JP5188085B2 - Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member - Google Patents
Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member Download PDFInfo
- Publication number
- JP5188085B2 JP5188085B2 JP2007080701A JP2007080701A JP5188085B2 JP 5188085 B2 JP5188085 B2 JP 5188085B2 JP 2007080701 A JP2007080701 A JP 2007080701A JP 2007080701 A JP2007080701 A JP 2007080701A JP 5188085 B2 JP5188085 B2 JP 5188085B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- resistant member
- corrosion
- phase
- nitride sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Ceramic Products (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、ヒータ材料や静電チャック材料等の半導体製造装置用部材として利用して好適な窒化アルミニウム耐食性部材に関する。 The present invention relates to an aluminum nitride corrosion-resistant member suitable for use as a member for a semiconductor manufacturing apparatus such as a heater material or an electrostatic chuck material.
従来より、窒化アルミニウム(AlN)焼結体は、ハロゲンガスに対し高い耐食性を呈することから、半導体ウエハ加熱用のヒータ材料や静電チャック材料等の半導体製造装置用部材として広く利用されている。例えば、窒化アルミニウム焼結体を静電チャック材料として利用する場合には、高い吸着力及び脱着応答性を実現するために、ジョンソン・ラーベック力を利用した保持方式が有用である。従って、使用温度範囲内において体積抵抗率を108〜1012[Ω・cm]程度に制御する必要がある。このような背景から、本願発明の発明者らは、特許文献1において、高純度の窒化アルミニウムに酸化イットリウム(Y2O3)を微量添加することによって、その体積抵抗率を室温で108〜1012[Ω・cm]の範囲内に制御できることを開示した。また本願発明の発明者らは、特許文献2において、高純度の窒化アルミニウムに酸化セリウム(CeO2)を添加することによって、その体積抵抗率を室温で108〜1012[Ω・cm]の範囲内に制御できることを開示した。一方、特許文献3には、窒化チタン等の導電性セラミックスを窒化アルミニウムに22[vol%]以上添加することにより窒化アルミニウム焼結体の低抵抗化を図る方法が開示されている。
上述するように、静電チャック用途に用いる基体材料では、ジョンソン・ラーベック原理に基づく吸着力を得るため、108〜1012[Ω・cm]程度の体積抵抗率を得る必要があるが、半導体製造装置内で使用されるセラミックス部材の中には、用途によりさらに低抵抗値化が求められる場合がある。例えば、プラズマエッチング装置等において、静電チャック基体のハロゲン化ガスによる腐食を防止するため、静電チャック周囲にはリング状のセラミックス部材が載置されるが、このリング状部材としては、従来は絶縁性セラミックスが用いられていた。しかし、静電チャックに載置されるウエハ上に均一で安定なプラズマを発生させるために、ウエハ周囲に露出するリング部材にもウエハと同等の体積抵抗率を有するものを使用することが望まれている。したがって、リング状部材の基体材料には、例えばシリコンウエハと同等の半導体領域である104[Ω・cm]以下の導電性を付与する必要がある。
しかしながら、特許文献1,2に記載された技術によれば、室温における窒化アルミニウム焼結体の体積抵抗率の範囲を数百〜1012[Ω・cm]程度と低抵抗側にさらに広げることができず、例えば導電性が必要とされる半導体製造装置用部材等への窒化アルミニウム焼結体の適用可能範囲を拡大することはできない。さらに、特許文献3に記載された技術は、比低抵が1[Ω]以下の窒化アルミニウム焼結体には適用可能だが、静電チャック領域で使用可能な領域である1012[Ω・cm]まで抵抗制御範囲を広げることは困難であると推測される。また、導電性セラミックスの添加量が多いために窒化アルミニウム固有の特性(熱膨張率,耐食性,化学的安定性等)が損なわれてしまう恐れがあり、できるだけ少量の添加で、体積抵抗率を低抵抗値化できる添加材が望まれる。
As described above, the substrate material used for the electrostatic chuck application needs to obtain a volume resistivity of about 10 8 to 10 12 [Ω · cm] in order to obtain an adsorption force based on the Johnson-Rahbek principle. Some ceramic members used in the manufacturing apparatus may be required to have a lower resistance value depending on the application. For example, in a plasma etching apparatus or the like, a ring-shaped ceramic member is placed around the electrostatic chuck in order to prevent corrosion due to halogenated gas on the electrostatic chuck substrate. Conventionally, as this ring-shaped member, Insulating ceramics were used. However, in order to generate a uniform and stable plasma on the wafer placed on the electrostatic chuck, it is desirable to use a ring member exposed around the wafer having a volume resistivity equivalent to that of the wafer. ing. Therefore, it is necessary to impart conductivity of 10 4 [Ω · cm] or less, which is a semiconductor region equivalent to, for example, a silicon wafer, to the base material of the ring-shaped member.
However, according to the techniques described in Patent Documents 1 and 2, the volume resistivity range of the aluminum nitride sintered body at room temperature can be further expanded to the low resistance side of about several hundred to 10 12 [Ω · cm]. For example, the applicable range of the aluminum nitride sintered body to a member for a semiconductor manufacturing apparatus or the like that requires conductivity cannot be expanded. Furthermore, the technique described in Patent Document 3 is applicable to an aluminum nitride sintered body having a relative resistance of 1 [Ω] or less, but is 10 12 [Ω · cm, which is an area usable in an electrostatic chuck region. It is estimated that it is difficult to expand the resistance control range to In addition, due to the large amount of conductive ceramic added, the characteristics (thermal expansion coefficient, corrosion resistance, chemical stability, etc.) inherent to aluminum nitride may be impaired, and volume resistivity can be reduced by adding as little as possible. Additives that can achieve resistance values are desired.
本発明は、上述の課題を解決するためになされたものであり、その目的は、窒化アルミニウム固有の特性を保持し、広い範囲で抵抗制御された窒化アルミニウム耐食性部材を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an aluminum nitride corrosion-resistant member that retains the characteristics inherent to aluminum nitride and is controlled in resistance over a wide range.
本願発明者らは、鋭意研究を重ねてきた結果、窒化アルミニウム質焼結体中にカルシウムを含有させ、カルシウム−アルミニウム酸化物相を生成させた場合において、そのカルシウム-アルミニウム酸化物相が窒化アルミニウム質セラミックス中で網目構造をなし、3次元的に連続化し、導電経路として機能することで、窒化アルミニウム固有の特性を損なうことなく室温体積抵抗率を十分に低くでき、数百〜1012[Ω・cm]に低抵抗化できることを発見した。 As a result of intensive studies, the inventors of the present application have found that when calcium is contained in an aluminum nitride-based sintered body to produce a calcium-aluminum oxide phase, the calcium-aluminum oxide phase is aluminum nitride. By forming a network structure in the porous ceramics and continuing three-dimensionally and functioning as a conductive path, the room temperature volume resistivity can be sufficiently lowered without impairing the characteristics unique to aluminum nitride, and several hundred to 10 12 [Ω・ It was discovered that resistance could be reduced to cm].
以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
〔実施例1〕
実施例1では、始めに、窒化アルミニウム(AlN)に対し炭酸カルシウム(CaCO3)が4.66[mol%]となるように秤量した後、イソプロピルアルコールを溶媒としてナイロン製のポット及び玉石を用いて4時間湿式混合した。なお、AlNとしては、CVD法で合成された市販粉末(平均粒径0.7[μm])を使用した。また、CaCO3としては、純度99.1 [%],平均粒径3.1[μm]の市販粉末を使用した。
[Example 1]
In Example 1, first, calcium carbonate (CaCO 3 ) was weighed to 4.66 [mol%] with respect to aluminum nitride (AlN), and then a nylon pot and cobblestone were used with isopropyl alcohol as a solvent. For 4 hours. In addition, as AlN, the commercial powder (average particle diameter 0.7 [micrometer]) synthesize | combined by CVD method was used. As CaCO 3 , a commercial powder having a purity of 99.1 [%] and an average particle size of 3.1 [μm] was used.
次に、湿式混合により得られたスラリーを取り出し、110[℃]の窒素気流中でスラリーを乾燥し、篩に通して造粒することにより調合原料粉末を得た。さらに、20[MPa]の圧力で原料粉末を一軸加圧成形することによりφ50[mm],厚さ20[mm]程度の大きさの円盤状成形体を作製した。その後、得られた円盤状成形体を焼成用黒鉛モールドに収納してホットプレス法にて焼成することにより実施例1の窒化アルミニウム焼結体を得た。なお、焼成雰囲気は、室温から1600[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、それ以上の温度では圧力0.15[MPa]の窒素ガスを導入した。また、焼成温度において2時間保持した後、室温まで冷却した。 Next, the slurry obtained by wet mixing was taken out, dried in a nitrogen stream at 110 [° C.], passed through a sieve and granulated to obtain a blended raw material powder. Furthermore, the raw material powder was uniaxially pressed at a pressure of 20 [MPa] to produce a disk-shaped molded body having a size of about φ50 [mm] and a thickness of 20 [mm]. Thereafter, the obtained disk-shaped molded body was housed in a firing graphite mold and fired by a hot press method to obtain an aluminum nitride sintered body of Example 1. The firing atmosphere was a vacuum (1 × 10 −2 [Pa] or less) from room temperature to 1600 [° C.], and nitrogen gas with a pressure of 0.15 [MPa] was introduced at a temperature higher than that. Moreover, after hold | maintaining at a calcination temperature for 2 hours, it cooled to room temperature.
〔実施例2〕
実施例2では、CaCO3が1.95[mol%]、酸化サマリウム(Sm2O3)が0.05[mol%]となるように秤量した点、焼成雰囲気を室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]までは圧力0.15[MPa]の窒素ガスを導入し、焼成温度における保持時間を4時間とした点以外は実施例1と同じ条件で製造することにより、実施例2の窒化アルミニウム焼結体を得た。なお、Sm2O3は、純度99.9[%]以上,平均粒径約1.2[μm]の市販粉末を使用した。
[Example 2]
In Example 2, it was weighed so that CaCO 3 was 1.95 [mol%] and samarium oxide (Sm 2 O 3 ) was 0.05 [mol%], and the firing atmosphere was from room temperature to 1000 [° C.]. Evacuates the furnace (1 × 10 −2 [Pa] or less) and introduces nitrogen gas at a pressure of 0.15 [MPa] from 1000 [° C.] to a firing temperature of 1600 [° C.] at the firing temperature. An aluminum nitride sintered body of Example 2 was obtained by manufacturing under the same conditions as Example 1 except that the holding time was 4 hours. As Sm 2 O 3 , a commercial powder having a purity of 99.9 [%] or more and an average particle size of about 1.2 [μm] was used.
〔実施例3〕
実施例3では、CaCO3が1.95[mol%]、酸化ユウロピウム(Eu2O3)が0.05[mol%]となるように秤量した点以外は実施例2と同様の条件で製造することにより、実施例3の窒化アルミニウム焼結体を得た。なお、Eu2O3は、純度99.9[%]以上,平均粒径約1.8[μm]の市販粉末を使用した。
Example 3
In Example 3, the production was performed under the same conditions as in Example 2 except that CaCO 3 was 1.95 [mol%] and europium oxide (Eu 2 O 3 ) was 0.05 [mol%]. Thus, an aluminum nitride sintered body of Example 3 was obtained. Eu 2 O 3 used was a commercial powder having a purity of 99.9 [%] or more and an average particle size of about 1.8 [μm].
〔実施例4〜7〕
実施例4〜7では、CaCO3、炭酸ストロンチウム(SrCO3)若しくは酸化セリウム(CeO2)を表1に示されたように秤量し、表1に示した焼成条件で製造することにより、実施例4〜7の窒化アルミニウム焼結体を得た。ただし、AlNは市販の還元窒化粉末を使用し、焼成雰囲気は実施例2と同様、室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]もしくは1800[℃]までは圧力0.15[MPa]の窒素ガスを導入した。また、SrCO3は純度99.4[%]以上,平均粒径約3.0[μm]の市販粉末を、CeO2は純度99.9[%]以上,平均粒径約1.1[μm]の市販粉末を使用した。
[Examples 4 to 7]
In Examples 4 to 7, CaCO 3 , strontium carbonate (SrCO 3 ) or cerium oxide (CeO 2 ) was weighed as shown in Table 1 and manufactured under the firing conditions shown in Table 1. 4 to 7 aluminum nitride sintered bodies were obtained. However, AlN uses a commercially available reduced nitride powder, and the firing atmosphere is a vacuum (1 × 10 −2 [Pa] or less) from room temperature to 1000 [° C.] as in Example 2, and 1000 [° C. ] To a firing temperature of 1600 [° C.] or 1800 [° C.], nitrogen gas having a pressure of 0.15 [MPa] was introduced. SrCO 3 is a commercially available powder having a purity of 99.4 [%] or more and an average particle size of about 3.0 [μm], and CeO 2 is a purity of 99.9 [%] or more and an average particle size of about 1.1 [μm]. ] Commercially available powder was used.
〔比較例1,2〕
比較例1,2では、CaCO3及びEu2O3を表1に示すように秤量し、表1に示した焼成温度で実施例2と同様、室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]もしくは1800[℃]までは圧力0.15[MPa]の窒素ガスを導入して製造することにより、比較例1,2の窒化アルミニウム焼結体を得た。
In Comparative Examples 1 and 2, CaCO 3 and Eu 2 O 3 were weighed as shown in Table 1, and the furnace was vacuumed from room temperature to 1000 [° C.] at the firing temperature shown in Table 1 as in Example 2. (1 × 10 −2 [Pa] or less) and from 1000 [° C.] to a firing temperature of 1600 [° C.] or 1800 [° C.] by introducing nitrogen gas with a pressure of 0.15 [MPa] Thus, aluminum nitride sintered bodies of Comparative Examples 1 and 2 were obtained.
〔評価〕
上記実施例1〜7及び比較例1,2の各窒化アルミニウム焼結体について、化学分析により、Ca,O及びMe(カルシウム以外に添加した金属元素:Sr,Sm、Eu,Ce)含有量を求め、開気孔率、嵩密度、室温体積抵抗率[Ω・cm],結晶相,熱伝導率[W/m・K],及び活性化エネルギー[eV]を評価した。Ca及びMe含有量は誘導結合プラズマ(ICP)発光スペクトル分析より求め、O含有量は不活性ガス融解赤外線吸収法により定量した。また、開気孔率及び嵩密度は純水を媒体としたアルキメデス法により測定した。
[Evaluation]
About each aluminum nitride sintered compact of the said Examples 1-7 and Comparative Examples 1 and 2, content of Ca, O, and Me (metal elements added in addition to calcium: Sr, Sm, Eu, Ce) is determined by chemical analysis. The open porosity, bulk density, room temperature volume resistivity [Ω · cm], crystal phase, thermal conductivity [W / m · K], and activation energy [eV] were evaluated. The Ca and Me contents were determined by inductively coupled plasma (ICP) emission spectrum analysis, and the O content was quantified by an inert gas melting infrared absorption method. The open porosity and bulk density were measured by Archimedes method using pure water as a medium.
室温体積抵抗率はJIS_C2141に準じた方法により大気中で測定し、活性化エネルギーを求める際は、真空中で室温から400[℃]程度まで測定した。具体的には、試験片形状はφ50[mm]×1[mm]とし、主電極径20[mm],ガード電極内径30[mm],ガード電極外径40[mm],及び電圧印加電極径40[mm]となるように各電極を銀で形成した。また印加電圧は0.1〜500[V/mm]とし、電圧を印加してから1分後の電流を読み取り体積抵抗率を算出した。また活性化エネルギーは室温と400[℃]の体積抵抗率から算出した。 The room temperature volume resistivity was measured in the atmosphere by a method according to JIS_C2141, and when the activation energy was obtained, it was measured from room temperature to about 400 [° C.] in vacuum. Specifically, the test piece shape is φ50 [mm] × 1 [mm], the main electrode diameter 20 [mm], the guard electrode inner diameter 30 [mm], the guard electrode outer diameter 40 [mm], and the voltage application electrode diameter Each electrode was formed of silver so as to be 40 [mm]. The applied voltage was 0.1 to 500 [V / mm], and the volume resistivity was calculated by reading the current one minute after the voltage was applied. The activation energy was calculated from room temperature and a volume resistivity of 400 [° C.].
結晶相はX線回折装置(回転対陰極型X線回折装置,理学電機製RINT)により同定した(測定条件:CuKα線源,50[kV],300[mA],2θ=10〜70[°])。また熱伝導率はレーザーフラッシュ法により測定した。測定結果を以下の表2に示す。
表2から明らかなように、実施例1〜7の窒化アルミニウム焼結体の室温体積抵抗率は、比較例1,2の窒化アルミニウム焼結体の室温体積抵抗率よりも低く、いずれも1×1012[Ω・cm]以下になっていることが明らかになった。また実施例1〜7の窒化アルミニウム焼結体の結晶相と比較例1,2の窒化アルミニウム焼結体の結晶相とを比較すると、実施例1〜3,5の窒化アルミニウム焼結体にはCa12Al14O33相が、実施例6,7にはCa3Al2O6相が多く存在していることが明らかになった。 As apparent from Table 2, the room temperature volume resistivity of the aluminum nitride sintered bodies of Examples 1 to 7 is lower than the room temperature volume resistivity of the aluminum nitride sintered bodies of Comparative Examples 1 and 2, and both are 1 × It became clear that it was below 10 12 [Ω · cm]. Further, when comparing the crystal phase of the aluminum nitride sintered body of Examples 1 to 7 and the crystal phase of the aluminum nitride sintered body of Comparative Examples 1 and 2, the aluminum nitride sintered bodies of Examples 1 to 3 and 5 are It was revealed that the Ca 12 Al 14 O 33 phase was abundant, and in Examples 6 and 7, there were many Ca 3 Al 2 O 6 phases.
図1及び図2はそれぞれ実施例5及び実施例6の窒化アルミニウム焼結体から得られたX線回折プロファイルを示す。図1,2において明らかなように、AlN以外の成分として、Ca12Al14O33相及びCa3Al2O6相が多く生成していることがわかる。また、図3には実施例4の窒化アルミニウム焼結体のX線回折プロファイルを示したが、観測されたピークはCa12Al14O33相と、Ca12Al14O33相と同一の構造をとることが知られているSr12Al14O33相との間に位置している。これは、CaとSrが互いに固溶しあい、Ca12Al14O33相とSr12Al14O33相の固溶体が生成していると推測される。 1 and 2 show X-ray diffraction profiles obtained from the aluminum nitride sintered bodies of Example 5 and Example 6, respectively. As is apparent from FIGS. 1 and 2, as a component other than AlN, many Ca 12 Al 14 O 33 phases and Ca 3 Al 2 O 6 phases are generated. FIG. 3 shows the X-ray diffraction profile of the aluminum nitride sintered body of Example 4. The observed peaks have the same structure as the Ca 12 Al 14 O 33 phase and the Ca 12 Al 14 O 33 phase. It is located between the Sr 12 Al 14 O 33 phase, which is known to take This is presumed that Ca and Sr are in solid solution with each other, and a solid solution of Ca 12 Al 14 O 33 phase and Sr 12 Al 14 O 33 phase is generated.
走査電子顕微鏡(SEM)を利用して実施例1〜5の窒化アルミニウム焼結体の研磨表面を観察したところ、AlNとはコントラストの異なる白色相が観察された。更にEDXによる分析を行ったところ、連続化した粒界相は少なくともCa、Al、Oを含有しており、XRDプロファイルから同定された結晶相との比較からCa12Al14O33相(もしくは添加した金属元素が固溶したCa12Al14O33相)が連続化した粒界相として存在していることが明らかになった。また実施例6,7の窒化アルミニウムの研磨表面を観察し、EDXによる分析を行ったところ、連続化した粒界相には少なくともCa、Al、Oを含有しており、XRDプロファイルから得られた結晶相との比較からCa3Al2O6相(もしくは添加した金属元素が固溶したCa3Al2O6相)が連続化した粒界相として存在していることが明らかになった。図4,5はそれぞれ実施例2,6の窒化アルミニウム焼結体の研磨表面のSEM写真である。このことから、実施例1〜5の窒化アルミニウム焼結体では、Ca12Al14O33相(もしくは添加した金属元素が固溶したCa12Al14O33相)が連続化した粒界相として存在することにより導電経路の役割を担うので、比較例1,2の窒化アルミニウム焼結体と比較して体積抵抗率が低下することが推測された。また実施例6,7の窒化アルミニウム焼結体では、Ca3Al2O6相(もしくは添加した金属元素が固溶したCa3Al2O6相)が連続化した粒界相として存在することにより導電経路の役割を担うので、比較例1,2の窒化アルミニウム焼結体と比較して体積抵抗率が低下することが推測された。なお、図6,7に実施例2,3の窒化アルミニウム焼結体の体積抵抗率の温度特性を示した。実施例2,3の窒化アルミニウム焼結体について活性化エネルギーを室温と400[℃]の体積抵抗率を用いて算出したところ、それぞれ0.15[eV]及び0.25[eV]であり、いずれの活性化エネルギーも0.4[eV]以下であった。また、実施例1〜7の窒化アルミニウム焼結体について熱伝導率を測定した所、いずれの熱伝導率も60[W/m・K]以上であった。 When the polished surface of the aluminum nitride sintered bodies of Examples 1 to 5 was observed using a scanning electron microscope (SEM), a white phase having a contrast different from that of AlN was observed. Further analysis by EDX revealed that the continuous grain boundary phase contains at least Ca, Al, and O, and from the comparison with the crystal phase identified from the XRD profile, the Ca 12 Al 14 O 33 phase (or addition) It has been clarified that the Ca 12 Al 14 O 33 phase in which the metal element is dissolved is present as a continuous grain boundary phase. Moreover, when the polished surface of the aluminum nitride of Examples 6 and 7 was observed and analyzed by EDX, the continuous grain boundary phase contained at least Ca, Al, and O, and was obtained from the XRD profile. Ca 3 Al 2 O 6 phase from the comparison of the crystal phase (or the added Ca 3 Al 2 O 6 phase metal element forms a solid solution) that is present as a grain boundary phase which serializes revealed. 4 and 5 are SEM photographs of the polished surface of the aluminum nitride sintered bodies of Examples 2 and 6, respectively. Therefore, the aluminum nitride sintered bodies of Examples 1-5, as Ca 12 Al 14 O 33 phase (or the added Ca 12 Al 14 O 33 phase metal element forms a solid solution) grain boundary phase continuous reduction is Since it plays the role of a conductive path when it exists, it is estimated that the volume resistivity is reduced as compared with the aluminum nitride sintered bodies of Comparative Examples 1 and 2. In the aluminum nitride sintered bodies of Examples 6 and 7, be present as a grain boundary phase Ca 3 Al 2 O 6 phase (or added metal element is dissolved has been Ca 3 Al 2 O 6 phase) was serialized Therefore, it is estimated that the volume resistivity is lowered as compared with the aluminum nitride sintered bodies of Comparative Examples 1 and 2. 6 and 7 show the temperature characteristics of the volume resistivity of the aluminum nitride sintered bodies of Examples 2 and 3. FIG. When the activation energy was calculated using the room temperature and the volume resistivity of 400 [° C.] for the aluminum nitride sintered bodies of Examples 2 and 3, they were 0.15 [eV] and 0.25 [eV], respectively. All activation energies were 0.4 [eV] or less. Moreover, when the heat conductivity was measured about the aluminum nitride sintered compact of Examples 1-7, all the heat conductivity was 60 [W / m * K] or more.
以上の説明から明らかなように、実施例1〜7の窒化アルミニウム焼結体によれば、窒化アルミニウム固有の特性を損なうことなく低抵抗化を実現することができる。また実施例1〜7の窒化アルミニウム焼結体によれば、室温における窒化アルミニウムの体積抵抗率の範囲を低抵抗側に広げることができるので、例えば導電性部材等、半導体製造装置用部材への窒化アルミニウムの適用可能範囲を拡大することができる。なお、本発明の窒化アルミニウム焼結体にはアルカリ金属やボロン等が実質的に含まれないので、半導体製造装置用部材に適用した場合であっても不純物源になることがない。 As is apparent from the above description, according to the aluminum nitride sintered bodies of Examples 1 to 7, it is possible to achieve a reduction in resistance without impairing the characteristics unique to aluminum nitride. In addition, according to the aluminum nitride sintered bodies of Examples 1 to 7, the volume resistivity range of aluminum nitride at room temperature can be expanded to the low resistance side. The applicable range of aluminum nitride can be expanded. Since the aluminum nitride sintered body of the present invention does not substantially contain alkali metal, boron or the like, it does not become an impurity source even when applied to a member for a semiconductor manufacturing apparatus.
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。 As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.
Claims (6)
前記粒界相がCa12Al14O33相及びCa3Al2O6相のうち少なくとも一方を含み、
大気中、室温における体積抵抗率が1×10 12 [Ω・cm]以下であることを特徴とする窒化アルミニウム耐食性部材。 The main component is aluminum nitride (AlN), and has a continuous grain boundary phase containing at least calcium (Ca), aluminum (Al), and oxygen (O), and the grain boundary phase functions as a conductive path,
See contains at least one of the grain boundary phase is Ca 12 Al 14 O 33 phase and Ca 3 Al 2 O 6 phase,
An aluminum nitride corrosion-resistant member having a volume resistivity of 1 × 10 12 [Ω · cm] or less at room temperature in the air .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007080701A JP5188085B2 (en) | 2007-03-27 | 2007-03-27 | Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007080701A JP5188085B2 (en) | 2007-03-27 | 2007-03-27 | Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008239387A JP2008239387A (en) | 2008-10-09 |
JP5188085B2 true JP5188085B2 (en) | 2013-04-24 |
Family
ID=39911171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007080701A Active JP5188085B2 (en) | 2007-03-27 | 2007-03-27 | Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5188085B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5453902B2 (en) * | 2009-04-27 | 2014-03-26 | Toto株式会社 | Electrostatic chuck and method of manufacturing electrostatic chuck |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2851716B2 (en) * | 1991-03-15 | 1999-01-27 | 京セラ株式会社 | Aluminum nitride circuit board |
JP3244092B2 (en) * | 1993-01-22 | 2002-01-07 | 住友金属工業株式会社 | Manufacturing method of aluminum nitride sintered body |
JPH0891935A (en) * | 1994-09-16 | 1996-04-09 | Toshiba Corp | Sintered material of aluminum nitride, its production and circuit substrate |
JP2003073169A (en) * | 2001-09-04 | 2003-03-12 | Denki Kagaku Kogyo Kk | Aluminum nitride sintered compact, its manufacturing method and circuit substrate using the same |
JP4424659B2 (en) * | 2003-02-28 | 2010-03-03 | 日本碍子株式会社 | Aluminum nitride material and member for semiconductor manufacturing equipment |
JP4314048B2 (en) * | 2003-03-31 | 2009-08-12 | 太平洋セメント株式会社 | Electrostatic chuck |
JP4166641B2 (en) * | 2003-08-27 | 2008-10-15 | 独立行政法人科学技術振興機構 | Proton / electron mixed conductor and its production method and application |
JP4773744B2 (en) * | 2005-03-30 | 2011-09-14 | 株式会社トクヤマ | Method for producing aluminum nitride sintered body |
JP5078304B2 (en) * | 2006-09-19 | 2012-11-21 | 株式会社トクヤマ | Aluminum nitride sintered body and method for producing aluminum nitride sintered body |
-
2007
- 2007-03-27 JP JP2007080701A patent/JP5188085B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008239387A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121268B2 (en) | Aluminum nitride sintered body and member for semiconductor manufacturing apparatus | |
JP4987238B2 (en) | Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method | |
JP5363132B2 (en) | Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material | |
JP2010248054A (en) | Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus | |
JP4424659B2 (en) | Aluminum nitride material and member for semiconductor manufacturing equipment | |
WO2018221504A1 (en) | Aluminum nitride-based sintered compact and semiconductor holding device | |
JP5406565B2 (en) | Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member | |
JP5117891B2 (en) | Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material | |
JP5159625B2 (en) | Aluminum nitride sintered body and method for producing the same | |
KR100500495B1 (en) | Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members | |
KR101413250B1 (en) | Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same | |
JP2003221278A (en) | Aluminum nitride ceramics, member for manufacturing semiconductor, anticorrosive member and electroconductive member | |
JP5190809B2 (en) | Corrosion resistant member and manufacturing method thereof | |
KR102432509B1 (en) | Composite sintered body, semiconductor manufacturing apparatus member, and manufacturing method of composite sintered body | |
JP5188085B2 (en) | Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member | |
JP5767209B2 (en) | Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same | |
JP2003226580A (en) | Aluminum nitride-based ceramic and member for producing semiconductor | |
JP6450163B2 (en) | Thermal spray film, member for semiconductor manufacturing apparatus, raw material for thermal spraying, and thermal spray film manufacturing method | |
JP4181359B2 (en) | Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body | |
JP2009203113A (en) | Ceramics for plasma treatment apparatus | |
US8178459B2 (en) | Corrosion-resistant member and method of manufacturing same | |
JP4264236B2 (en) | Method for producing aluminum nitride sintered body | |
JP6614842B2 (en) | Ceramic material, manufacturing method thereof, and member for semiconductor manufacturing apparatus | |
JP2010083751A (en) | Conductive ceramic material and manufacturing method thereof | |
JP2003146760A (en) | Aluminum nitride sintered compact and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090629 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090715 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5188085 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |