するなど、非常に高精度な温度特性が要求されるが、MoSiを主成分とする発熱体は優れた耐熱特性を有し、金属発熱体の約10倍の表面負荷が可能であり、また急速加熱昇温することができるという大きな特長を有するので、好適な材料と言える。
【0004】
しかし、これまで半導体製造装置に使用される熱処理炉においては、炉内の温度分布のコントロールや製造時間短縮のための急速加熱昇温等が主としたねらいであったので、MoSiを主成分とする発熱体は、そのための材料強度(耐熱性)や材料脆化現象を防止するため、あるいはペスト(粉化現象)と呼ばれている低温酸化を防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する等、発熱体自体の材料開発が主であった。
ところが、MoSiを主成分とする発熱体を半導体製造装置の熱処理炉等に使用した場合、金属製発熱体よりはその傾向は小さいものの、発熱体の発熱とともに、発熱体に含有される不純物が発熱体表面から炉雰囲気中に飛散するという同様の問題を生じた。
特に、高温での急速加熱昇温を行う場合にそれが顕著であり、ウエハの金属汚染が問題になっている。したがって、従来のMoSiを主成分とする発熱体は、半導体製造装置の熱処理炉等の発熱体としては必ずしも良いとは言えず、問題を有していた。
このようなことからMoSiを主成分とする発熱体中に含有されるFe、Cu、Au、Ca、Al等の不純物の総量を0.1mass%以下にすること、またFe、Cu、Au、Ca、Alの不純物をそれぞれ0.05mass%以下、さらには0.03mass%以下に規制する提案がなされている(例えば、特許文献1参照)。
しかし、この程度の不純物の規定量では不十分であることが判明した。一方、これらの不純物(上記不純物元素及びそれらの酸化物等を含む)の中で、蒸気圧が1600°Cで1×10−3Hg以下であれば、上記の量以上含有されていても特に問題とならないことがないことが分かった。
【0005】
【特許文献1】
特開平10−324571号
【0006】
【発明が解決しようとする課題】
本発明は、発熱体の集積性が高く高温化及び温度制御が容易であり、また加熱時の変形(あばれ)やショート等の故障が少ないというMoSiを主成分とする発熱体の特徴を生かすと同時に、汚染物質(不純物)の少ない、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分として80wt%以上含む発熱体及びその製造方法を提供する。
【0007】
【課題を解決するための手段】
上記の課題を解決するために、本発明者らは、特定の不純物を低減することにより、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分として80wt%以上含む発熱体を低コストで提供できるとの知見を得た。
本発明はこの知見に基づき、
1.MoSiを主成分として80wt%以上含み、残余SiOと不純物からなる発熱体において、該発熱体中に含まれる不純物の内、1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の総量が300ppm以下であることを特徴とするMoSiを主成分とする発熱体
2.半導体製造装置用熱処理炉に使用することを特徴とする上記1記載のMoSiを主成分とする発熱体
3.MoSi原料粉を酸で洗浄し乾燥する工程、SiOと混合粉砕する工程、バインダーと混合し脱脂する工程、通電焼結する工程からなることを特徴とするMoSiを主成分とする発熱体の製造方法
4.脱脂後一次焼結する工程を含むことを特徴とする上記3記載のMoSiを主成分とする発熱体の製造方法
5.硫酸以外の酸で洗浄することを特徴とする上記3又は4記載のMoSiを主成分とする発熱体の製造方法
6.酸洗後のMoSi原料粉に含まれる1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の総量が300ppm以下であることを特徴とする上記3〜5のそれぞれに記載のMoSiを主成分とする発熱体の製造方法を提供する。
【0008】
【発明の実施の形態】
本発明のMoSiを主成分として80wt%以上含み、残余SiOと不可避的不純物からなる発熱体(以下、特に記載しない限り、「MoSi製発熱体」と称する。)は、該発熱体中に含まれる不純物の内、1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の総量が300ppm以下であることを特徴とするMoSiを主成分とする発熱体である。
MoSi製発熱体を加熱した場合に、このMoSi製発熱体から飛散し、半導体製造装置用熱処理炉内及び半導体ウエハを汚染する主要な物質は、1600°Cにおける蒸気圧が1.0×10−3mmHg以上である鉄、マンガン、マグネシウム、ナトリウム、カリウム等の物質である。
【0009】
例えば、不純物として鉄が多量に含有するMoSi製発熱体が石英管内で加熱された場合、石英管の内部が赤褐色に変色する現象が見られる。これは飛散する鉄が、同時に放散される酸素と結びついて酸化鉄となり赤褐色に変色したものと考えられる。したがって、このようなMoSi製発熱体から飛散する物質(不純物)は極力制限されなければならず、総量が300ppm以下であることが必要である。
【0010】
主成分としてのMoSiは、好ましくは90wt%以上とする。これは、SiOの体積変化を伴う相転移を考慮したもので、SiOの含有量が多くなり過ぎるとその影響が大きくなり、発熱体の強度に支障をきたす可能性があるためである。
1600°Cにおける蒸気圧が1.0×10−3mmHg未満であるTa,W,Mo,V,Nb及び鉄等の酸化物等の不純物は、MoSi製発熱体から飛散することが極めて少ないので、発熱体に含有される量は特に問題となることがなく、総量で1ppm以上、例えば100ppm、1000ppmのオーダーで含有されていても良い(許容される)。
以上によって、MoSi製発熱体から飛散し、半導体製造装置用熱処理炉内及び半導体ウエハを汚染する主要な物質を防止できるという著しい効果が得られた。
【0011】
以上の不純物には、MoSiに混入する不純物及び添加されるシリカ(SiO)等に混入する不純物があるが、いずれも高純度の材料を使用し、不純物の量を上記に制限する。
通常、高純度シリカはガラス質形成材料として20wt%以下、好ましくは10wt%以下含有させる。これは、SiOの体積変化を伴う相転移を考慮したもので、SiOの含有量が多くなり過ぎるとその影響が大きくなり、発熱体の強度に支障をきたす可能性があるためである。
以上のMoSi製発熱体は、半導体製造装置用熱処理炉に好適であり、半導体装置への汚染を防止できるという著しい効果がある。
【0012】
このMoSi製発熱体は、MoSi原料粉を酸で洗浄した後これを乾燥し、次にSiOと混合粉砕した後、バインダーと混合し、さらに例えば押出しによって棒状又は平板状に成形する。
このようにして得た成形体を脱脂、一次焼結及び通電加熱焼結することによって、密度の高いMoSi製発熱体を製造する。
さらに、このようにして作製した棒状又は平板状の発熱体を接合し、例えば円弧状又はU字形状等に製造する。このように、MoSi製発熱体を各種の形状に成形した後、半導体製造装置用熱処理炉に設置する。
【0013】
上記酸による洗浄は硫酸以外の酸を使用する。例えば希塩酸と硝酸の混酸を使用して洗浄する。この酸による洗浄は極めて重要であり、これによってクロム、ニッケル、鉄、マンガン、マグネシウム、ナトリウム、カリウム等の不純物を著しく低減させることができる。
MoSi原料粉の酸による洗浄は、さほどの労力や費用を必要としない。それにもかかわらず、著しい不純物の除去効果がある。
例えば、MoSi原料粉に含まれる1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物が、総量で1000ppm以上含有されていても、酸洗後のMoSi原料粉に含まれる同不純物の総量を300ppm以下まで低減できる効果を有する。
【0014】
【実施例及び比較例】
以下に実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内での他の変形あるいは他の実施例は、当然本発明に含まれる。
【0015】
(実施例1)
発熱体原料とするMoSi粉末は、純度2N〜3Nレベルの粉末を用いることができる。MoSi粉末の主な不純物含有量を表1に示す。
表1から明らかなように、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)、マグネシウム(Mg)、ナトリウム(Na)、カリウム(K)等の不純物がかなりの量で含有されている。これを希塩酸と硝酸の混酸で洗浄した。
酸による洗浄後の同不純物含有量を同様に表1に示す。酸による洗浄後、表1に示すように、不純物は著しく除去された。また、MoSi粉末の比表面積は30%上昇した。
一方、SiO粉末は市販品を用いるが、不純物を選別除去した後、さらに1650°C以上の高温で長時間熱処理することにより、含有する金属成分を蒸発させて精製した材料を使用した。
なお、SiOの高温熱処理は、SiOの結晶構造を石英から高温で安定なクリストバライトに相転移させるために必要である。
【0016】
上記MoSi粉95wt%とSiO粉末5wt%とをバインダーと混合(なお、バインダーは混合比率には計算しない。以下、同様とする。)し、この混合物を型から押出して棒状の成形体とした。
この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
このMoSi製棒状発熱体に使用したMoSi粉末には、表1に示す通り、Fe:110wtppm、W:120wtppm、Nb:40wtppm、Ta:40wtppmが含有されていた。
しかし、これらは蒸気圧が低い、すなわち1600°Cにおける蒸気圧が1.0×10−3mmHg未満であるので、MoSi製発熱体から飛散し、半導体製造装置用熱処理炉内及び半導体ウエハを汚染することは殆どない。ここでFeが110ppmあるが、これは蒸気圧の低いFeの化合物である。
【0017】
他方、蒸気圧が高い、すなわち1600°Cにおける蒸気圧が1.0×10−3mmHg以上であるFe,Mn,Mg,Na,K等の不純物は、半導体製造装置用熱処理炉内及び半導体ウエハを汚染する可能性が高いと言える。
しかし、表1に示す通り、Cr:30wtppm,Ni:10wtppm,Mn:4wtppm,Mg:1wtppm,Na:3wtppm,K:2wtppmであり、汚染物質となる量そのものが著しく低減しており、本発明の実施例においては、特に問題となるようなレベルでないことが分かる。なお、Fe110wtppmとあるが、これは蒸気圧の低いFeの化合物である。
なお、発熱体中の不純物は、発熱体の製造工程において、容器や工具等からの汚染があり、表1の出発原料よりも不純物量はやや増加する。粉砕容器の内壁をMoでライニングすること、あるいは気流粉砕方式を用いるなどして、製造工程からの金属汚染を極力低減することが重要である。
【0018】
【表1】

Figure 2004214075
【0019】
次に、汚染物質(不純物)の挙動確認のため、このようにして得た高純度MoSi製棒状発熱体を石英板(3〜10mm間)の直下に配置し、大気中で発熱体の表面温度が1600°Cになるように通電加熱した。
この試験では、発熱体表面から気化し、また蒸気圧が高くなって飛散した成分が石英板に再析出するため、その石英板を観察することにより、発熱体からの金属汚染量が模擬的に評価できる。
上記発熱体を10分間通電加熱保持した後、石英板の下面に付着した不純物量を観察(目視及びSEM観察)した。目視による石英板の変色は認められず、SEM観察でも、なにも観察されなかった。
以上から、実施例1に示す発熱体材は、半導体製造装置用熱処理炉と使用する場合、発熱時に発熱体材から放散される不純物が被熱処理体を汚染する可能性が低く、発熱体材としては極めて好ましい材料と言える。
また、この発熱体材は室温と500°Cで30時間保持する熱サイクル特性試験において、50サイクル後でも粉状化せず、さらに1600°Cで300時間処理後の抗折試験でも300MPa以上であった。
【0020】
(実施例2)
表2に示す原料、特にW、Nb、Taの蒸気圧の低い不純物を多く含有される原料を用い、同様に酸洗してMoSi製棒状発熱体を作製した。
その純度を表2に示す。表2に示す通り発熱体中には、W、Nb、Taが多量に含まれている。実施例1と同様に、このMoSi製棒状発熱体を石英板(3〜10mm間)の直下に配置し、大気中で発熱体の表面温度が1600°Cになるように通電加熱した。そして、その後石英板の下面に付着した不純物量を観察(目視及びSEM観察)した。
しかし、この発熱体からは石英板への付着物は観察されなかった。これらのことからW、Nb、Ta等の1600°Cにおける蒸気圧が1.0×10−3mmHg未満である不純物が、たとえ発熱体の中に多く含有されていても、これらが加熱中に飛散することがなく、不純物として悪影響を与えないことが分かった。
【0021】
【表2】
Figure 2004214075
【0022】
(比較例1)
一般に高純度と言われている市販品のMoSi粉末95wt%(Fe600wtppm)と、同様に市販品であるSiO粉末5wt%とを微粉砕後、バインダーと混合し、この混合物を型から押出して棒状の成形体とした。
この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
同様に、表1に不純物の分析値を示す。表1に示す通り、このMoSi製棒状発熱体には、Fe:600wtppm,W:20wtppm、Cr:30wtppm、Ni:10wtppm、Nb:10wtppm、Ta:3wtppm,Mn:10wtppm,Mg:6wtppm,Na:1wtppm,K:1wtppmが含有されていた。これらの中には、酸化物も含まれる。
【0023】
次に、このようにして得たMoSi製棒状発熱体を石英板直下に配置し、大気中で発熱体の表面温度が1600°Cになるように通電加熱した。上記実施例と同様に、上記発熱体を10分間通電加熱保持した後、石英板に付着した不純物量を観察(目視及びSEM観察)した。
石英板は目視で茶色に変色しており、発熱体の真上に位置した部分には一面に多量の不純物が付着していた。またこれらの付着物を分析すると、ここでは主にFeであることが分かった。
以上から、半導体製造装置用熱処理炉と使用する場合、発熱時に発熱体材から放散される不純物が被熱処理体を汚染する可能性が高く、発熱体材としては好ましくない結果が得られた。
【0024】
以上に示す通り、MoSi製棒状発熱体を加熱することによって、不純物の量が多い、特に1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の含有量が多い発熱体については、近傍に配置した石英板が変色するほどに、該発熱体からの不純物の飛散があり、これらは半導体ウエハ等に混入し、悪影響を与えることは必須である。
本発明は、MoSiを主成分として80wt%以上、好ましくは90wt%以上含む、やや純度の低いMoSi粉末材料から半導体装置製造に影響を与える不純物を低コストで減少させ、かつ発熱体の集積性が高く高温化及び温度制御が容易であり、また加熱時の変形(あばれ)やショート等の故障が少ないというMoSiを主成分とする発熱体の特徴を生かすことのできるという優れた特徴を有している。
【0025】
【発明の効果】
本発明のMoSiを主成分として80wt%以上含み、残余SiOからなる発熱体は、発熱体の集積性が高く高温化及び温度制御が容易であり、また加熱時の変形(あばれ)やショート等の故障が少ないというMoSiを主成分とする発熱体の特徴を生かすと同時に、やや純度の低いMoSi粉末材料から半導体装置製造に影響を与える不純物を低コストで減少させ、汚染物質(不純物)の少ない、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用である発熱材料を提供できるという優れた効果を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a high heat-generating property, is easy to raise the temperature and control the temperature, and has few failures such as deformation during heating (shortening) and short-circuiting, and further has little contaminants (impurities). The present invention relates to a heating element composed of a base material containing MoSi 2 as a main component and containing 80 wt% or more, which is useful for a heat treatment furnace (including an oxidation / diffusion furnace), and a method for manufacturing the heating element, which can reduce costs.
Incidentally, 80 wt% or more comprises a base material MoSi 2 to be used herein as the main component is composed mainly of a MoSi 2 substrate contain a SiO 2 which is an insulating oxide MoSi 2 having an increased electrical resistance Heating element.
A heating element containing MoSi 2 as a main component is referred to as a plague (pulverization phenomenon), in which simultaneous oxidation of Mo and Si occurs in the range of 673 ° K to 873 ° K, and the evaporation of Mo oxide is accompanied by a decrease. Oxidation at a low temperature occurs at 1500 ° K or higher to prevent low-temperature oxidation, thereby forming a dense silica protective coating. The present invention includes a heating element having such a dense silica protective film formed thereon, and the addition of a vitreous component which is silica (SiO 2 ) is effective for forming such a dense silica protective film.
[0002]
[Prior art]
Conventionally, in a heat treatment furnace used for a semiconductor manufacturing apparatus, a metal heating element (heating element) is often used.
However, when a metal heating element is used in a heat treatment furnace or the like of a semiconductor manufacturing apparatus, the heat generated by the heating element increases the vapor pressure of low-melting impurities and metal oxides contained in the heating element. The amount of the metal compound scattered in the atmosphere increases.
Metals in these metal compounds are becoming more highly integrated in devices and, even in very small amounts, adversely affect the devices, so metal contamination of wafers mixed during heat treatment has become a problem.
The metal scattered from the heating element diffuses inside the heating element and the wafer even if a quartz tube or a SiC tube exists between the heating element and the wafer, and finally reaches the wafer. In particular, attention must be paid to impurity elements such as Cu, Fe, Mn, Mg, Na, and K having a large diffusion coefficient in the silicon crystal.
[0003]
In recent years, metal heating elements have the above-described metal contamination problem, and in order to miniaturize semiconductor devices, shorten device manufacturing time, and save energy, a conventional metal heating element is replaced with a CVD device or the like. 2. Description of the Related Art A high-performance heating element mainly composed of MoSi 2 has been used in a semiconductor manufacturing apparatus such as a diffusion furnace.
Generally, heat treatment furnaces used in semiconductor manufacturing equipment require extremely high-precision temperature characteristics, such as strict control of the temperature distribution in the furnace. However, heating elements mainly composed of MoSi 2 have excellent heat resistance. It is a suitable material because it has characteristics such as a surface load of about 10 times that of a metal heating element and a rapid heating and temperature rise.
[0004]
However, in the heat treatment furnaces used in semiconductor manufacturing equipment, MoSi 2 has been mainly used to control the temperature distribution in the furnace and to rapidly raise the temperature to shorten the manufacturing time. The heating element is oxidized at 1500 ° K or more to prevent material strength (heat resistance) and material embrittlement, or to prevent low-temperature oxidation called pest (powdering). The main purpose was to develop a material for the heating element itself, for example, to form a dense silica protective film.
However, when a heating element mainly composed of MoSi 2 is used in a heat treatment furnace of a semiconductor manufacturing apparatus, the tendency is smaller than that of a metal heating element. A similar problem of scattering from the surface of the heating element into the furnace atmosphere occurred.
In particular, this is remarkable when rapid heating and heating are performed at a high temperature, and metal contamination of the wafer is a problem. Therefore, the conventional heating element mainly composed of MoSi 2 is not always good as a heating element of a heat treatment furnace or the like of a semiconductor manufacturing apparatus, and has a problem.
For this reason, the total amount of impurities such as Fe, Cu, Au, Ca, and Al contained in the heating element containing MoSi 2 as a main component is set to 0.1 mass% or less, and Fe, Cu, Au, Proposals have been made to regulate the impurities of Ca and Al to 0.05 mass% or less, respectively, and further to 0.03 mass% or less (for example, see Patent Document 1).
However, it has been found that such a specified amount of impurities is insufficient. On the other hand, among these impurities (including the above-mentioned impurity elements and their oxides), if the vapor pressure is 1 × 10 −3 Hg or less at 1600 ° C., even if the content is more than the above-mentioned amount, particularly It turned out that there was nothing wrong.
[0005]
[Patent Document 1]
JP-A-10-324571
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention makes use of the characteristics of a heating element containing MoSi 2 as a main component, which has high integration of the heating element, facilitates high temperature and temperature control, and has few failures such as deformation (roughness) and short-circuit during heating. At the same time, the present invention provides a heating element containing less than 80 wt% of MoSi 2 as a main component, which is low in contaminants (impurities) and is particularly useful for a heat treatment furnace (including an oxidation / diffusion furnace) for a semiconductor manufacturing apparatus, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have reduced the amount of specific impurities so that MoSi 2 , which is particularly useful in a heat treatment furnace (including an oxidation / diffusion furnace) for a semiconductor manufacturing apparatus, has a main component of 80 wt%. % Of heat generating elements can be provided at low cost.
The present invention is based on this finding,
1. In a heating element containing 80 wt% or more of MoSi 2 as a main component and composed of residual SiO 2 and impurities, of the impurities contained in the heating element, when the vapor pressure at 1600 ° C. is 1.0 × 10 −3 mmHg or more. 1. A heating element containing MoSi 2 as a main component, wherein the total amount of certain impurities is 300 ppm or less. 2. The heating element containing MoSi 2 as a main component as described in 1 above, which is used in a heat treatment furnace for a semiconductor manufacturing apparatus. A heating element comprising MoSi 2 as a main component, comprising a step of washing and drying the MoSi 2 raw material powder with an acid, a step of mixing and crushing with SiO 2 , a step of mixing with a binder and degreasing, and a step of electrical sintering. Production method 4. 4. The method for producing a heating element containing MoSi 2 as a main component as described in 3 above, which comprises a step of primary sintering after degreasing. 5. The method for producing a heating element containing MoSi 2 as a main component as described in 3 or 4 above, wherein the heating element is washed with an acid other than sulfuric acid. Each of the above items 3 to 5, wherein the total amount of impurities having a vapor pressure at 1600 ° C. of 1.0 × 10 −3 mmHg or more contained in the MoSi 2 raw material powder after pickling is 300 ppm or less. The present invention provides a method for producing a heating element containing MoSi 2 as a main component.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The heating element of the present invention containing MoSi 2 as a main component at 80 wt% or more and comprising residual SiO 2 and unavoidable impurities (hereinafter referred to as “a heating element made of MoSi 2 ” unless otherwise specified) is included in the heating element. Is a heating element containing MoSi 2 as a main component, wherein the total amount of impurities having a vapor pressure at 1600 ° C. of 1.0 × 10 −3 mmHg or more is 300 ppm or less.
When the heating element made of MoSi 2 is heated, the main substance that scatters from the heating element made of MoSi 2 and contaminates the heat treatment furnace for semiconductor manufacturing equipment and the semiconductor wafer has a vapor pressure of 1.0 × at 1600 ° C. It is a substance such as iron, manganese, magnesium, sodium, potassium and the like having a hardness of 10 −3 mmHg or more.
[0009]
For example, when a MoSi 2 heating element containing a large amount of iron as an impurity is heated in a quartz tube, a phenomenon in which the inside of the quartz tube turns reddish brown is observed. This is thought to be due to the fact that the scattered iron was combined with oxygen that was simultaneously released and turned into iron oxide, which turned reddish brown. Therefore, substances (impurities) scattered from such a heating element made of MoSi 2 must be limited as much as possible, and the total amount must be 300 ppm or less.
[0010]
MoSi 2 as a main component is preferably at least 90 wt%. This is because a phase transition accompanied by a change in volume of SiO 2 is taken into consideration, and if the content of SiO 2 is too large, its influence becomes large, which may hinder the strength of the heating element.
Impurities such as oxides such as Ta, W, Mo, V, Nb and iron having a vapor pressure of less than 1.0 × 10 −3 mmHg at 1600 ° C. are scattered very little from the MoSi 2 heating element. Therefore, the amount contained in the heating element does not matter in particular, and may be contained in a total amount of 1 ppm or more, for example, on the order of 100 ppm or 1000 ppm (acceptable).
As described above, a remarkable effect of being able to prevent a main substance that scatters from the MoSi 2 heating element and contaminates the inside of the heat treatment furnace for a semiconductor manufacturing apparatus and the semiconductor wafer is obtained.
[0011]
The above-mentioned impurities include impurities mixed into MoSi 2 and impurities mixed into silica (SiO 2 ) to be added, and a high-purity material is used, and the amount of the impurities is limited to the above.
Usually, high-purity silica is contained in an amount of 20 wt% or less, preferably 10 wt% or less as a vitreous forming material. This is because a phase transition accompanied by a change in volume of SiO 2 is taken into consideration, and if the content of SiO 2 is too large, its influence becomes large, which may hinder the strength of the heating element.
The MoSi 2 heating element described above is suitable for a heat treatment furnace for a semiconductor manufacturing apparatus, and has a remarkable effect of preventing contamination of the semiconductor device.
[0012]
The heating element made of MoSi 2 is obtained by washing the MoSi 2 raw material powder with an acid, drying it, mixing and pulverizing it with SiO 2 , mixing it with a binder, and further extruding it into a rod or a flat plate, for example.
The formed body thus obtained is degreased, subjected to primary sintering and electrically heated and sintered to produce a high-density MoSi 2 heating element.
Further, the rod-shaped or flat-shaped heating element thus manufactured is joined to produce, for example, an arc shape or a U-shaped shape. As described above, after the MoSi 2 heating element is formed into various shapes, it is set in a heat treatment furnace for a semiconductor manufacturing apparatus.
[0013]
The acid cleaning uses an acid other than sulfuric acid. For example, cleaning is performed using a mixed acid of dilute hydrochloric acid and nitric acid. This acid cleaning is extremely important, and can significantly reduce impurities such as chromium, nickel, iron, manganese, magnesium, sodium, and potassium.
Cleaning the MoSi 2 raw material powder with acid does not require much labor and cost. Nevertheless, there is a significant impurity removal effect.
For example, an impurity vapor pressure at 1600 ° C contained in the MoSi 2 raw material powder is 1.0 × 10 -3 mmHg or more, be contained in a total amount 1000ppm or more, contained in the MoSi 2 raw powder after pickling This has the effect of reducing the total amount of the same impurity to 300 ppm or less.
[0014]
[Examples and Comparative Examples]
EXAMPLES Hereinafter, Examples and Comparative Examples will be described. However, the present Examples are intended to facilitate understanding, and do not limit the present invention. That is, other modifications or other embodiments within the technical idea of the present invention are naturally included in the present invention.
[0015]
(Example 1)
As the MoSi 2 powder used as a heating element material, a powder having a purity level of 2N to 3N can be used. Table 1 shows the main impurity contents of the MoSi 2 powder.
As is clear from Table 1, impurities such as iron (Fe), chromium (Cr), nickel (Ni), iron (Fe), manganese (Mn), magnesium (Mg), sodium (Na), and potassium (K). Is contained in a considerable amount. This was washed with a mixed acid of dilute hydrochloric acid and nitric acid.
Table 1 also shows the impurity contents after washing with an acid. After washing with acid, impurities were significantly removed, as shown in Table 1. Further, the specific surface area of the MoSi 2 powder increased by 30%.
On the other hand, as the SiO 2 powder, a commercially available product is used, but a material purified by evaporating a contained metal component by performing a heat treatment at a high temperature of 1650 ° C. or more for a long time after selectively removing impurities is used.
Incidentally, the high-temperature heat treatment of SiO 2 is required to phase transition crystal structure of SiO 2 of silica in a stable cristobalite at high temperatures.
[0016]
95% by weight of the MoSi 2 powder and 5% by weight of the SiO 2 powder are mixed with a binder (the binder is not calculated in a mixing ratio; the same applies hereinafter), and the mixture is extruded from a mold to form a rod-shaped molded body. did.
The rod-shaped molded body (green) was degreased, primary sintered, and electrically heated and sintered to obtain a MoSi 2 rod-shaped heating element.
The MoSi 2 powder used in this MoSi 2 made rod-shaped heating element, as shown in Table 1, Fe: 110wtppm, W: 120wtppm, Nb: 40wtppm, Ta: 40wtppm was contained.
However, since these have a low vapor pressure, that is, the vapor pressure at 1600 ° C. is less than 1.0 × 10 −3 mmHg, they are scattered from the heating element made of MoSi 2 , and the inside of the heat treatment furnace for a semiconductor manufacturing apparatus and the semiconductor wafer are removed. Very little pollution. Here, Fe is 110 ppm, which is a compound of Fe having a low vapor pressure.
[0017]
On the other hand, impurities such as Fe, Mn, Mg, Na, and K having a high vapor pressure, that is, a vapor pressure at 1600 ° C. of 1.0 × 10 −3 mmHg or more are contained in a heat treatment furnace for a semiconductor manufacturing apparatus and a semiconductor wafer. Can be said to be highly contaminated.
However, as shown in Table 1, Cr was 30 wtppm, Ni was 10 wtppm, Mn was 4 wtppm, Mg was 1 wtppm, Na was 3 wtppm, and K was 2 wtppm, and the amount itself as a pollutant was significantly reduced. It can be seen that the level is not particularly problematic in the embodiment. The content of Fe is 110 wtppm, which is an Fe compound having a low vapor pressure.
Note that the impurities in the heating element are slightly contaminated from the starting materials in Table 1 due to contamination from containers, tools, and the like in the manufacturing process of the heating element. It is important to reduce the metal contamination from the manufacturing process as much as possible by lining the inner wall of the pulverizing container with Mo, or by using an air current pulverization method.
[0018]
[Table 1]
Figure 2004214075
[0019]
Next, in order to confirm the behavior of the contaminants (impurities), the high-purity MoSi 2 rod-shaped heating element thus obtained was placed immediately below a quartz plate (between 3 and 10 mm), and the surface of the heating element was exposed in air. Electric heating was performed so that the temperature became 1600 ° C.
In this test, the vaporized material from the heating element surface and the scattered components due to the high vapor pressure are reprecipitated on the quartz plate.By observing the quartz plate, the amount of metal contamination from the heating element can be simulated. Can be evaluated.
After heating and holding the heating element for 10 minutes, the amount of impurities attached to the lower surface of the quartz plate was observed (visual and SEM observation). No discoloration of the quartz plate was visually observed, and nothing was observed even by SEM observation.
From the above, when the heating element material shown in Example 1 is used with a heat treatment furnace for a semiconductor manufacturing apparatus, there is a low possibility that impurities radiated from the heating element material at the time of heat generation contaminate the heat treatment target. Is a very preferable material.
In addition, in the heat cycle characteristics test in which the heating element material was kept at room temperature and 500 ° C. for 30 hours, it did not become powdered even after 50 cycles, and in the bending test after treatment at 1600 ° C. for 300 hours, it did not exceed 300 MPa. there were.
[0020]
(Example 2)
Using a raw material shown in Table 2, particularly a raw material containing a large amount of impurities with low vapor pressures of W, Nb and Ta, pickling was similarly performed to produce a MoSi 2 rod-shaped heating element.
The purity is shown in Table 2. As shown in Table 2, the heating element contains a large amount of W, Nb, and Ta. In the same manner as in Example 1, this MoSi 2 rod-shaped heating element was placed immediately below a quartz plate (between 3 and 10 mm), and was heated by heating so that the surface temperature of the heating element was 1600 ° C. in the atmosphere. Then, the amount of impurities attached to the lower surface of the quartz plate was observed (visual and SEM observation).
However, no deposit on the quartz plate was observed from this heating element. From these facts, even if impurities such as W, Nb, Ta and the like whose vapor pressure at 1600 ° C. is less than 1.0 × 10 −3 mmHg are contained in the heating element in a large amount, these impurities may be generated during heating. It was found that it did not scatter and had no adverse effects as impurities.
[0021]
[Table 2]
Figure 2004214075
[0022]
(Comparative Example 1)
A commercially available MoSi 2 powder 95 wt% (Fe 600 wt ppm), which is generally called high purity, and similarly a commercially available SiO 2 powder 5 wt% are finely pulverized, mixed with a binder, and extruded from a mold. A rod-shaped molded body was obtained.
The rod-shaped formed body (green) was degreased, primary-sintered, and electrically heated and sintered to obtain a MoSi 2 rod-shaped heating element.
Similarly, Table 1 shows the analysis values of impurities. As shown in Table 1, the MoSi 2 rod-shaped heating element includes Fe: 600 wtppm, W: 20 wtppm, Cr: 30 wtppm, Ni: 10 wtppm, Nb: 10 wtppm, Ta: 3 wtppm, Mn: 10 wtppm, Mg: 6 wtppm, Na: 1 wtppm, K: 1 wtppm. These include oxides.
[0023]
Next, the MoSi 2 rod-shaped heating element thus obtained was placed immediately below the quartz plate, and was heated by heating so that the surface temperature of the heating element was 1600 ° C. in the atmosphere. In the same manner as in the above example, the heating element was heated and maintained for 10 minutes, and then the amount of impurities attached to the quartz plate was observed (visual and SEM observations).
The quartz plate had visually turned brown, and a large amount of impurities had adhered to the entire surface of the portion located directly above the heating element. Analysis of these deposits revealed that it was mainly Fe here.
From the above, when used with a heat treatment furnace for a semiconductor manufacturing apparatus, there is a high possibility that impurities released from the heating element material at the time of heat generation contaminate the object to be heat treated, and an undesirable result as a heating element material was obtained.
[0024]
As described above, by heating the MoSi 2 rod-shaped heating element, the heating element having a large amount of impurities, in particular, having a large vapor content at 1600 ° C. of 1.0 × 10 −3 mmHg or more has a large content of impurities. With regard to (2), the more the quartz plate disposed in the vicinity is discolored, the more the impurities are scattered from the heating element, and it is essential that these impurities are mixed into the semiconductor wafer or the like and have an adverse effect.
The present invention reduces the impurities affecting the semiconductor device production from MoSi 2 powder material containing MoSi 2 as a main component at 80% by weight or more, preferably 90% by weight or less at a low cost, and integrates heating elements. It has excellent characteristics that it can easily take advantage of the characteristics of the heating element mainly composed of MoSi 2, which has high heat resistance, is easy to raise the temperature and control the temperature, and has few failures such as deformation (roughness) and short-circuit during heating. Have.
[0025]
【The invention's effect】
A heating element containing 80 wt% or more of MoSi 2 as a main component of the present invention and made of residual SiO 2 has high integration of the heating element, is easy to raise the temperature and control the temperature, and has a deformation (roughness) and a short circuit during heating. In addition to taking advantage of the characteristics of the heating element containing MoSi 2 as a main component, which has few failures, such as MoSi 2 as a main component, impurities that affect semiconductor device production can be reduced at a low cost from a somewhat low-purity MoSi 2 powder material, and contaminants (impurities) can be reduced. ), Which is an excellent effect of being able to provide a heat generating material which is particularly useful for a heat treatment furnace for semiconductor manufacturing equipment (including an oxidation / diffusion furnace).

Claims (6)

MoSiを主成分として80wt%以上含み、残余SiOと不純物からなる発熱体において、該発熱体中に含まれる不純物の内、1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の総量が300ppm以下であることを特徴とするMoSiを主成分とする発熱体。In a heating element containing 80 wt% or more of MoSi 2 as a main component and composed of residual SiO 2 and impurities, of the impurities contained in the heating element, when the vapor pressure at 1600 ° C. is 1.0 × 10 −3 mmHg or more. A heating element containing MoSi 2 as a main component, wherein a total amount of certain impurities is 300 ppm or less. 半導体製造装置用熱処理炉に使用することを特徴とする請求項1記載のMoSiを主成分とする発熱体。Heating element mainly composed of MoSi 2 according to claim 1, characterized by using a heat treatment furnace for semiconductor manufacturing equipment. MoSi原料粉を酸で洗浄し乾燥する工程、SiOと混合粉砕する工程、バインダーと混合し脱脂する工程、通電焼結する工程からなることを特徴とするMoSiを主成分とする発熱体の製造方法。A heating element comprising MoSi 2 as a main component, comprising a step of washing and drying the MoSi 2 raw material powder with an acid, a step of mixing and crushing with SiO 2 , a step of mixing with a binder and degreasing, and a step of electrical sintering. Manufacturing method. 脱脂後一次焼結する工程を含むことを特徴とする請求項3記載のMoSiを主成分とする発熱体の製造方法。The method for producing a heating element containing MoSi 2 as a main component according to claim 3, further comprising a step of performing primary sintering after degreasing. 硫酸以外の酸で洗浄することを特徴とする請求項3又は4記載のMoSiを主成分とする発熱体の製造方法。The method for producing a heating element containing MoSi 2 as a main component according to claim 3, wherein the heating element is washed with an acid other than sulfuric acid. 酸洗後のMoSi原料粉に含まれる1600°Cにおける蒸気圧が1.0×10−3mmHg以上である不純物の総量が300ppm以下であることを特徴とする請求項3〜5のそれぞれに記載のMoSiを主成分とする発熱体の製造方法。The total amount of impurities having a vapor pressure of not less than 1.0 × 10 −3 mmHg at 1600 ° C. contained in the MoSi 2 raw material powder after pickling is not more than 300 ppm, wherein the total amount of impurities is 300 ppm or less. A method for producing a heating element containing MoSi 2 as a main component.
JP2003000935A 2003-01-07 2003-01-07 HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT Pending JP2004214075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000935A JP2004214075A (en) 2003-01-07 2003-01-07 HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000935A JP2004214075A (en) 2003-01-07 2003-01-07 HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT

Publications (1)

Publication Number Publication Date
JP2004214075A true JP2004214075A (en) 2004-07-29

Family

ID=32819086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000935A Pending JP2004214075A (en) 2003-01-07 2003-01-07 HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT

Country Status (1)

Country Link
JP (1) JP2004214075A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136981B2 (en) * 1983-12-26 1989-08-03 Toshiba Ceramics Co
JPH03174364A (en) * 1989-11-30 1991-07-29 Kyocera Corp Silicon nitride-based sintered body
JPH10324571A (en) * 1997-05-23 1998-12-08 Riken Corp Molybdenum disilicide ceramic heat generating body and its production
JPH11317282A (en) * 1998-02-20 1999-11-16 Riken Corp Molybdenum disilicide composite ceramic heating element and its manufacture
JPH11322431A (en) * 1998-05-21 1999-11-24 Japan Energy Corp Pyrogenous material composed of molybdenum disilicide as major part having low oxygen diffusible vitreous coating layer
JP2000243538A (en) * 1999-02-22 2000-09-08 Japan Energy Corp HEATER CONTAINING MoSi2 AS MAIN COMPONENT AND MANUFACTURE THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136981B2 (en) * 1983-12-26 1989-08-03 Toshiba Ceramics Co
JPH03174364A (en) * 1989-11-30 1991-07-29 Kyocera Corp Silicon nitride-based sintered body
JPH10324571A (en) * 1997-05-23 1998-12-08 Riken Corp Molybdenum disilicide ceramic heat generating body and its production
JPH11317282A (en) * 1998-02-20 1999-11-16 Riken Corp Molybdenum disilicide composite ceramic heating element and its manufacture
JPH11322431A (en) * 1998-05-21 1999-11-24 Japan Energy Corp Pyrogenous material composed of molybdenum disilicide as major part having low oxygen diffusible vitreous coating layer
JP2000243538A (en) * 1999-02-22 2000-09-08 Japan Energy Corp HEATER CONTAINING MoSi2 AS MAIN COMPONENT AND MANUFACTURE THEREOF

Similar Documents

Publication Publication Date Title
JP4773438B2 (en) Mercury-releasing composition and method for producing the same
JP2008169464A (en) Sputtering target and method for fabricating the same
JP4432015B2 (en) Sputtering target for thin film wiring formation
WO2005073418A1 (en) Tungsten based sintered compact and method for production thereof
JP4976567B2 (en) Thermoelectric conversion material
JP2011523978A (en) Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof
CN106796910A (en) The preparation method of ceramic structure, base plate keeping device part and ceramic structure
JP5099976B2 (en) Method for producing thermoelectric conversion material
TW200300455A (en) MgO deposition material and production method of the same
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP4243943B2 (en) Aluminum nitride material and semiconductor manufacturing member
JP2004214075A (en) HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT
WO2003043952A1 (en) HEATING ELEMENT COMPRISING MoSi2 AS PRIMARY COMPONENT
JP4515038B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
JP5122593B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP2018009233A (en) Ni-V alloy sputtering target
JPH0715134B2 (en) Ni-based heat-resistant alloy
JP2009013456A (en) Nickel alloy powder production method
JP4238768B2 (en) P-containing W powder and sputtering sintered target produced using the same
JP2021075749A (en) Sputtering target
JP2002182365A (en) Sputtering target, method for producing the same, phase shift mask blank and phase shift mask
JP5653654B2 (en) Method for manufacturing thermoelectric material
JP2019218592A (en) Silicide alloy material and element including the same
JP4609837B2 (en) Heater composed mainly of MoSi2 with excellent pest resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080616

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080808