JP4722463B2 - Dielectric ceramics for electrostatic chuck and manufacturing method thereof - Google Patents

Dielectric ceramics for electrostatic chuck and manufacturing method thereof Download PDF

Info

Publication number
JP4722463B2
JP4722463B2 JP2004351293A JP2004351293A JP4722463B2 JP 4722463 B2 JP4722463 B2 JP 4722463B2 JP 2004351293 A JP2004351293 A JP 2004351293A JP 2004351293 A JP2004351293 A JP 2004351293A JP 4722463 B2 JP4722463 B2 JP 4722463B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
transition metal
electrostatic chuck
metal oxide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004351293A
Other languages
Japanese (ja)
Other versions
JP2006165107A (en
Inventor
裕人 海野
展正 小杉
潤 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2004351293A priority Critical patent/JP4722463B2/en
Publication of JP2006165107A publication Critical patent/JP2006165107A/en
Application granted granted Critical
Publication of JP4722463B2 publication Critical patent/JP4722463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体や液晶の製造工程において、シリコン基板、化合物半導体基板やガラス基板の固定、搬送、平面度矯正に用いられる静電チャックに適する静電チャック用誘電体セラミックスに関する。   The present invention relates to a dielectric ceramic for an electrostatic chuck suitable for an electrostatic chuck used for fixing, transporting, and flattening a silicon substrate, a compound semiconductor substrate, or a glass substrate in a semiconductor or liquid crystal manufacturing process.

従来より、半導体や液晶の製造工程において、シリコン基板、化合物半導体基板やガラス基板を固定、搬送するために、静電チャックが用いられてきた。特に、電子ビーム描画装置、ドライエッチング装置、CVD装置、PVD装置など、真空中で基板を固定、搬送する場合には真空チャックが使えないため、気体圧力差が無くても基板を固定、搬送できる静電チャックが有効であった。さらに近年では、デバイスの微細化に伴って基板であるウエハやガラス基板の平坦度が益々重視され、その矯正に静電チャックが利用されつつある。   Conventionally, electrostatic chucks have been used to fix and transport silicon substrates, compound semiconductor substrates, and glass substrates in semiconductor and liquid crystal manufacturing processes. In particular, when a substrate is fixed and transported in a vacuum, such as an electron beam lithography apparatus, dry etching apparatus, CVD apparatus, and PVD apparatus, a vacuum chuck cannot be used, so that the substrate can be fixed and transported even if there is no gas pressure difference. The electrostatic chuck was effective. Furthermore, in recent years, with the miniaturization of devices, the flatness of wafers and glass substrates, which are substrates, has been increasingly emphasized, and electrostatic chucks are being used for correction.

このような基板の平坦度の矯正には極めて大きな吸着力が必要とされ、そのためにはアルミナ(Al23)のような絶縁体にチタニア(TiO2)等の遷移金属酸化物を混合して誘電体セラミックスの体積固有抵抗率を低下させ、静電吸着力を向上させることが提案されている(特許文献1、特許文献2、非特許文献1、特許文献3、特許文献4等参照)。 In order to correct the flatness of such a substrate, an extremely large adsorption force is required. For this purpose, a transition metal oxide such as titania (TiO 2 ) is mixed with an insulator such as alumina (Al 2 O 3 ). It has been proposed to reduce the volume resistivity of dielectric ceramics and improve electrostatic attraction (see Patent Document 1, Patent Document 2, Non-Patent Document 1, Patent Document 3, Patent Document 4, etc.). .

特開昭62−94953号公報Japanese Patent Laid-Open No. 62-94953 特開平2−22166号公報JP-A-2-22166 特開平3−147843号公報JP-A-3-147784 特開2003−188247号公報JP 2003-188247 A 特開昭37−8579号公報JP 37-8579 A 特開平11−176920号公報JP-A-11-176920 Jpn.J.Appl.Phys.Vol.32(1993)pp.864−87Jpn. J. et al. Appl. Phys. Vol. 32 (1993) p. 864-87

以下、遷移金属としてチタン(Ti)を例に説明するが、これに限ったものではない。TiO2を混合したAl23を使用すると、添加したTiがAl23粒子内に固溶し、さらに、Al23粒子間にある粒界相にもTiが固溶するため、母相である誘電体セラミックスの体積固有抵抗率は低下する。この体積固有抵抗率が1×109〜1×1011Ωcmの範囲であれば、誘電体セラミックスと被吸着物との界面の小さなギャップに微少電流が流れ、ジョンソンラーベック効果により吸着力は大幅に向上する。しかしながら、TiO2を混合して焼結すると、誘電体セラミックスを構成するAl23粒子間に、アルミニウム(Al)とTiからなる複合酸化物、例えば、チタン酸アルミニウム(Al2TiO5)が同時に形成されてしまう。このAl2TiO5は、Al23−TiO2二成分系において、1150〜1300℃に共析分解温度を有する1012Ωcm以上の高抵抗な化合物である。このように、異なった抵抗率の相が存在すると、被吸着物が吸着面から容易に離脱できなくなってしまうなど、電圧に対する応答特性(吸着力飽和時間、残留吸着力消滅時間)が劣ることを本発明者らは見出した。これは、電荷の動きは抵抗率の比較的低いAl23母相では容易に起こるが、それがAl2TiO5との境界に達したところで阻止されてしまうためである。 Hereinafter, although titanium (Ti) is demonstrated to an example as a transition metal, it is not restricted to this. When Al 2 O 3 is used a mixture of TiO 2, added was Ti is dissolved in the Al 2 O 3 within the particles, further, since the Ti in the grain boundary phase present between Al 2 O 3 particles are dissolved, The volume resistivity of the dielectric ceramic that is the parent phase is lowered. If this volume resistivity is in the range of 1 × 10 9 to 1 × 10 11 Ωcm, a small current flows through a small gap at the interface between the dielectric ceramic and the object to be adsorbed, and the adsorption power is greatly increased by the Johnson Rabeck effect. To improve. However, when TiO 2 is mixed and sintered, a composite oxide composed of aluminum (Al) and Ti, such as aluminum titanate (Al 2 TiO 5 ), is present between Al 2 O 3 particles constituting the dielectric ceramic. It is formed at the same time. This Al 2 TiO 5 is a high-resistance compound having a eutectoid decomposition temperature of 1150 to 1300 ° C. and a resistance of 10 12 Ωcm or more in an Al 2 O 3 —TiO 2 binary system. In this way, when there are phases with different resistivity, the object to be adsorbed cannot be easily detached from the adsorption surface, and the response characteristics to voltage (adsorption force saturation time, residual adsorption force extinction time) are inferior. The inventors have found. This is because the charge movement easily occurs in the Al 2 O 3 matrix having a relatively low resistivity, but is blocked when it reaches the boundary with Al 2 TiO 5 .

特に、特許文献2や特許文献4に開示されている技術では、TiO2等の遷移金属酸化物に加え、マグネシウム(Mg)、カルシウム(Ca)等のアルカリ土類金属の酸化物が含まれている。Al2TiO5は、低温域では比較的不安定で分解しやすいが、マグネシア(MgO)等アルカリ土類金属酸化物の添加が分解抑制に効果的であることが古くから知られている(特許文献5)。これは、Al2TiO5とTi、Mgからなる複合酸化物(MgTi25)が各々全率固溶体を形成し、Al2TiO5の共析分解温度を低下させるためであると考えられる。このため、高抵抗な複合酸化物(Al2TiO5、MgAl8Ti625、Mg0.3Al1.4Ti1.35、Mg0.6Al0.8Ti0.65等)がAl23粒子間に安定に存在し、残留吸着消滅時間等の脱着応答特性を劣化させてしまうという問題がある。 In particular, the techniques disclosed in Patent Document 2 and Patent Document 4 include oxides of alkaline earth metals such as magnesium (Mg) and calcium (Ca) in addition to transition metal oxides such as TiO 2. Yes. Al 2 TiO 5 is relatively unstable and easily decomposed at low temperatures, but it has long been known that the addition of alkaline earth metal oxides such as magnesia (MgO) is effective in suppressing decomposition (patents). Reference 5). This is considered to be because the composite oxides (MgTi 2 O 5 ) composed of Al 2 TiO 5 , Ti, and Mg each form a full solid solution and lower the eutectoid decomposition temperature of Al 2 TiO 5 . For this reason, high resistance composite oxides (Al 2 TiO 5 , MgAl 8 Ti 6 O 25 , Mg 0.3 Al 1.4 Ti 1.3 O 5 , Mg 0.6 Al 0.8 Ti 0.6 O 5, etc.) are stable between the Al 2 O 3 particles. And the desorption response characteristics such as the residual adsorption disappearance time are deteriorated.

また、特許文献2では、残留静電吸着力は誘電体セラミックスの体積固有抵抗率の低下によって低減され、残留する体積電荷、表面電荷の消失速度が体積固有抵抗率に反比例して速まるとしている。この発明によると、体積固有抵抗率を例えば、1×108ΩcmにするにはTiO2を25質量%程度混合する必要があるが、半導体や液晶の製造工程においてはこのような不純物の混入は極力さけなければならない。また、体積固有抵抗率が低過ぎると、吸着装置からシリコン基板に大きなリーク電流が流れてウエハの回路が破壊されるという新たな問題が発生してしまう。 In Patent Document 2, the residual electrostatic attraction force is reduced by a decrease in the volume resistivity of the dielectric ceramic, and the disappearance rate of the remaining volume charge and surface charge is increased in inverse proportion to the volume resistivity. According to the present invention, in order to set the volume resistivity to, for example, 1 × 10 8 Ωcm, it is necessary to mix about 25% by mass of TiO 2. You must avoid as much as possible. Further, if the volume resistivity is too low, a new problem arises that a large leak current flows from the adsorption device to the silicon substrate and the circuit of the wafer is destroyed.

特に近年では、半導体や液晶の各種処理工程における処理時間を短くし、生産性を向上することが強く求められており、応答特性の劣化は一枚の基板を処理するのに要する時間(スループット)を劣化させるため大きな問題となっている。例えば、半導体の製造工程においては、残留吸着力消滅時間が10秒以内であることが必要であり、好ましくは、3秒以内とされている。   Particularly in recent years, there has been a strong demand for shortening the processing time in various processing steps for semiconductors and liquid crystals and improving productivity, and the deterioration of response characteristics is the time required to process one substrate (throughput). Is a big problem. For example, in the semiconductor manufacturing process, it is necessary that the residual adsorption power disappearance time is within 10 seconds, and preferably within 3 seconds.

上記問題を解決するための技術が、特許文献6に提案されている。これによると、Al23に、TiO2を2.5〜5質量%、及び5質量%以下の窒化チタン(TiN)の粉末を添加し、混練、成形、焼成した焼結体とすれば、該焼結体中あるいは粒界でTiO2とTiNまたはAl23とTiNの間等でオキシナイトライド形成が起こり、電荷の移動速度がTiO2だけを添加した場合より速くなり、脱着応答性が速い静電吸着部を形成することができるというものである。しかしながら、前述の発明では、Al2TiO5等の高抵抗な複合酸化物も同時に形成してしまうため、Al23と複合酸化物の界面において電荷の移動速度が遅くなり、結果的には、脱着応答性が十分に改善されていないという問題があった。 A technique for solving the above problem is proposed in Patent Document 6. According to this, if a powder of titanium nitride (TiN) of 2.5 to 5 mass% and 5 mass% or less of TiO 2 is added to Al 2 O 3 , the sintered body is kneaded, molded and fired. In addition, oxynitride formation occurs between TiO 2 and TiN or Al 2 O 3 and TiN in the sintered body or at the grain boundary, and the charge transfer rate becomes faster than when only TiO 2 is added, and the desorption response It is possible to form an electrostatic attraction portion having high properties. However, in the above-described invention, a high-resistance composite oxide such as Al 2 TiO 5 is also formed at the same time, so that the charge transfer speed is slow at the interface between Al 2 O 3 and the composite oxide, and as a result, There was a problem that the desorption responsiveness was not sufficiently improved.

そこで、本発明が解決しようとする課題は、アルミナを主成分とする静電チャック用誘電体セラミックスにおいて、吸着装置から被吸着物に流れるリーク電流の増大を伴うことなく、且つ、高い吸着力を保持したまま、脱着応答性を大幅に改善させることにある。   Therefore, the problem to be solved by the present invention is that dielectric ceramics for electrostatic chucks mainly composed of alumina have a high adsorption force without increasing the leakage current flowing from the adsorption device to the object to be adsorbed. The object is to greatly improve the desorption response while maintaining the same.

本発明は、このような問題点に鑑みなされたもので、電圧を印加している間は大きな吸着力を有し、吸着装置から被吸着物に流れるリーク電流が小さく、さらに、電圧印加を止めた時には被吸着物が容易に離脱できる静電チャック用誘電体セラミックス及びその製造方法を提案することを目的とする。   The present invention has been made in view of such problems, and has a large adsorption force during application of a voltage, a small leakage current flowing from the adsorption device to the object to be adsorbed, and further, the voltage application is stopped. It is an object of the present invention to propose a dielectric ceramic for an electrostatic chuck and a method for manufacturing the same, in which an object to be adsorbed can be easily detached.

即ち、本発明の要旨とするところは以下の通りである。
(1)アルミナ、遷移金属酸化物及び不可避不純物からなる静電チャック用誘電体セラミックスにおいて、前記誘電体セラミックスを構成するアルミナ粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%(ただし0.6質量%以下を除く。)含み、アルミナと遷移金属酸化物の複合酸化物結晶粒は3質量%以下であることを特徴とする静電チャック用誘電体セラミックス。
(2)遷移金属がチタン、クロム、鉄、ニッケル、ニオブ、ジルコニウムのうちから選定される1種又は数種であることを特徴とする上記(1)に記載の静電チャック用誘電体セラミックス。
(3)誘電体セラミックスの25℃における体積固有抵抗率が、1×109〜1×1013Ωcmであることを特徴とする上記(1)又は(2)に記載の静電チャック用誘電体セラミックス。
(4)アルミナ粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含み、アルミナと遷移金属酸化物の複合酸化物結晶粒は3質量%以下になるように遷移金属酸化物原料を添加した混合粉末を還元雰囲気で焼成したことを特徴とする上記(1)乃至(3)のいずれかに記載の静電チャック用誘電体セラミックスの製造方法。
(5)前記焼成が、常圧焼成、ガス圧焼成、ホットプレス焼成、HIP焼成の何れか、又は、それらを組み合わせてなることを特徴とする上記(4)に記載の静電チャック用誘電体セラミックスの製造方法。
That is, the gist of the present invention is as follows.
(1) alumina, the transition metal oxide and the electrostatic chuck dielectric ceramics composed of unavoidable impurities, among the alumina grains forming the dielectric ceramics, the transition metal oxide grains 0.3 to 10 wt% ( However, 0.6 mass% or less is excluded.) A dielectric ceramic for an electrostatic chuck characterized in that the composite oxide crystal grain of alumina and transition metal oxide is 3 mass% or less.
(2) The dielectric ceramic for electrostatic chuck according to (1), wherein the transition metal is one or several selected from titanium, chromium, iron, nickel, niobium, and zirconium.
(3) The dielectric material for electrostatic chuck according to (1) or (2) above, wherein the dielectric ceramic has a volume resistivity at 25 ° C. of 1 × 10 9 to 1 × 10 13 Ωcm. Ceramics.
(4) Transition metal oxide raw material containing 0.3 to 10% by mass of transition metal oxide crystal grains between alumina particles, and 3% by mass or less of composite oxide crystal grains of alumina and transition metal oxide The method for producing a dielectric ceramic for an electrostatic chuck according to any one of the above (1) to (3), wherein the mixed powder to which is added is fired in a reducing atmosphere.
(5) The dielectric for electrostatic chuck according to the above (4), wherein the firing is any one of normal pressure firing, gas pressure firing, hot press firing, HIP firing, or a combination thereof. Manufacturing method of ceramics.

本発明は、Al23 、遷移金属酸化物及び不可避不純物からなる静電チャック用誘電体セラミックスにおいて、前記誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%、Al23と遷移金属酸化物との複合酸化物結晶粒は3質量%以下含むため、シリコン基板やガラス基板を吸着させた場合、吸着力が十分に強く、脱着応答性が極めて優れており、さらに、緻密質の誘電体セラミックスであるため脱粒によるパーティクルの発生も抑えることができ、産業上その利用価値は極めて高いものである。 The present invention relates to dielectric ceramics for electrostatic chucks composed of Al 2 O 3 , transition metal oxides, and inevitable impurities , wherein transition metal oxide crystal grains are placed between Al 2 O 3 grains constituting the dielectric ceramics. .3-10% by mass, Al 2 O 3 and transition metal oxide compound oxide crystal grains contain 3% by mass or less, so when adsorbing a silicon substrate or glass substrate, the adsorption force is sufficiently strong and desorption Responsiveness is extremely excellent. Further, since it is a dense dielectric ceramic, generation of particles due to degranulation can be suppressed, and its utility value is extremely high in industry.

本発明は、Al23 、遷移金属酸化物及び不可避不純物からなる静電チャック用誘電体セラミックスにおいて、前記誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含み、Al23と遷移金属酸化物の複合酸化物結晶粒(以下、単に複合酸化物という)は3質量%以下含むことを特徴とする静電チャック用誘電体セラミックスを要旨とする。 The present invention relates to dielectric ceramics for electrostatic chucks composed of Al 2 O 3 , transition metal oxides, and inevitable impurities , wherein transition metal oxide crystal grains are placed between Al 2 O 3 grains constituting the dielectric ceramics. .3-10% by mass, Al 2 O 3 and transition metal oxide composite oxide crystal grains (hereinafter simply referred to as “composite oxide”) are contained in an amount of 3% by mass or less. Is the gist.

このように、誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含む静電チャック用誘電体セラミックスとすれば、遷移金属酸化物自身は還元雰囲気焼成で多くの酸素欠損を生じ、体積固有抵抗率が1×100〜1×108Ωcmまで低下する。このため、誘電体セラミックス焼結体は、Al23母相に低抵抗の粒子が分散した状態となり、Al23と遷移金属酸化物の界面において電荷の移動速度が速くなり、脱着応答性の優れた静電チャック用誘電体セラミックスを形成することができる。しかし、遷移金属酸化物結晶粒を0.3〜10質量%と少量しか分散、含有しないため、誘電体セラミックス自体の体積固有抵抗率を大きく下げることがない。このため、吸着装置から被吸着物に流れるリーク電流の増大を伴わずに、脱着応答性の優れた静電チャック用誘電体セラミックスを形成することができる。この遷移金属酸化物が0.3質量%よりも少ないと、脱着特性改善の効果が少なくなってしまう。また、遷移金属酸化物が10質量%よりも多いと、その焼結阻害により主成分であるアルミナ質焼結体の優れた機械的特性を劣化させてしまう。また、多くの遷移金属酸化物を添加すると、誘電体セラミックス自体の体積固有抵抗率が大きく低下してしまい、吸着装置から被吸着物に大きなリーク電流が流れてウエハの回路が破壊されるという問題も発生してしまう。 Thus, if the dielectric ceramic for an electrostatic chuck containing 0.3 to 10% by mass of transition metal oxide crystal grains between Al 2 O 3 particles constituting the dielectric ceramic is used, the transition metal oxide itself is Many oxygen vacancies are generated by firing in a reducing atmosphere, and the volume resistivity decreases from 1 × 10 0 to 1 × 10 8 Ωcm. For this reason, the dielectric ceramic sintered body is in a state where low-resistance particles are dispersed in the Al 2 O 3 matrix, and the charge transfer speed is increased at the interface between the Al 2 O 3 and the transition metal oxide, resulting in a desorption response. It is possible to form a dielectric ceramic for an electrostatic chuck having excellent properties. However, since the transition metal oxide crystal grains are dispersed and contained in a small amount of 0.3 to 10% by mass, the volume resistivity of the dielectric ceramic itself is not greatly lowered. For this reason, it is possible to form the dielectric ceramic for an electrostatic chuck having excellent desorption response without increasing the leakage current flowing from the adsorption device to the object to be adsorbed. If the transition metal oxide is less than 0.3% by mass, the effect of improving desorption characteristics is reduced. Moreover, when there are more transition metal oxides than 10 mass%, the outstanding mechanical characteristic of the alumina sintered compact which is a main component will be degraded by the sintering inhibition. Moreover, when a large amount of transition metal oxide is added, the volume resistivity of the dielectric ceramic itself is greatly reduced, and a large leak current flows from the adsorption device to the object to be adsorbed, thereby destroying the wafer circuit. Will also occur.

このように、誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含ませて、脱着応答性の優れた静電チャック用誘電体セラミックスを作製しても、高抵抗な複合酸化物が大量に形成されると、Al23と複合酸化物の界面において電荷の移動速度が遅くなり、誘電体セラミックス全体の脱着応答性を劣化させてしまう。本発明では、この複合酸化物の形成を3質量%以下に抑えているためこのような劣化が少なく、最終的に脱着応答性の良い静電チャック用誘電体セラミックスが得られる。 Thus, the dielectric ceramic for an electrostatic chuck having excellent desorption responsiveness by including 0.3 to 10% by mass of transition metal oxide crystal grains between the Al 2 O 3 particles constituting the dielectric ceramic. Even if it is fabricated, if a large amount of high-resistance composite oxide is formed, the charge transfer speed at the interface between Al 2 O 3 and the composite oxide becomes slow, and the desorption response of the entire dielectric ceramic deteriorates. End up. In the present invention, since the formation of this complex oxide is suppressed to 3% by mass or less, such deterioration is small, and finally dielectric ceramics for an electrostatic chuck with good desorption response can be obtained.

ここで誘電体セラミックスを構成するAl23粒子間に、シリカ(SiO2)、カルシア(CaO)、MgO等の焼結助剤、またはセラミックス原料中に含まれる不純物に起因する非晶質相が脱着特性を劣化させない程度に含まれていてもよい。 Here, between the Al 2 O 3 particles constituting the dielectric ceramic, a sintering aid such as silica (SiO 2 ), calcia (CaO), MgO or the like, or an amorphous phase caused by impurities contained in the ceramic raw material May be contained to such an extent that the desorption characteristics are not deteriorated.

遷移金属としては、Ti、クロム(Cr)、鉄(Fe)、ニオブ(Nb)、ジルコニウム(Zr)のうちから選定される1種または数種であればよく、特にTiが好ましい。   The transition metal may be one or several selected from Ti, chromium (Cr), iron (Fe), niobium (Nb), and zirconium (Zr), and Ti is particularly preferable.

また、本発明は、誘電体セラミックスの体積固有抵抗率が1×109〜1×1013Ωcmであることを特徴とする静電チャック用誘電体セラミックスを要旨とする。体積固有抵抗率が1×109Ωcm以上であれば十分な絶縁性が得られ、基板に流れるリーク電流は僅かで基板上の回路を損傷することがないので好適である。例えば、誘電体セラミックスの体積固有抵抗率が1×109Ωcm以上であれば、誘電体の厚みが3mm、直径が300mmの静電チャックとした場合、250Vの電圧印加で、リーク電流は1μA/cm2以下となり、基板上の回路を損傷することはない。一方、体積固有抵抗率が1×1013Ωcm以下であれば、ジョンソンラーベック効果により高い吸着力が得られるので好適である。従来の技術では、誘電体セラミックスの体積固有抵抗率が1×1012〜1×1013Ωcmと比較的高抵抗であると、ジョンソンラーベック効果により吸着力は向上し、リーク電流は少なく抑えられるが、脱着特性が大幅に劣ってしまうという問題があった。しかし、本発明の誘電体セラミックスでは、体積固有抵抗率が1×1012〜1×1013Ωcmと比較的高抵抗であっても、誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含むため、Al23単体の場合よりも電荷の移動速度が速くなり、極めて少ないリーク電流と優れた脱着特性を両立することが可能である。 The gist of the present invention is a dielectric ceramic for an electrostatic chuck, wherein the dielectric ceramic has a volume resistivity of 1 × 10 9 to 1 × 10 13 Ωcm. A volume resistivity of 1 × 10 9 Ωcm or more is preferable because sufficient insulation can be obtained, and a leak current flowing through the substrate is small and does not damage the circuit on the substrate. For example, if the dielectric ceramic has a volume resistivity of 1 × 10 9 Ωcm or more, an electrostatic chuck having a dielectric thickness of 3 mm and a diameter of 300 mm will have a leakage current of 1 μA / min when a voltage of 250 V is applied. It becomes less than cm 2 and does not damage the circuit on the substrate. On the other hand, if the volume resistivity is 1 × 10 13 Ωcm or less, it is preferable because a high adsorption force can be obtained by the Johnson Rabeck effect. In the prior art, when the volume resistivity of the dielectric ceramic is relatively high, 1 × 10 12 to 1 × 10 13 Ωcm, the adsorption power is improved by the Johnson Rabeck effect, and the leakage current is suppressed to a low level. However, there was a problem that the desorption characteristics were greatly deteriorated. However, in the dielectric ceramic according to the present invention, even if the volume resistivity is relatively high, 1 × 10 12 to 1 × 10 13 Ωcm, the transition occurs between the Al 2 O 3 particles constituting the dielectric ceramic. Since the metal oxide crystal grains are contained in an amount of 0.3 to 10% by mass, the charge transfer speed is faster than that of the case of Al 2 O 3 alone, and it is possible to achieve both an extremely small leakage current and excellent desorption characteristics. .

また、本発明の静電チャック用誘電体セラミックスは、Al23を主成分とし、Al23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含み、複合酸化物結晶粒は3質量%以下含むように遷移金属酸化物原料を添加した混合粉末を還元雰囲気で焼成することによって、吸着力が十分に高く、吸着装置から被吸着物に流れるリーク電流は小さく、且つ、脱着応答性に優れた静電チャック用誘電体セラミックスが得られる。 Further, the dielectric ceramic for electrostatic chuck of the present invention comprises Al 2 O 3 as a main component, and contains 0.3 to 10% by mass of transition metal oxide crystal grains between Al 2 O 3 particles. By firing the mixed powder to which the transition metal oxide raw material is added so as to contain 3% by mass or less of crystal grains in a reducing atmosphere, the adsorption power is sufficiently high, the leakage current flowing from the adsorption device to the adsorbent is small, and Thus, dielectric ceramics for electrostatic chucks excellent in desorption response can be obtained.

これらの出発原料としては、純度99%以上、平均粒径2.0μm以下、好ましくは平均粒径1.0μm以下のAl23粉末、平均粒径5μm以下、好ましくは平均粒径2μm以下の遷移金属酸化物粉末を用いるのが好ましい。 These starting materials include an Al 2 O 3 powder having a purity of 99% or more and an average particle size of 2.0 μm or less, preferably an average particle size of 1.0 μm or less, an average particle size of 5 μm or less, preferably an average particle size of 2 μm or less. It is preferable to use a transition metal oxide powder.

また、この出発原料の成型法としては、通常の金型プレス、冷間静水圧プレス(CIP)、シート成形など通常の成型法を用いることができる。   Moreover, as a molding method of this starting material, a normal molding method such as a normal mold press, cold isostatic press (CIP), or sheet molding can be used.

焼成は、還元性雰囲気で行う必要があり、還元雰囲気としては、H2、Ar、N2、カーボンヒーター、カーボン容器など還元源を有する雰囲気、またはその組み合わせを用いることができ、その還元雰囲気中で焼結温度1200〜1700℃に1〜10時間程度保持する。焼成方法としては、常圧焼成、ガス圧焼成、ホットプレス焼成、HIP焼成の何れか、または、その組み合わせを用いることができる。 Firing must be performed in a reducing atmosphere. As the reducing atmosphere, an atmosphere having a reducing source such as H 2 , Ar, N 2 , a carbon heater, a carbon container, or a combination thereof can be used. The sintering temperature is maintained at 1200 to 1700 ° C. for about 1 to 10 hours. As a firing method, any of normal pressure firing, gas pressure firing, hot press firing, HIP firing, or a combination thereof can be used.

Al23粒子間に存在する遷移金属酸化物は、上記還元雰囲気の焼成で多くの酸素欠損を生じ、その結果、Al23母相よりも低い1×100〜1×108Ωcmの体積固有抵抗率になる。例えばTiO2の場合には、TiO2-X(X≧0.1)の非化学量論組成において、1×100〜1×105Ωcmの低い体積固有抵抗率を示す事が知られている。この酸素欠損量Xは、通常のX線回折装置を用いてTiO2の格子定数を測定すれば求めることができる。この酸素欠損は、熱平衡状態では形成されず、より強い還元雰囲気では遷移金属酸化物の抵抗率も大きく低下するため、ガス圧焼成、ホットプレス焼成、HIP焼成など、より非平衡な雰囲気で焼成することが望ましい。さらに通常、Al23粒内、及び粒界に多くの遷移金属酸化物が残留していると焼結阻害を引き起こし、緻密な焼結体が得られない。そのため、緻密な誘電体セラミックスを得るためにもガス圧焼成、ホットプレス焼成、HIP焼成を行うことが好適である。 The transition metal oxide present between the Al 2 O 3 particles causes many oxygen vacancies upon firing in the reducing atmosphere, and as a result, it is 1 × 10 0 to 1 × 10 8 Ωcm lower than the Al 2 O 3 matrix. Of the volume resistivity. For example, TiO 2 is known to exhibit a low volume resistivity of 1 × 10 0 to 1 × 10 5 Ωcm in a non-stoichiometric composition of TiO 2−X (X ≧ 0.1). Yes. This oxygen deficiency X can be obtained by measuring the lattice constant of TiO 2 using a normal X-ray diffractometer. This oxygen deficiency is not formed in a thermal equilibrium state, and the resistivity of the transition metal oxide is greatly reduced in a stronger reducing atmosphere. Therefore, firing is performed in a more non-equilibrium atmosphere such as gas pressure firing, hot press firing, and HIP firing. It is desirable. Furthermore, usually, if a large amount of transition metal oxide remains in the Al 2 O 3 grains and at the grain boundaries, sintering inhibition is caused and a dense sintered body cannot be obtained. Therefore, it is preferable to perform gas pressure firing, hot press firing, and HIP firing in order to obtain a dense dielectric ceramic.

Al23と遷移金属酸化物の複合酸化物は、例えばAl23−TiO2二成分系では、1150〜1300℃にAl2TiO5からAl23TiO 2 への共析分解反応が存在する。このため、1300℃以上の焼成温度では、Al23とTiO2が反応し複合酸化物であるAl2TiO5が生成してしまうが、焼成後の冷却速度を遅くするなど焼成条件を最適化することにより、再度Al23とTiO2に再分解させることが可能である。しかし、Al2TiO5の共析分解反応は体積収縮を伴うため、常圧焼成では緻密な焼結体が得られ難く、緻密な誘電体セラミックスを得るには、ガス圧焼成、ホットプレス焼成、HIP焼成を行うことが好適である。 Composite oxide of a transition metal oxide and Al 2 O 3, for example in the Al 2 O 3 -TiO 2 two-component system, eutectoid decomposition from Al 2 TiO 5 in the 1150 to 1300 ° C. to Al 2 O 3 and TiO 2 There is a reaction. For this reason, at a firing temperature of 1300 ° C. or higher, Al 2 O 3 and TiO 2 react to produce a composite oxide, Al 2 TiO 5, but the firing conditions are optimal, such as slowing the cooling rate after firing. By reconstitution, it can be re-decomposed into Al 2 O 3 and TiO 2 again. However, since the eutectoid decomposition reaction of Al 2 TiO 5 involves volume shrinkage, it is difficult to obtain a dense sintered body by normal pressure firing. To obtain a dense dielectric ceramic, gas pressure firing, hot press firing, It is preferable to perform HIP firing.

また、共析分解温度以下で焼成すれば、Al2TiO5の生成を抑えることができるが、前記温度ではAl23の焼結が進まず、緻密な焼結体が得られない。そのため、緻密な誘電体セラミックスを得るためには、ガス圧焼成、ホットプレス焼成、HIP焼成を行うことが好ましい。 Further, if the firing is carried out at or below the eutectoid decomposition temperature, the formation of Al 2 TiO 5 can be suppressed, but at the above temperature, the sintering of Al 2 O 3 does not proceed and a dense sintered body cannot be obtained. Therefore, in order to obtain a dense dielectric ceramic, it is preferable to perform gas pressure firing, hot press firing, and HIP firing.

以下、本発明の実施例を詳細に説明するが、本発明にこれらに限定されるものではない。本発明者らは、十分に吸着力が強く、吸着装置から被吸着物に流れるリーク電流が少なく、且つ、残留吸着消滅時間等の脱着特性が優れた静電チャック用の誘電体セラミックスを得るためには、誘電体セラミックス層の材質を改善することが必要であると考え、誘電体セラミックスを構成するAl23粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%、複合酸化物結晶粒は3質量%以下含む誘電体セラミックスとすれば、所望の静電チャック用誘電体セラミックスが得られることを見出し、諸条件を精査して本発明を完成させたものである。 Examples of the present invention will be described in detail below, but the present invention is not limited thereto. In order to obtain dielectric ceramics for an electrostatic chuck having sufficiently strong adsorption power, little leakage current flowing from the adsorption device to the object to be adsorbed, and excellent desorption characteristics such as residual adsorption extinction time. Therefore, it is considered necessary to improve the material of the dielectric ceramic layer, and 0.3 to 10% by mass of a transition metal oxide crystal grain is combined between Al 2 O 3 particles constituting the dielectric ceramic. The inventors have found that a dielectric ceramic containing 3% by mass or less of oxide crystal grains can provide a desired dielectric ceramic for an electrostatic chuck, and have completed the present invention by examining various conditions.

本発明の静電チャック用誘電体セラミックスの一例として、α−Al23粉末にTiO2粉末を所定量秤量し、蒸留水、成型用有機バインダー、分散剤を加えてボールミル混合した。得られたスラリーをスプレードライヤーで造粒し、造粒粉とした。これを円盤状にCIP成形した後、大気中500℃で脱脂を行い、成形体を得た。この成形体をアルゴンガス中で表1に示した温度において、圧力30MPaで2時間ホットプレス焼成を行い、焼結体を得た。得られた焼結体を□40mm、厚さ3mmに加工し、誘電体とした。誘電体の焼結密度をアルキメデス法により測定、さらに体積固有抵抗率を三端子法で測定した(印加電圧250V、室温)。また、X線回折により構成相の同定、及び、得られたX線強度比からその含有量を定量的に分析した。次いで、誘電体の片側の表面にTiをスパッタし、導体層としての電極を付与した。これに絶縁体基板(アルミナ)を導体層が中間に挟まれるようにエポキシ系接着剤で接着した。この際、誘電体を2.5mmの厚みまで研削、ラップ加工し、リード電極をつけて静電チャックを作製した。 As an example of dielectric ceramics for electrostatic chucks of the present invention, a predetermined amount of TiO 2 powder was weighed into α-Al 2 O 3 powder, and distilled water, an organic binder for molding, and a dispersant were added and ball mill mixed. The obtained slurry was granulated with a spray dryer to obtain granulated powder. This was CIP-molded into a disk shape and then degreased at 500 ° C. in the atmosphere to obtain a molded body. This molded body was subjected to hot press firing at a pressure of 30 MPa for 2 hours at a temperature shown in Table 1 in an argon gas to obtain a sintered body. The obtained sintered body was processed into □ 40 mm and a thickness of 3 mm to obtain a dielectric . The sintered density of the dielectric was measured by the Archimedes method, and the volume resistivity was measured by the three-terminal method (applied voltage 250 V, room temperature). Moreover, the content was quantitatively analyzed from the identification of the constituent phase by X-ray diffraction and the obtained X-ray intensity ratio. Next, Ti was sputtered on the surface of one side of the dielectric to give an electrode as a conductor layer. An insulating substrate (alumina) was bonded to this with an epoxy adhesive so that the conductor layer was sandwiched between them. At this time, the dielectric was ground and lapped to a thickness of 2.5 mm, and a lead electrode was attached to produce an electrostatic chuck.

Figure 0004722463
Figure 0004722463

表1の本発明例1〜7は、TiO2,Al2TiO5の含有量がともに適正範囲内にある。比較例は1〜5は、TiO2、もしくは、Al2TiO5の含有量が本発明の適正範囲外にある。 In Invention Examples 1 to 7 in Table 1, the contents of TiO 2 and Al 2 TiO 5 are both within the appropriate range. In Comparative Examples 1 to 5 , the content of TiO 2 or Al 2 TiO 5 is outside the proper range of the present invention.

これら静電チャックについて、シリコンウエハを静電チャックの吸着面に載せ、リード電極から250Vの電圧を2分間印加した後の静電吸着力、及びリーク電流を測定した。さらに、各種静電チャックの応答特性は、250Vの電圧でシリコンウエハを2分間印加した後、電圧印加を止め、吸着力が20gf以下となる時間(残留吸着時間)を測定した。   For these electrostatic chucks, a silicon wafer was placed on the suction surface of the electrostatic chuck, and the electrostatic suction force and the leakage current after applying a voltage of 250 V from the lead electrode for 2 minutes were measured. Furthermore, the response characteristics of various electrostatic chucks were measured by applying a silicon wafer at a voltage of 250 V for 2 minutes, then stopping the voltage application, and measuring the time during which the suction force was 20 gf or less (residual suction time).

表1に、吸着力、リーク電流、残留吸着時間の結果を誘電体の焼結密度、体積固有抵抗率の値とともに示す。   Table 1 shows the results of adsorption force, leakage current, and residual adsorption time, together with the values of dielectric density and volume resistivity.

表1より、本発明例1〜7は、吸着力が十分に高く、且つ、残留吸着時間が極めて短いことが分かる。それに対して、比較例1〜4では、残留吸着時間が非常に長く、吸着力も低いことが分かる。比較例5では、誘電体の体積固有抵抗率が低いため、残留吸着時間は短いが、リーク電流が非常に多いことが分かる。 From Table 1, it can be seen that Examples 1 to 7 of the present invention have sufficiently high adsorption power and extremely short residual adsorption time. On the other hand, in Comparative Examples 1-4, it turns out that residual adsorption time is very long and adsorption power is also low. In Comparative Example 5, since the dielectric volume resistivity is low, the residual adsorption time is short, but it can be seen that the leakage current is very large.

本発明例1と比較例1を比較すると、誘電体の体積固有抵抗率は5×109Ωcmと同じであるにもかかわらず、TiO2とAl2TiO5の含有量の違いから、本発明例1では、吸着力が十分に高く、脱着応答性が極めて優れているのに対し、比較例1では、吸着力、脱着特性ともに大きく劣っていることが分かる。 When Example 1 of the present invention and Comparative Example 1 are compared, the volume resistivity of the dielectric is the same as 5 × 10 9 Ωcm, but due to the difference in the contents of TiO 2 and Al 2 TiO 5 , the present invention In Example 1, it can be seen that the adsorption force is sufficiently high and the desorption response is extremely excellent, whereas in Comparative Example 1, both the adsorption force and the desorption characteristic are greatly inferior.

これは、特許文献2における、残留吸着力は誘電体セラミックスの体積固有抵抗率の低下によって低減されることに反しており、誘電体セラミックスにおける相構成が脱着特性に極めて大きな影響を及ぼしていることを示唆している。この材料制御方法の場合には、残留吸着力が極めて小さな誘電体セラミックスを製造できる利点があり、逆電圧や交流を印加して残留吸着力を取り除いたり、スリット加工を施して容量成分を減少させて残留吸着力を小さくする等の特性加工を施す必要が全くない。 This in Patent Document 2, Zanryu attracting force is contrary to be reduced by lowering the volume resistivity of the dielectric ceramics, the Ai configuration of dielectric ceramics is that it had a very Okina effect desorption characteristics It suggests. In the case of this material control method, there is an advantage that a dielectric ceramic having a very small residual adsorption force can be produced. The residual adsorption force is removed by applying a reverse voltage or an alternating current, or slit processing is performed to reduce the capacitance component. Thus, there is no need to perform characteristic processing such as reducing the residual adsorption force.

また、本発明例1〜7は、焼結体の密度が非常に高く緻密であるため、真空中で使用した場合の吸着気体の離脱による真空度の低下や、脱粒によるパーティクルの発生を抑えることができる。   In addition, since Examples 1 to 7 of the present invention have a very high density of sintered bodies and are dense, suppress the decrease in the degree of vacuum due to the separation of the adsorbed gas when used in a vacuum, and the generation of particles due to degranulation. Can do.

Claims (5)

アルミナ、遷移金属酸化物及び不可避不純物からなる静電チャック用誘電体セラミックスにおいて、前記誘電体セラミックスを構成するアルミナ粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%(ただし0.6質量%以下を除く。)含み、アルミナと遷移金属酸化物の複合酸化物結晶粒は3質量%以下であることを特徴とする静電チャック用誘電体セラミックス。 In the dielectric ceramic for an electrostatic chuck composed of alumina, transition metal oxide, and unavoidable impurities, 0.3 to 10% by mass of transition metal oxide crystal grains are contained between the alumina particles constituting the dielectric ceramic . 6) The dielectric ceramic for electrostatic chuck, wherein the composite oxide crystal grains of alumina and transition metal oxide are 3% by mass or less. 前記遷移金属がチタン、クロム、鉄、ニッケル、ニオブ、ジルコニウムのうちから選定される1種又は数種であることを特徴とする請求項1に記載の静電チャック用誘電体セラミックス。   The dielectric ceramic for an electrostatic chuck according to claim 1, wherein the transition metal is one or several selected from titanium, chromium, iron, nickel, niobium, and zirconium. 前記誘電体セラミックスの25℃における体積固有抵抗率が、1×109〜1×1013Ωcmであることを特徴とする請求項1又は2に記載の静電チャック用誘電体セラミックス。 3. The dielectric ceramic for electrostatic chuck according to claim 1, wherein the dielectric ceramic has a volume specific resistivity at 25 ° C. of 1 × 10 9 to 1 × 10 13 Ωcm. アルミナ粒子間に、遷移金属酸化物結晶粒を0.3〜10質量%含み、アルミナと遷移金属酸化物の複合酸化物結晶粒は3質量%以下になるように遷移金属酸化物原料を添加した混合粉末を還元雰囲気で焼成したことを特徴とする請求項1乃至3のいずれかに記載の静電チャック用誘電体セラミックスの製造方法。   The transition metal oxide raw material was added so that the transition metal oxide crystal grains included 0.3 to 10% by mass between the alumina particles, and the composite oxide crystal grains of alumina and transition metal oxide were 3% by mass or less. 4. The method for producing a dielectric ceramic for an electrostatic chuck according to claim 1, wherein the mixed powder is fired in a reducing atmosphere. 前記焼成が、常圧焼成、ガス圧焼成、ホットプレス焼成、HIP焼成の何れか、又は、それらを組み合わせてなることを特徴とする請求項4に記載の静電チャック用誘電体セラミックスの製造方法。   5. The method for producing a dielectric ceramic for an electrostatic chuck according to claim 4, wherein the firing is one of normal pressure firing, gas pressure firing, hot press firing, HIP firing, or a combination thereof. .
JP2004351293A 2004-12-03 2004-12-03 Dielectric ceramics for electrostatic chuck and manufacturing method thereof Active JP4722463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351293A JP4722463B2 (en) 2004-12-03 2004-12-03 Dielectric ceramics for electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351293A JP4722463B2 (en) 2004-12-03 2004-12-03 Dielectric ceramics for electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006165107A JP2006165107A (en) 2006-06-22
JP4722463B2 true JP4722463B2 (en) 2011-07-13

Family

ID=36666794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351293A Active JP4722463B2 (en) 2004-12-03 2004-12-03 Dielectric ceramics for electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4722463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086080A (en) * 2014-10-27 2016-05-19 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244229B2 (en) * 2006-02-08 2009-03-25 Toto株式会社 Electrostatic chuck
US7907383B2 (en) 2005-11-15 2011-03-15 Toto Ltd. Electrostatic chuck
JP2008288428A (en) * 2007-05-18 2008-11-27 Toto Ltd Electrostatic chuck
JP5192221B2 (en) * 2007-11-30 2013-05-08 太平洋セメント株式会社 Ceramic sintered body and electrostatic chuck using the same
JP2009259891A (en) * 2008-04-14 2009-11-05 Shin Etsu Chem Co Ltd Device having electrostatic attraction function
US20140240995A1 (en) * 2011-09-29 2014-08-28 Kyocera Corporation Light-emitting element mounting substrate and light emitting device
CN112534565A (en) * 2018-08-29 2021-03-19 京瓷株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188247A (en) * 2001-12-17 2003-07-04 Ngk Spark Plug Co Ltd Electrostatic chuck and manufacturing method thereof
JP2006049356A (en) * 2004-07-30 2006-02-16 Toto Ltd Electrostatic chuck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086080A (en) * 2014-10-27 2016-05-19 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006165107A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP5604888B2 (en) Manufacturing method of electrostatic chuck
JP5680645B2 (en) Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
KR101682749B1 (en) Electrostatic chuck
TWI447088B (en) Alumina sintered body and its preparation method
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JP2010024087A (en) Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2001163672A (en) Aluminum nitride sintered compact and member for producing semiconductor
KR102497967B1 (en) Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
KR101413250B1 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
KR102126872B1 (en) Electrostatic chuck dielectric layer and electrostatic chuck
JP4244229B2 (en) Electrostatic chuck
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
JP4623159B2 (en) Electrostatic chuck
JPWO2019163710A1 (en) Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
JP2003313078A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
JP3667077B2 (en) Electrostatic chuck
JP4585129B2 (en) Electrostatic chuck
JP5188085B2 (en) Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member
JP3965467B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck
JP2006056731A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
KR100381589B1 (en) Aluminum nitride sintered bodies and semiconductor-producing members including same
JP2009203113A (en) Ceramics for plasma treatment apparatus
TWI579255B (en) A ceramic material, a laminated body, a member for a semiconductor manufacturing apparatus, and a sputtering ring target member

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4722463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250