JP5188085B2 - Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member - Google Patents

Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member Download PDF

Info

Publication number
JP5188085B2
JP5188085B2 JP2007080701A JP2007080701A JP5188085B2 JP 5188085 B2 JP5188085 B2 JP 5188085B2 JP 2007080701 A JP2007080701 A JP 2007080701A JP 2007080701 A JP2007080701 A JP 2007080701A JP 5188085 B2 JP5188085 B2 JP 5188085B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
resistant member
corrosion
phase
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007080701A
Other languages
Japanese (ja)
Other versions
JP2008239387A (en
Inventor
直美 寺谷
直仁 山田
義政 小林
徹 早瀬
祐司 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007080701A priority Critical patent/JP5188085B2/en
Publication of JP2008239387A publication Critical patent/JP2008239387A/en
Application granted granted Critical
Publication of JP5188085B2 publication Critical patent/JP5188085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、ヒータ材料や静電チャック材料等の半導体製造装置用部材として利用して好適な窒化アルミニウム耐食性部材に関する。   The present invention relates to an aluminum nitride corrosion-resistant member suitable for use as a member for a semiconductor manufacturing apparatus such as a heater material or an electrostatic chuck material.

従来より、窒化アルミニウム(AlN)焼結体は、ハロゲンガスに対し高い耐食性を呈することから、半導体ウエハ加熱用のヒータ材料や静電チャック材料等の半導体製造装置用部材として広く利用されている。例えば、窒化アルミニウム焼結体を静電チャック材料として利用する場合には、高い吸着力及び脱着応答性を実現するために、ジョンソン・ラーベック力を利用した保持方式が有用である。従って、使用温度範囲内において体積抵抗率を10〜1012[Ω・cm]程度に制御する必要がある。このような背景から、本願発明の発明者らは、特許文献1において、高純度の窒化アルミニウムに酸化イットリウム(Y)を微量添加することによって、その体積抵抗率を室温で10〜1012[Ω・cm]の範囲内に制御できることを開示した。また本願発明の発明者らは、特許文献2において、高純度の窒化アルミニウムに酸化セリウム(CeO)を添加することによって、その体積抵抗率を室温で10〜1012[Ω・cm]の範囲内に制御できることを開示した。一方、特許文献3には、窒化チタン等の導電性セラミックスを窒化アルミニウムに22[vol%]以上添加することにより窒化アルミニウム焼結体の低抵抗化を図る方法が開示されている。
特許第3457495号公報 特開2001−163672号公報 特開平5−286767号公報
Conventionally, an aluminum nitride (AlN) sintered body exhibits high corrosion resistance against halogen gas, and thus has been widely used as a member for semiconductor manufacturing equipment such as a heater material for heating a semiconductor wafer and an electrostatic chuck material. For example, when an aluminum nitride sintered body is used as an electrostatic chuck material, a holding method using a Johnson-Rahbek force is useful in order to realize high adsorption force and desorption response. Therefore, it is necessary to control the volume resistivity to about 10 8 to 10 12 [Ω · cm] within the operating temperature range. From such a background, the inventors of the present invention disclosed in Patent Document 1 that the volume resistivity is increased from 10 8 to 10 8 at room temperature by adding a small amount of yttrium oxide (Y 2 O 3 ) to high purity aluminum nitride. It has been disclosed that it can be controlled within a range of 10 12 [Ω · cm]. In addition, the inventors of the present invention disclosed in Patent Document 2 that, by adding cerium oxide (CeO 2 ) to high-purity aluminum nitride, the volume resistivity is 10 8 to 10 12 [Ω · cm] at room temperature. It was disclosed that it can be controlled within the range. On the other hand, Patent Document 3 discloses a method for reducing the resistance of an aluminum nitride sintered body by adding conductive ceramics such as titanium nitride to aluminum nitride in an amount of 22 [vol%] or more.
Japanese Patent No. 3457495 JP 2001-163672 A Japanese Patent Laid-Open No. 5-286767

上述するように、静電チャック用途に用いる基体材料では、ジョンソン・ラーベック原理に基づく吸着力を得るため、10〜1012[Ω・cm]程度の体積抵抗率を得る必要があるが、半導体製造装置内で使用されるセラミックス部材の中には、用途によりさらに低抵抗値化が求められる場合がある。例えば、プラズマエッチング装置等において、静電チャック基体のハロゲン化ガスによる腐食を防止するため、静電チャック周囲にはリング状のセラミックス部材が載置されるが、このリング状部材としては、従来は絶縁性セラミックスが用いられていた。しかし、静電チャックに載置されるウエハ上に均一で安定なプラズマを発生させるために、ウエハ周囲に露出するリング部材にもウエハと同等の体積抵抗率を有するものを使用することが望まれている。したがって、リング状部材の基体材料には、例えばシリコンウエハと同等の半導体領域である10[Ω・cm]以下の導電性を付与する必要がある。
しかしながら、特許文献1,2に記載された技術によれば、室温における窒化アルミニウム焼結体の体積抵抗率の範囲を数百〜1012[Ω・cm]程度と低抵抗側にさらに広げることができず、例えば導電性が必要とされる半導体製造装置用部材等への窒化アルミニウム焼結体の適用可能範囲を拡大することはできない。さらに、特許文献3に記載された技術は、比低抵が1[Ω]以下の窒化アルミニウム焼結体には適用可能だが、静電チャック領域で使用可能な領域である1012[Ω・cm]まで抵抗制御範囲を広げることは困難であると推測される。また、導電性セラミックスの添加量が多いために窒化アルミニウム固有の特性(熱膨張率,耐食性,化学的安定性等)が損なわれてしまう恐れがあり、できるだけ少量の添加で、体積抵抗率を低抵抗値化できる添加材が望まれる。
As described above, the substrate material used for the electrostatic chuck application needs to obtain a volume resistivity of about 10 8 to 10 12 [Ω · cm] in order to obtain an adsorption force based on the Johnson-Rahbek principle. Some ceramic members used in the manufacturing apparatus may be required to have a lower resistance value depending on the application. For example, in a plasma etching apparatus or the like, a ring-shaped ceramic member is placed around the electrostatic chuck in order to prevent corrosion due to halogenated gas on the electrostatic chuck substrate. Conventionally, as this ring-shaped member, Insulating ceramics were used. However, in order to generate a uniform and stable plasma on the wafer placed on the electrostatic chuck, it is desirable to use a ring member exposed around the wafer having a volume resistivity equivalent to that of the wafer. ing. Therefore, it is necessary to impart conductivity of 10 4 [Ω · cm] or less, which is a semiconductor region equivalent to, for example, a silicon wafer, to the base material of the ring-shaped member.
However, according to the techniques described in Patent Documents 1 and 2, the volume resistivity range of the aluminum nitride sintered body at room temperature can be further expanded to the low resistance side of about several hundred to 10 12 [Ω · cm]. For example, the applicable range of the aluminum nitride sintered body to a member for a semiconductor manufacturing apparatus or the like that requires conductivity cannot be expanded. Furthermore, the technique described in Patent Document 3 is applicable to an aluminum nitride sintered body having a relative resistance of 1 [Ω] or less, but is 10 12 [Ω · cm, which is an area usable in an electrostatic chuck region. It is estimated that it is difficult to expand the resistance control range to In addition, due to the large amount of conductive ceramic added, the characteristics (thermal expansion coefficient, corrosion resistance, chemical stability, etc.) inherent to aluminum nitride may be impaired, and volume resistivity can be reduced by adding as little as possible. Additives that can achieve resistance values are desired.

本発明は、上述の課題を解決するためになされたものであり、その目的は、窒化アルミニウム固有の特性を保持し、広い範囲で抵抗制御された窒化アルミニウム耐食性部材を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an aluminum nitride corrosion-resistant member that retains the characteristics inherent to aluminum nitride and is controlled in resistance over a wide range.

本願発明者らは、鋭意研究を重ねてきた結果、窒化アルミニウム質焼結体中にカルシウムを含有させ、カルシウム−アルミニウム酸化物相を生成させた場合において、そのカルシウム-アルミニウム酸化物相が窒化アルミニウム質セラミックス中で網目構造をなし、3次元的に連続化し、導電経路として機能することで、窒化アルミニウム固有の特性を損なうことなく室温体積抵抗率を十分に低くでき、数百〜1012[Ω・cm]に低抵抗化できることを発見した。 As a result of intensive studies, the inventors of the present application have found that when calcium is contained in an aluminum nitride-based sintered body to produce a calcium-aluminum oxide phase, the calcium-aluminum oxide phase is aluminum nitride. By forming a network structure in the porous ceramics and continuing three-dimensionally and functioning as a conductive path, the room temperature volume resistivity can be sufficiently lowered without impairing the characteristics unique to aluminum nitride, and several hundred to 10 12 [Ω・ It was discovered that resistance could be reduced to cm].

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

〔実施例1〕
実施例1では、始めに、窒化アルミニウム(AlN)に対し炭酸カルシウム(CaCO)が4.66[mol%]となるように秤量した後、イソプロピルアルコールを溶媒としてナイロン製のポット及び玉石を用いて4時間湿式混合した。なお、AlNとしては、CVD法で合成された市販粉末(平均粒径0.7[μm])を使用した。また、CaCOとしては、純度99.1 [%],平均粒径3.1[μm]の市販粉末を使用した。
[Example 1]
In Example 1, first, calcium carbonate (CaCO 3 ) was weighed to 4.66 [mol%] with respect to aluminum nitride (AlN), and then a nylon pot and cobblestone were used with isopropyl alcohol as a solvent. For 4 hours. In addition, as AlN, the commercial powder (average particle diameter 0.7 [micrometer]) synthesize | combined by CVD method was used. As CaCO 3 , a commercial powder having a purity of 99.1 [%] and an average particle size of 3.1 [μm] was used.

次に、湿式混合により得られたスラリーを取り出し、110[℃]の窒素気流中でスラリーを乾燥し、篩に通して造粒することにより調合原料粉末を得た。さらに、20[MPa]の圧力で原料粉末を一軸加圧成形することによりφ50[mm],厚さ20[mm]程度の大きさの円盤状成形体を作製した。その後、得られた円盤状成形体を焼成用黒鉛モールドに収納してホットプレス法にて焼成することにより実施例1の窒化アルミニウム焼結体を得た。なお、焼成雰囲気は、室温から1600[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、それ以上の温度では圧力0.15[MPa]の窒素ガスを導入した。また、焼成温度において2時間保持した後、室温まで冷却した。 Next, the slurry obtained by wet mixing was taken out, dried in a nitrogen stream at 110 [° C.], passed through a sieve and granulated to obtain a blended raw material powder. Furthermore, the raw material powder was uniaxially pressed at a pressure of 20 [MPa] to produce a disk-shaped molded body having a size of about φ50 [mm] and a thickness of 20 [mm]. Thereafter, the obtained disk-shaped molded body was housed in a firing graphite mold and fired by a hot press method to obtain an aluminum nitride sintered body of Example 1. The firing atmosphere was a vacuum (1 × 10 −2 [Pa] or less) from room temperature to 1600 [° C.], and nitrogen gas with a pressure of 0.15 [MPa] was introduced at a temperature higher than that. Moreover, after hold | maintaining at a calcination temperature for 2 hours, it cooled to room temperature.

〔実施例2〕
実施例2では、CaCOが1.95[mol%]、酸化サマリウム(Sm)が0.05[mol%]となるように秤量した点、焼成雰囲気を室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]までは圧力0.15[MPa]の窒素ガスを導入し、焼成温度における保持時間を4時間とした点以外は実施例1と同じ条件で製造することにより、実施例2の窒化アルミニウム焼結体を得た。なお、Smは、純度99.9[%]以上,平均粒径約1.2[μm]の市販粉末を使用した。
[Example 2]
In Example 2, it was weighed so that CaCO 3 was 1.95 [mol%] and samarium oxide (Sm 2 O 3 ) was 0.05 [mol%], and the firing atmosphere was from room temperature to 1000 [° C.]. Evacuates the furnace (1 × 10 −2 [Pa] or less) and introduces nitrogen gas at a pressure of 0.15 [MPa] from 1000 [° C.] to a firing temperature of 1600 [° C.] at the firing temperature. An aluminum nitride sintered body of Example 2 was obtained by manufacturing under the same conditions as Example 1 except that the holding time was 4 hours. As Sm 2 O 3 , a commercial powder having a purity of 99.9 [%] or more and an average particle size of about 1.2 [μm] was used.

〔実施例3〕
実施例3では、CaCOが1.95[mol%]、酸化ユウロピウム(Eu)が0.05[mol%]となるように秤量した点以外は実施例2と同様の条件で製造することにより、実施例3の窒化アルミニウム焼結体を得た。なお、Euは、純度99.9[%]以上,平均粒径約1.8[μm]の市販粉末を使用した。
Example 3
In Example 3, the production was performed under the same conditions as in Example 2 except that CaCO 3 was 1.95 [mol%] and europium oxide (Eu 2 O 3 ) was 0.05 [mol%]. Thus, an aluminum nitride sintered body of Example 3 was obtained. Eu 2 O 3 used was a commercial powder having a purity of 99.9 [%] or more and an average particle size of about 1.8 [μm].

〔実施例4〜7〕
実施例4〜7では、CaCO、炭酸ストロンチウム(SrCO)若しくは酸化セリウム(CeO)を表1に示されたように秤量し、表1に示した焼成条件で製造することにより、実施例4〜7の窒化アルミニウム焼結体を得た。ただし、AlNは市販の還元窒化粉末を使用し、焼成雰囲気は実施例2と同様、室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]もしくは1800[℃]までは圧力0.15[MPa]の窒素ガスを導入した。また、SrCOは純度99.4[%]以上,平均粒径約3.0[μm]の市販粉末を、CeOは純度99.9[%]以上,平均粒径約1.1[μm]の市販粉末を使用した。
[Examples 4 to 7]
In Examples 4 to 7, CaCO 3 , strontium carbonate (SrCO 3 ) or cerium oxide (CeO 2 ) was weighed as shown in Table 1 and manufactured under the firing conditions shown in Table 1. 4 to 7 aluminum nitride sintered bodies were obtained. However, AlN uses a commercially available reduced nitride powder, and the firing atmosphere is a vacuum (1 × 10 −2 [Pa] or less) from room temperature to 1000 [° C.] as in Example 2, and 1000 [° C. ] To a firing temperature of 1600 [° C.] or 1800 [° C.], nitrogen gas having a pressure of 0.15 [MPa] was introduced. SrCO 3 is a commercially available powder having a purity of 99.4 [%] or more and an average particle size of about 3.0 [μm], and CeO 2 is a purity of 99.9 [%] or more and an average particle size of about 1.1 [μm]. ] Commercially available powder was used.

〔比較例1,2〕
比較例1,2では、CaCO及びEuを表1に示すように秤量し、表1に示した焼成温度で実施例2と同様、室温から1000[℃]迄は炉内を真空(1×10−2[Pa]以下)とし、1000[℃]から焼成温度である1600[℃]もしくは1800[℃]までは圧力0.15[MPa]の窒素ガスを導入して製造することにより、比較例1,2の窒化アルミニウム焼結体を得た。
[Comparative Examples 1 and 2]
In Comparative Examples 1 and 2, CaCO 3 and Eu 2 O 3 were weighed as shown in Table 1, and the furnace was vacuumed from room temperature to 1000 [° C.] at the firing temperature shown in Table 1 as in Example 2. (1 × 10 −2 [Pa] or less) and from 1000 [° C.] to a firing temperature of 1600 [° C.] or 1800 [° C.] by introducing nitrogen gas with a pressure of 0.15 [MPa] Thus, aluminum nitride sintered bodies of Comparative Examples 1 and 2 were obtained.

〔評価〕
上記実施例1〜7及び比較例1,2の各窒化アルミニウム焼結体について、化学分析により、Ca,O及びMe(カルシウム以外に添加した金属元素:Sr,Sm、Eu,Ce)含有量を求め、開気孔率、嵩密度、室温体積抵抗率[Ω・cm],結晶相,熱伝導率[W/m・K],及び活性化エネルギー[eV]を評価した。Ca及びMe含有量は誘導結合プラズマ(ICP)発光スペクトル分析より求め、O含有量は不活性ガス融解赤外線吸収法により定量した。また、開気孔率及び嵩密度は純水を媒体としたアルキメデス法により測定した。
[Evaluation]
About each aluminum nitride sintered compact of the said Examples 1-7 and Comparative Examples 1 and 2, content of Ca, O, and Me (metal elements added in addition to calcium: Sr, Sm, Eu, Ce) is determined by chemical analysis. The open porosity, bulk density, room temperature volume resistivity [Ω · cm], crystal phase, thermal conductivity [W / m · K], and activation energy [eV] were evaluated. The Ca and Me contents were determined by inductively coupled plasma (ICP) emission spectrum analysis, and the O content was quantified by an inert gas melting infrared absorption method. The open porosity and bulk density were measured by Archimedes method using pure water as a medium.

室温体積抵抗率はJIS_C2141に準じた方法により大気中で測定し、活性化エネルギーを求める際は、真空中で室温から400[℃]程度まで測定した。具体的には、試験片形状はφ50[mm]×1[mm]とし、主電極径20[mm],ガード電極内径30[mm],ガード電極外径40[mm],及び電圧印加電極径40[mm]となるように各電極を銀で形成した。また印加電圧は0.1〜500[V/mm]とし、電圧を印加してから1分後の電流を読み取り体積抵抗率を算出した。また活性化エネルギーは室温と400[℃]の体積抵抗率から算出した。   The room temperature volume resistivity was measured in the atmosphere by a method according to JIS_C2141, and when the activation energy was obtained, it was measured from room temperature to about 400 [° C.] in vacuum. Specifically, the test piece shape is φ50 [mm] × 1 [mm], the main electrode diameter 20 [mm], the guard electrode inner diameter 30 [mm], the guard electrode outer diameter 40 [mm], and the voltage application electrode diameter Each electrode was formed of silver so as to be 40 [mm]. The applied voltage was 0.1 to 500 [V / mm], and the volume resistivity was calculated by reading the current one minute after the voltage was applied. The activation energy was calculated from room temperature and a volume resistivity of 400 [° C.].

結晶相はX線回折装置(回転対陰極型X線回折装置,理学電機製RINT)により同定した(測定条件:CuKα線源,50[kV],300[mA],2θ=10〜70[°])。また熱伝導率はレーザーフラッシュ法により測定した。測定結果を以下の表2に示す。
The crystal phase was identified by an X-ray diffractometer (rotating anti-cathode X-ray diffractometer, RINT manufactured by Rigaku Corporation) (measurement conditions: CuKα radiation source, 50 [kV], 300 [mA], 2θ = 10 to 70 [° ]). The thermal conductivity was measured by a laser flash method. The measurement results are shown in Table 2 below.

表2から明らかなように、実施例1〜7の窒化アルミニウム焼結体の室温体積抵抗率は、比較例1,2の窒化アルミニウム焼結体の室温体積抵抗率よりも低く、いずれも1×1012[Ω・cm]以下になっていることが明らかになった。また実施例1〜7の窒化アルミニウム焼結体の結晶相と比較例1,2の窒化アルミニウム焼結体の結晶相とを比較すると、実施例1〜3,5の窒化アルミニウム焼結体にはCa12Al1433相が、実施例6,7にはCaAl相が多く存在していることが明らかになった。 As apparent from Table 2, the room temperature volume resistivity of the aluminum nitride sintered bodies of Examples 1 to 7 is lower than the room temperature volume resistivity of the aluminum nitride sintered bodies of Comparative Examples 1 and 2, and both are 1 × It became clear that it was below 10 12 [Ω · cm]. Further, when comparing the crystal phase of the aluminum nitride sintered body of Examples 1 to 7 and the crystal phase of the aluminum nitride sintered body of Comparative Examples 1 and 2, the aluminum nitride sintered bodies of Examples 1 to 3 and 5 are It was revealed that the Ca 12 Al 14 O 33 phase was abundant, and in Examples 6 and 7, there were many Ca 3 Al 2 O 6 phases.

図1及び図2はそれぞれ実施例5及び実施例6の窒化アルミニウム焼結体から得られたX線回折プロファイルを示す。図1,2において明らかなように、AlN以外の成分として、Ca12Al1433相及びCal2相が多く生成していることがわかる。また、図3には実施例4の窒化アルミニウム焼結体のX線回折プロファイルを示したが、観測されたピークはCa12Al1433相と、Ca12Al1433相と同一の構造をとることが知られているSr12Al1433相との間に位置している。これは、CaとSrが互いに固溶しあい、Ca12Al1433相とSr12Al1433相の固溶体が生成していると推測される。 1 and 2 show X-ray diffraction profiles obtained from the aluminum nitride sintered bodies of Example 5 and Example 6, respectively. As is apparent from FIGS. 1 and 2, as a component other than AlN, many Ca 12 Al 14 O 33 phases and Ca 3 Al 2 O 6 phases are generated. FIG. 3 shows the X-ray diffraction profile of the aluminum nitride sintered body of Example 4. The observed peaks have the same structure as the Ca 12 Al 14 O 33 phase and the Ca 12 Al 14 O 33 phase. It is located between the Sr 12 Al 14 O 33 phase, which is known to take This is presumed that Ca and Sr are in solid solution with each other, and a solid solution of Ca 12 Al 14 O 33 phase and Sr 12 Al 14 O 33 phase is generated.

走査電子顕微鏡(SEM)を利用して実施例1〜5の窒化アルミニウム焼結体の研磨表面を観察したところ、AlNとはコントラストの異なる白色相が観察された。更にEDXによる分析を行ったところ、連続化した粒界相は少なくともCa、Al、Oを含有しており、XRDプロファイルから同定された結晶相との比較からCa12Al1433相(もしくは添加した金属元素が固溶したCa12Al1433相)が連続化した粒界相として存在していることが明らかになった。また実施例6,7の窒化アルミニウムの研磨表面を観察し、EDXによる分析を行ったところ、連続化した粒界相には少なくともCa、Al、Oを含有しており、XRDプロファイルから得られた結晶相との比較からCaAl相(もしくは添加した金属元素が固溶したCaAl相)が連続化した粒界相として存在していることが明らかになった。図4,5はそれぞれ実施例2,6の窒化アルミニウム焼結体の研磨表面のSEM写真である。このことから、実施例1〜5の窒化アルミニウム焼結体では、Ca12Al1433相(もしくは添加した金属元素が固溶したCa12Al1433相)が連続化した粒界相として存在することにより導電経路の役割を担うので、比較例1,2の窒化アルミニウム焼結体と比較して体積抵抗率が低下することが推測された。また実施例6,7の窒化アルミニウム焼結体では、CaAl相(もしくは添加した金属元素が固溶したCaAl相)が連続化した粒界相として存在することにより導電経路の役割を担うので、比較例1,2の窒化アルミニウム焼結体と比較して体積抵抗率が低下することが推測された。なお、図6,7に実施例2,3の窒化アルミニウム焼結体の体積抵抗率の温度特性を示した。実施例2,3の窒化アルミニウム焼結体について活性化エネルギーを室温と400[℃]の体積抵抗率を用いて算出したところ、それぞれ0.15[eV]及び0.25[eV]であり、いずれの活性化エネルギーも0.4[eV]以下であった。また、実施例1〜7の窒化アルミニウム焼結体について熱伝導率を測定した所、いずれの熱伝導率も60[W/m・K]以上であった。 When the polished surface of the aluminum nitride sintered bodies of Examples 1 to 5 was observed using a scanning electron microscope (SEM), a white phase having a contrast different from that of AlN was observed. Further analysis by EDX revealed that the continuous grain boundary phase contains at least Ca, Al, and O, and from the comparison with the crystal phase identified from the XRD profile, the Ca 12 Al 14 O 33 phase (or addition) It has been clarified that the Ca 12 Al 14 O 33 phase in which the metal element is dissolved is present as a continuous grain boundary phase. Moreover, when the polished surface of the aluminum nitride of Examples 6 and 7 was observed and analyzed by EDX, the continuous grain boundary phase contained at least Ca, Al, and O, and was obtained from the XRD profile. Ca 3 Al 2 O 6 phase from the comparison of the crystal phase (or the added Ca 3 Al 2 O 6 phase metal element forms a solid solution) that is present as a grain boundary phase which serializes revealed. 4 and 5 are SEM photographs of the polished surface of the aluminum nitride sintered bodies of Examples 2 and 6, respectively. Therefore, the aluminum nitride sintered bodies of Examples 1-5, as Ca 12 Al 14 O 33 phase (or the added Ca 12 Al 14 O 33 phase metal element forms a solid solution) grain boundary phase continuous reduction is Since it plays the role of a conductive path when it exists, it is estimated that the volume resistivity is reduced as compared with the aluminum nitride sintered bodies of Comparative Examples 1 and 2. In the aluminum nitride sintered bodies of Examples 6 and 7, be present as a grain boundary phase Ca 3 Al 2 O 6 phase (or added metal element is dissolved has been Ca 3 Al 2 O 6 phase) was serialized Therefore, it is estimated that the volume resistivity is lowered as compared with the aluminum nitride sintered bodies of Comparative Examples 1 and 2. 6 and 7 show the temperature characteristics of the volume resistivity of the aluminum nitride sintered bodies of Examples 2 and 3. FIG. When the activation energy was calculated using the room temperature and the volume resistivity of 400 [° C.] for the aluminum nitride sintered bodies of Examples 2 and 3, they were 0.15 [eV] and 0.25 [eV], respectively. All activation energies were 0.4 [eV] or less. Moreover, when the heat conductivity was measured about the aluminum nitride sintered compact of Examples 1-7, all the heat conductivity was 60 [W / m * K] or more.

以上の説明から明らかなように、実施例1〜7の窒化アルミニウム焼結体によれば、窒化アルミニウム固有の特性を損なうことなく低抵抗化を実現することができる。また実施例1〜7の窒化アルミニウム焼結体によれば、室温における窒化アルミニウムの体積抵抗率の範囲を低抵抗側に広げることができるので、例えば導電性部材等、半導体製造装置用部材への窒化アルミニウムの適用可能範囲を拡大することができる。なお、本発明の窒化アルミニウム焼結体にはアルカリ金属やボロン等が実質的に含まれないので、半導体製造装置用部材に適用した場合であっても不純物源になることがない。   As is apparent from the above description, according to the aluminum nitride sintered bodies of Examples 1 to 7, it is possible to achieve a reduction in resistance without impairing the characteristics unique to aluminum nitride. In addition, according to the aluminum nitride sintered bodies of Examples 1 to 7, the volume resistivity range of aluminum nitride at room temperature can be expanded to the low resistance side. The applicable range of aluminum nitride can be expanded. Since the aluminum nitride sintered body of the present invention does not substantially contain alkali metal, boron or the like, it does not become an impurity source even when applied to a member for a semiconductor manufacturing apparatus.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

実施例5の窒化アルミニウム焼結体から得られたX線回折プロファイルを示す。The X-ray-diffraction profile obtained from the aluminum nitride sintered compact of Example 5 is shown. 実施例6の窒化アルミニウム焼結体から得られたX線回折プロファイルを示す。The X-ray-diffraction profile obtained from the aluminum nitride sintered compact of Example 6 is shown. 実施例4の窒化アルミニウム焼結体から得られたX線回折プロファイルを示す。The X-ray-diffraction profile obtained from the aluminum nitride sintered compact of Example 4 is shown. 実施例2の窒化アルミニウム焼結体の表面のSEM写真を示す。The SEM photograph of the surface of the aluminum nitride sintered compact of Example 2 is shown. 実施例6の窒化アルミニウム焼結体の表面のSEM写真を示す。The SEM photograph of the surface of the aluminum nitride sintered compact of Example 6 is shown. 実施例2の窒化アルミニウム焼結体の体積抵抗率の温度依存性を示す。The temperature dependence of the volume resistivity of the aluminum nitride sintered compact of Example 2 is shown. 実施例3の窒化アルミニウム焼結体の体積抵抗率の温度依存性を示す。The temperature dependence of the volume resistivity of the aluminum nitride sintered compact of Example 3 is shown.

Claims (6)

窒化アルミニウム(AlN)を主成分とし、カルシウム(Ca)、アルミニウム(Al)、及び酸素(O)を少なくとも含む連続化した粒界相を有し、当該粒界相が導電経路として機能し、
前記粒界相がCa12Al1433相及びCa3Al26相のうち少なくとも一方を含み、
大気中、室温における体積抵抗率が1×10 12 [Ω・cm]以下であることを特徴とする窒化アルミニウム耐食性部材。
The main component is aluminum nitride (AlN), and has a continuous grain boundary phase containing at least calcium (Ca), aluminum (Al), and oxygen (O), and the grain boundary phase functions as a conductive path,
See contains at least one of the grain boundary phase is Ca 12 Al 14 O 33 phase and Ca 3 Al 2 O 6 phase,
An aluminum nitride corrosion-resistant member having a volume resistivity of 1 × 10 12 [Ω · cm] or less at room temperature in the air .
請求項1に記載の窒化アルミニウム耐食性部材であって、前記粒界相に希土類金属及び/又はアルカリ土類金属が固溶していることを特徴とする窒化アルミニウム耐食性部材。   2. The aluminum nitride corrosion-resistant member according to claim 1, wherein a rare earth metal and / or an alkaline earth metal is dissolved in the grain boundary phase. 3. 請求項2に記載の窒化アルミニウム耐食性部材であって、前記粒界相にストロンチウム(Sr)、サマリウム(Sm)、ユウロピウム(Eu)、及びセリウム(Ce)からなる群の中から選ばれた少なくとも1種の金属元素が固溶していることを特徴とする窒化アルミニウム耐食性部材。   3. The aluminum nitride corrosion-resistant member according to claim 2, wherein the grain boundary phase is at least one selected from the group consisting of strontium (Sr), samarium (Sm), europium (Eu), and cerium (Ce). An aluminum nitride corrosion-resistant member in which a seed metal element is dissolved. 請求項1乃至請求項のうち、いずれか1項に記載の窒化アルミニウム耐食性部材であって、室温以上400[℃]以下の温度範囲における活性化エネルギーが0.4[eV]以下であることを特徴とする窒化アルミニウム耐食性部材。 Of claims 1 to 3, a nitride aluminum corrosion-resistant member according to any one, that the activation energy at 400 [° C.] following temperatures above room temperature is 0.4 [eV] or less An aluminum nitride corrosion-resistant member characterized by 請求項1乃至請求項のうち、いずれか1項に記載の窒化アルミニウム耐食性部材であって、熱伝導率が60[W/m・K]以上であることを特徴とする窒化アルミニウム耐食性部材。 The aluminum nitride corrosion-resistant member according to any one of claims 1 to 4, wherein the aluminum nitride corrosion-resistant member has a thermal conductivity of 60 [W / m · K] or more. 請求項1乃至請求項のうち、いずれか1項に記載の窒化アルミニウム耐食性部材により少なくとも一部が形成されていることを特徴とする半導体製造装置用部材。 A member for a semiconductor manufacturing apparatus, wherein at least a part of the aluminum nitride corrosion-resistant member according to any one of claims 1 to 5 is formed.
JP2007080701A 2007-03-27 2007-03-27 Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member Active JP5188085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080701A JP5188085B2 (en) 2007-03-27 2007-03-27 Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080701A JP5188085B2 (en) 2007-03-27 2007-03-27 Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member

Publications (2)

Publication Number Publication Date
JP2008239387A JP2008239387A (en) 2008-10-09
JP5188085B2 true JP5188085B2 (en) 2013-04-24

Family

ID=39911171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080701A Active JP5188085B2 (en) 2007-03-27 2007-03-27 Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member

Country Status (1)

Country Link
JP (1) JP5188085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453902B2 (en) * 2009-04-27 2014-03-26 Toto株式会社 Electrostatic chuck and method of manufacturing electrostatic chuck

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851716B2 (en) * 1991-03-15 1999-01-27 京セラ株式会社 Aluminum nitride circuit board
JP3244092B2 (en) * 1993-01-22 2002-01-07 住友金属工業株式会社 Manufacturing method of aluminum nitride sintered body
JPH0891935A (en) * 1994-09-16 1996-04-09 Toshiba Corp Sintered material of aluminum nitride, its production and circuit substrate
JP2003073169A (en) * 2001-09-04 2003-03-12 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact, its manufacturing method and circuit substrate using the same
JP4424659B2 (en) * 2003-02-28 2010-03-03 日本碍子株式会社 Aluminum nitride material and member for semiconductor manufacturing equipment
JP4314048B2 (en) * 2003-03-31 2009-08-12 太平洋セメント株式会社 Electrostatic chuck
JP4166641B2 (en) * 2003-08-27 2008-10-15 独立行政法人科学技術振興機構 Proton / electron mixed conductor and its production method and application
JP4773744B2 (en) * 2005-03-30 2011-09-14 株式会社トクヤマ Method for producing aluminum nitride sintered body
JP5078304B2 (en) * 2006-09-19 2012-11-21 株式会社トクヤマ Aluminum nitride sintered body and method for producing aluminum nitride sintered body

Also Published As

Publication number Publication date
JP2008239387A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5121268B2 (en) Aluminum nitride sintered body and member for semiconductor manufacturing apparatus
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5363132B2 (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
JP2010248054A (en) Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus
JP4424659B2 (en) Aluminum nitride material and member for semiconductor manufacturing equipment
WO2018221504A1 (en) Aluminum nitride-based sintered compact and semiconductor holding device
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JP5117891B2 (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
JP5159625B2 (en) Aluminum nitride sintered body and method for producing the same
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
KR101413250B1 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
JP2003221278A (en) Aluminum nitride ceramics, member for manufacturing semiconductor, anticorrosive member and electroconductive member
JP5190809B2 (en) Corrosion resistant member and manufacturing method thereof
KR102432509B1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and manufacturing method of composite sintered body
JP5188085B2 (en) Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member
JP5767209B2 (en) Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP6450163B2 (en) Thermal spray film, member for semiconductor manufacturing apparatus, raw material for thermal spraying, and thermal spray film manufacturing method
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JP2009203113A (en) Ceramics for plasma treatment apparatus
US8178459B2 (en) Corrosion-resistant member and method of manufacturing same
JP4264236B2 (en) Method for producing aluminum nitride sintered body
JP6614842B2 (en) Ceramic material, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP2010083751A (en) Conductive ceramic material and manufacturing method thereof
JP2003146760A (en) Aluminum nitride sintered compact and method of producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150