JPH0891935A - Sintered material of aluminum nitride, its production and circuit substrate - Google Patents

Sintered material of aluminum nitride, its production and circuit substrate

Info

Publication number
JPH0891935A
JPH0891935A JP6246832A JP24683294A JPH0891935A JP H0891935 A JPH0891935 A JP H0891935A JP 6246832 A JP6246832 A JP 6246832A JP 24683294 A JP24683294 A JP 24683294A JP H0891935 A JPH0891935 A JP H0891935A
Authority
JP
Japan
Prior art keywords
aln
aluminum nitride
sintered body
sintering
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6246832A
Other languages
Japanese (ja)
Inventor
Hiroyasu Sumino
裕康 角野
Katsuyoshi Oishi
克嘉 大石
Akihiro Horiguchi
昭宏 堀口
Mitsuo Kasori
光男 加曽利
Fumio Ueno
文雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6246832A priority Critical patent/JPH0891935A/en
Publication of JPH0891935A publication Critical patent/JPH0891935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain a sintered material of aluminum nitride having high thermal conductivity, high strength, excellent wetting properties of metallized layer and improved bond strength, comprising AlN particles having an average particle diameter of equal to or less than a fixed value, by covering a fixed % of the surface of AlN particles positioned on the surface with a grain boundary layer. CONSTITUTION: This sintered material of aluminum nitride comprises AlN particles having <=2μm, preferably 0.7-2.0μm average particle diameter. 5-100%, preferably 50-100% of the surface of AlN particles positioned at the surface is covered with a grain boundary layer. In production of the sintered material of aluminum nitride, a raw material containing AlN powder and a sintering auxiliary is molded, the molded article is sintered in a nonoxidizing atmosphere under 0.5-10 atmospheric pressure at <=1,600 deg.C, preferably <=1,550 deg.C. For example, an oxide or a carbide of an alkaline earth metal such as Ca, Ba or Sr is used as the sintering auxiliary and the amount of the sintering auxiliary added is 0.5-2 pts.wt. based on 100 pts.wt. of AlN powder. The grain boundary layer means the sintering auxiliary, a reaction product of the sintering auxiliary and AlN or a reaction product of the sintering auxiliaries.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム(A
lN)焼結体、AlN焼結体の製造方法および回路基板
に関する。
The present invention relates to aluminum nitride (A
1N) A sintered body, a method for manufacturing an AlN sintered body, and a circuit board.

【0002】[0002]

【従来の技術】従来、半導体用回路基板においては一般
にアルミナ系セラミックを基材として使用されてきた。
しかしながら、前記回路基板に大電力用半導体素子を搭
載する場合や集積密度が高い半導体素子を搭載する場合
には、アルミナ系セラミックからなる基材では熱伝導性
が必ずしも十分ではなく、前記半導体素子で発生した熱
を十分に放出させることが困難であった。
2. Description of the Related Art Conventionally, alumina-based ceramics have been generally used as a base material in circuit boards for semiconductors.
However, when a high-power semiconductor element is mounted on the circuit board or when a semiconductor element having a high integration density is mounted, thermal conductivity is not always sufficient with a base material made of an alumina-based ceramic, and the semiconductor element It was difficult to sufficiently release the generated heat.

【0003】このようなことから、熱伝導性に優れたA
lN焼結体を基材として有する回路基板が開発され、使
用されるようになった。さらに前記AlN焼結体に係わ
るその後の研究により、例えば特開昭61−84037
号に開示されているようにAlN焼結体からなる基材の
表面粗さなどの表面状態のデータが蓄積され、メタライ
ズ基材に関する製造方法や技術も進展した。
From the above, A having excellent thermal conductivity
Circuit boards having an 1N sintered body as a base material have been developed and come into use. Further researches on the AlN sintered body have revealed that, for example, JP-A-61-84037.
As disclosed in No. 3, the data on the surface condition such as the surface roughness of the substrate made of the AlN sintered body has been accumulated, and the manufacturing method and the technology for the metallized substrate have been advanced.

【0004】前記AlN焼結体をメタライズ基材として
用いた場合には、AlN焼結体とメタライズ金属との濡
れ性が劣るために、メタライジングの前ら前記AlN焼
結体を空気中で酸化処理することにより表面に濡れ性の
良好なアルミナ(Al2 3)を新たに生成することが
必要である。しかしながら、AlN焼結体の表面を酸化
処理する方法では前記AlN焼結体の表面にAl2 3
が島状に形成されたり、あるいは十分な厚さのAl2
3 が形成されないために、金属膜(例えば銅箔)と前記
AlN焼結体の接合界面で剥離して信頼性の低下を招く
という問題があった。
When the AlN sintered body is used as a metallized base material, since the wettability between the AlN sintered body and the metallized metal is poor, the AlN sintered body is oxidized in air before metallization. It is necessary to newly generate alumina (Al 2 O 3 ) having good wettability on the surface by the treatment. However, in the method of oxidizing the surface of the AlN sintered body, Al 2 O 3 is formed on the surface of the AlN sintered body.
Are formed into islands or have a sufficient thickness of Al 2 O
Since 3 is not formed, there is a problem in that the metal film (for example, a copper foil) and the AlN sintered body are separated from each other at the bonding interface to cause a decrease in reliability.

【0005】そこで、特開平2−9766号公報にはA
lN焼結体中の粒界相を表面に偏在させて、この粒界相
を利用してメタライズ層との接合を強固にする方法が開
示されている。しかしながら、前記AlN焼結体は高温
(1800℃以上)の温度で焼結しているため、AlN
結晶粒子の成長が起こり、結果として機械的強度が低下
する問題が生じる。この機械的強度の低下は、半導体用
回路基板として応用する場合において致命的である。
Therefore, Japanese Patent Laid-Open No. 2-9766 discloses A
A method is disclosed in which the grain boundary phase in the 1N sintered body is unevenly distributed on the surface and the grain boundary phase is utilized to strengthen the bond with the metallized layer. However, since the AlN sintered body is sintered at a high temperature (1800 ° C. or higher),
Growth of crystal grains occurs, resulting in a problem that mechanical strength decreases. This reduction in mechanical strength is fatal when applied as a semiconductor circuit board.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、機械
的強度が高く、かつメタライズ層との濡れ性が良好なA
lN焼結体およびその製造方法を提供しようとするもの
である。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide A having high mechanical strength and good wettability with a metallized layer.
It is intended to provide an IN sintered body and a method for manufacturing the same.

【0007】本発明の別の目的は、前記AlN焼結体か
らなる基材に金属(回路パターン)が強固に密着された
回路基板を提供しようとするものである。
Another object of the present invention is to provide a circuit board in which a metal (circuit pattern) is firmly adhered to a base material composed of the AlN sintered body.

【0008】[0008]

【課題を解決するための手段および作用】本発明に係わ
るAlN焼結体は、平均粒径2μm以下のAlN粒子を
有し、表面に位置するAlN粒子表面の5〜100%が
粒界相で覆われていることを特徴とするものである。
Means and Actions for Solving the Problems An AlN sintered body according to the present invention has AlN particles having an average particle diameter of 2 μm or less, and 5 to 100% of the surface of the AlN particles is a grain boundary phase. It is characterized by being covered.

【0009】このような本発明に係わるAlN焼結体
は、熱伝導率が高く、かつ平均粒径が2μm以下である
ことに起因して従来の焼結体よりも高い強度を示すとと
もに、表面に位置するAlN粒子表面が粒界相で覆われ
ているためにメタライズ層との濡れ性が良好となり、接
合強度も向上される。また、焼結体内部の粒界相が表面
側に移行されているため、粒界相によるフォノンの散乱
が抑えられるため、この粒界相による熱伝導率の低下が
改善される。
The AlN sintered body according to the present invention has a high thermal conductivity and an average grain size of 2 μm or less, and thus exhibits higher strength than the conventional sintered body and has a surface. Since the surface of the AlN particles located in the area is covered with the grain boundary phase, the wettability with the metallized layer is improved and the bonding strength is also improved. Further, since the grain boundary phase inside the sintered body is transferred to the surface side, scattering of phonons due to the grain boundary phase is suppressed, so that the decrease in thermal conductivity due to this grain boundary phase is improved.

【0010】前記AlN粒子の平均粒径を規定したの
は、その平均粒径が2μmを越えると機械的強度の高い
AlN焼結体が得られなくなるからである。より好まし
いAlN粒子の平均粒径は、0.7〜2.0μmであ
る。
The average particle size of the AlN particles is defined because if the average particle size exceeds 2 μm, an AlN sintered body having high mechanical strength cannot be obtained. The more preferable average particle diameter of the AlN particles is 0.7 to 2.0 μm.

【0011】前記粒界相とは、AlNの焼結助剤として
添加されるアルカリ土類、希土類等の化合物、前記焼結
助剤とAlNとの反応生成物、または焼結助剤同士の反
応生成物を意味する。
The grain boundary phase is a compound such as alkaline earth or rare earth added as a sintering aid of AlN, a reaction product of the sintering aid and AlN, or a reaction between the sintering aids. Means product.

【0012】前記表面に位置するAlN粒子表面を覆う
粒界相の面積率を規定したのは、その面積率を5%未満
にすると、メタライズ層との濡れ性を向上できなくな
る。より好ましいAlN粒子表面を覆う粒界相の面積率
は50〜100%である。
The area ratio of the grain boundary phase covering the surface of the AlN particles located on the surface is defined. If the area ratio is less than 5%, the wettability with the metallized layer cannot be improved. A more preferable area ratio of the grain boundary phase covering the surface of the AlN particles is 50 to 100%.

【0013】次に、発明に係わるAlN焼結体の好まし
い製造方法(第1の方法または第2の方法)を説明す
る。
Next, a preferred manufacturing method (first method or second method) of the AlN sintered body according to the present invention will be described.

【0014】1)第1の方法 この方法は、AlN粉末および焼結助剤を含む原料を成
形した後、この成形体を0.1〜0.9気圧の減圧の非
酸化性雰囲気中、1600℃以下、好ましくは1550
℃以下で焼結する方法である。
1) First Method In this method, a raw material containing AlN powder and a sintering aid is molded, and then the molded body is subjected to a pressure of 1600 in a non-oxidizing atmosphere of 0.1 to 0.9 atm. ℃ or less, preferably 1550
It is a method of sintering at ℃ or less.

【0015】すなわち、まず、AlN粉末に焼結助剤を
添加し、ボールミル等で混合し、必要に応じてバインダ
などを加えて混練、造粒を行って原料を調製した後、こ
の原料を成形することにより成形体を作製する。
That is, first, a sintering aid is added to AlN powder, mixed with a ball mill or the like, and if necessary, a binder or the like is added to knead and granulate to prepare a raw material, and then the raw material is molded. By doing so, a molded body is produced.

【0016】前記AlN粉末は、平均一次粒径が0.0
3〜1.2μmで、不純物酸素量が0.2〜3.5重量
%であることが好ましい。
The AlN powder has an average primary particle size of 0.0
It is preferable that the amount of impurity oxygen is 3 to 1.2 μm and the amount of impurity oxygen is 0.2 to 3.5% by weight.

【0017】前記AlN粉末の平均一次粒径を前記範囲
に限定したのは、次のような理由によるものである。A
lN粉末の平均一次粒径を0.03μm未満にすると粉
末の取り扱いが困難になり、かつ粉末の成形も困難にな
る恐れがある。一方、AlN粉末の平均一次粒径が1.
2μmを越えると1600℃以下、特に1550℃以下
での低温焼結が困難になる恐れがあり、また焼結後の粒
径が2μmを越えて機械的強度が低下する恐れがある。
より好ましいAlN粉末の平均一次粒径は、0.05〜
1.0μmである。
The reason why the average primary particle size of the AlN powder is limited to the above range is as follows. A
If the average primary particle size of the 1N powder is less than 0.03 μm, handling of the powder may be difficult and molding of the powder may be difficult. On the other hand, the average primary particle size of AlN powder is 1.
If it exceeds 2 μm, low-temperature sintering at 1600 ° C. or less, particularly 1550 ° C. or less may become difficult, and the particle size after sintering may exceed 2 μm and mechanical strength may decrease.
The more preferable average primary particle diameter of the AlN powder is 0.05 to
It is 1.0 μm.

【0018】前記AlN粉末の不純物酸素量とは、焼結
直前の実効的に焼結に関与する量を意味するものであ
る。この不純物酸素量を前記範囲に限定したのは、次の
ような理由によるものである。不純物酸素量を0.2重
量%未満にすると、1600℃以下、特に1550℃以
下での焼結が困難になったり、焼結前の混合や成形の取
扱い段階でAlN焼結体が変質したりする恐れがある。
一方、不純物酸素量が3.5重量%を越えると高熱伝導
性のAlN焼結体を得ることができなくなる恐れがあ
る。より好ましい不純物酸素量は、0.5〜2重量%で
ある。
The oxygen amount of impurities in the AlN powder means the amount that effectively contributes to the sintering immediately before the sintering. The reason for limiting the amount of impurity oxygen to the above range is as follows. When the amount of impurity oxygen is less than 0.2% by weight, it becomes difficult to sinter at 1600 ° C. or less, particularly 1550 ° C. or less, or the AlN sintered body is deteriorated at the handling stage of mixing or molding before sintering. There is a risk of
On the other hand, if the amount of impurity oxygen exceeds 3.5% by weight, it may not be possible to obtain an AlN sintered body having high thermal conductivity. A more preferable impurity oxygen amount is 0.5 to 2% by weight.

【0019】前記焼結助剤としては、例えばCa,B
a,Sr等のアルカリ土類金属の酸化物、炭化物、炭酸
塩、シュウ酸塩、硝酸塩、アルコキシド、Sc,Yを含
む希土類元素の酸化物、炭化物、炭酸塩、シュウ酸塩、
硝酸塩、アルコキシドから選ばれる1種または2種以上
のものを用いることができる。また、前記焼結助剤の添
加量は前記AlN粉末100重量部に対してアルカリ土
類金属換算および/または希土類元素換算で0.5〜1
0重量部の範囲にすることが望ましい。
Examples of the sintering aid include Ca, B
Alkaline earth metal oxides such as a and Sr, carbides, carbonates, oxalates, nitrates, alkoxides, rare earth element oxides including Sc and Y, carbides, carbonates, oxalates,
One or more selected from nitrates and alkoxides can be used. Further, the addition amount of the sintering aid is 0.5 to 1 in terms of alkaline earth metal and / or rare earth element based on 100 parts by weight of the AlN powder.
It is desirable to set it in the range of 0 parts by weight.

【0020】前記AlN粉末および焼結助剤からなる原
料中には、前記平均粒径(0.03〜1.2μm)より
大きい粒径を有するAlN粉末が含有されることを許容
する。また、前記原料中には必要に応じて着色化、高強
度化のためにTi,W,Mo,Ta,Nb,Mn等の遷
移金属の酸化物、炭化物、フッ化物、炭酸塩、シュウ酸
塩、硝酸塩を前記AlN粉末に対して遷移金属換算で
0.05〜1重量%の範囲で配合してもよい。さらに、
焼結温度の低下に有効なAl2 3 、AlF3 等のアル
ミニウム化合物、リンの化合物、ホウ素の化合物や機械
的強度を向上させるための酸化珪素(SiO2 )、窒化
珪素(Si3 4 )等の珪素化合物をAlN粉末に対し
て1重量%以下の範囲で配合することを許容する。
The raw material composed of the AlN powder and the sintering aid is allowed to contain the AlN powder having a particle size larger than the average particle size (0.03 to 1.2 μm). Further, in the above raw materials, oxides, carbides, fluorides, carbonates, oxalates of transition metals such as Ti, W, Mo, Ta, Nb, and Mn are added to the raw materials for coloring and strengthening, if necessary. The nitrate may be added to the AlN powder in the range of 0.05 to 1% by weight in terms of transition metal. further,
Aluminum compounds such as Al 2 O 3 and AlF 3 effective for lowering the sintering temperature, phosphorus compounds, boron compounds, silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) for improving mechanical strength. ) And other silicon compounds are allowed to be blended in the range of 1% by weight or less with respect to the AlN powder.

【0021】前記成形法としては、例えば金型プレス、
静水圧プレスまたはシート成形などを採用することがで
きる。
Examples of the molding method include a die press,
Hydrostatic pressing or sheet molding can be adopted.

【0022】次いで、前記成形体を窒素ガス気流中など
の非酸化性雰囲気中で加熱して前記バインダを除去した
後、0.1〜0.9気圧の減圧の非酸化性雰囲気中、1
600℃以下、好ましくは1550℃以下で焼結させる
ことによりAlN焼結体を製造する。なお、前記バイン
ダを除去する工程は、AlNの酸化などに留意して加熱
する最高温度を適宜選択することにより、酸素を含む雰
囲気、あるいは水蒸気を含む雰囲気を用いることも可能
である。
Next, the molded body is heated in a non-oxidizing atmosphere such as a nitrogen gas stream to remove the binder, and then in a non-oxidizing atmosphere at a reduced pressure of 0.1 to 0.9 atm.
An AlN sintered body is manufactured by sintering at 600 ° C. or lower, preferably 1550 ° C. or lower. In the step of removing the binder, an atmosphere containing oxygen or an atmosphere containing water vapor can be used by appropriately selecting the maximum temperature for heating while paying attention to the oxidation of AlN.

【0023】前記焼結工程は、前記成形体をAlN製容
器などに収納し前記圧力の窒素ガス等の雰囲気で10分
間〜90時間行うことが好ましい。
It is preferable that the sintering step is carried out for 10 minutes to 90 hours in an atmosphere of the nitrogen gas or the like having the above-mentioned pressure by storing the molded body in an AlN container or the like.

【0024】前記焼結工程における雰囲気の圧力を前記
範囲に限定したのは次のような理由によるものである。
前記雰囲気の圧力を0.1気圧未満にすると、前記成形
体およびAlN製容器等からのAlNの蒸発、ならびに
前記成形体からの焼結助剤成分の蒸発が激しくなり好ま
しくない。一方、前記雰囲気の圧力が0.9気圧を越え
ると減圧の効果が小さくなり、内部の粒界相を表面に位
置するAlN粒子表面に移行させることが困難になり、
前記焼結体表面に位置するAlN粒子表面を粒界相によ
って被覆することができなくなる。好ましい雰囲気の圧
力は、0.1〜0.5気圧である。
The pressure of the atmosphere in the sintering process is limited to the above range for the following reason.
When the pressure of the atmosphere is less than 0.1 atm, the evaporation of AlN from the molded body and the AlN container and the like and the evaporation of the sintering aid component from the molded body become unfavorable. On the other hand, when the pressure of the atmosphere exceeds 0.9 atm, the effect of depressurization becomes small and it becomes difficult to transfer the internal grain boundary phase to the surface of the AlN particles located on the surface.
The surface of the AlN particles located on the surface of the sintered body cannot be covered with the grain boundary phase. A preferable atmosphere pressure is 0.1 to 0.5 atm.

【0025】以上のような第1の方法によれば、AlN
粒子に焼結助剤を添加した後、0.1〜0.9気圧の減
圧の非酸化性雰囲気中、1600℃以下で焼結すること
により、AlN粒子の成長を抑制できる。その結果、平
均粒径が2μm以下のAlN粒子を有し、高熱伝導性で
AlN粒子の微細化による強度向上がなされたAlN焼
結体を製造できる。前記熱伝導率が向上されるメカニズ
ムは、焼結工程における添加された焼結助剤によるAl
N粉末の不純物酸素のトラップ効果である。焼結助剤が
AlNに含まれる不純物酸素(Al2 3 )と反応し
て、希土類−Al−O系あるいはアルカリ土類−Al−
O系化合物等の形で不純物酸素をAlN焼結体の粒界に
移動させるため、AlN格子内への酸素の固溶が防止さ
れる。これにより熱伝導率を向上させることができるも
のと考えられる。
According to the first method as described above, AlN
The growth of AlN particles can be suppressed by adding a sintering aid to the particles and then sintering at 1600 ° C. or lower in a non-oxidizing atmosphere of 0.1 to 0.9 atm under reduced pressure. As a result, it is possible to manufacture an AlN sintered body having AlN particles having an average particle diameter of 2 μm or less, having high thermal conductivity and having improved strength by miniaturizing the AlN particles. The mechanism by which the thermal conductivity is improved is that Al added by the sintering aid added in the sintering process.
This is a trap effect of oxygen impurities in N powder. The sintering aid reacts with impurity oxygen (Al 2 O 3 ) contained in AlN to form a rare earth-Al-O system or an alkaline earth-Al- system.
Since the impurity oxygen is moved to the grain boundaries of the AlN sintered body in the form of an O-based compound or the like, solid solution of oxygen in the AlN lattice is prevented. It is considered that this can improve the thermal conductivity.

【0026】また、前記焼結工程において内部の焼結助
剤に起因する粒界相をその表面に位置するAlN粒子表
面に移行させることができる。このメカニズムは、生成
した前記希土類−Al−O系あるいはアルカリ土類−A
l−O系化合物が焼結工程で粘度の低下した液相とな
り、前記減圧下において容易に表面側に移行してAlN
粒子表面を覆うものと考えられる。その結果、表面に位
置するAlN粒子表面が5〜100%の面積率で粒界相
によって被覆されたAlN焼結体を製造できる。前記粒
界相としては、例えば焼結助剤として希土類酸化物であ
るY2 3 を添加した場合には、Y2 3 、Y3 Al5
12、YAlO3 、Y4 Al2 9 等を挙げることがで
きる。焼結助剤としてアルカリ土類炭素塩であるCaC
3 を添加した場合には、Ca3 Al2 6 、Ca12
1433、CaAl2 4 、CaAl4 7 、CaAl
1219等を挙げることができる。また、これらの表面を
覆う粒界相の面積率は、焼結助剤の添加量、焼結時の最
高温度での保持時間、圧力、昇降温の速度等を適宜選択
することによって制御することが可能である。
Further, in the above-mentioned sintering step, the grain boundary phase caused by the internal sintering aid can be transferred to the surface of the AlN particles located on the surface thereof. This mechanism is based on the generated rare earth-Al-O system or alkaline earth-A system.
The l-O-based compound becomes a liquid phase having a reduced viscosity in the sintering step, and easily migrates to the surface side under the reduced pressure to cause AlN.
It is considered to cover the particle surface. As a result, it is possible to manufacture an AlN sintered body in which the surface of the AlN particles located on the surface is covered with the grain boundary phase at an area ratio of 5 to 100%. Examples of the grain boundary phase include Y 2 O 3 and Y 3 Al 5 when Y 2 O 3 that is a rare earth oxide is added as a sintering aid.
O 12 , YAlO 3 , Y 4 Al 2 O 9 and the like can be mentioned. CaC which is an alkaline earth carbon salt as a sintering aid
When O 3 is added, Ca 3 Al 2 O 6 and Ca 12 A
l 14 O 33 , CaAl 2 O 4 , CaAl 4 O 7 , CaAl
12 O 19 and the like can be mentioned. Also, the area ratio of the grain boundary phase covering these surfaces should be controlled by appropriately selecting the addition amount of the sintering aid, the holding time at the maximum temperature during sintering, the pressure, the rate of temperature increase and decrease, etc. Is possible.

【0027】したがって、平均粒径が2μm以下のAl
N粒子を有することにより高熱伝導性でAlN粒子の微
細化による強度向上がなされ、かつ表面に位置するAl
N粒子表面が5〜100%の面積率で被覆されることに
よりメタライズ層との濡れ性が改善されたAlN焼結体
を製造することができる。
Therefore, Al having an average particle size of 2 μm or less
By having N particles, high thermal conductivity is achieved, and strength is improved by refining AlN particles.
By coating the N particle surface with an area ratio of 5 to 100%, an AlN sintered body having improved wettability with the metallized layer can be manufactured.

【0028】2)第2の方法 この方法は、AlN粉末およびハロゲンを含む焼結助剤
とを含有する原料を成形した後、この成形体を0.5〜
10気圧の非酸化性雰囲気中、1600℃以下、好まし
くは1550℃以下で焼結する方法である。
2) Second Method In this method, a raw material containing AlN powder and a sintering aid containing halogen is molded, and then the molded body is subjected to 0.5 to
This is a method of sintering at 1600 ° C. or lower, preferably 1550 ° C. or lower in a non-oxidizing atmosphere of 10 atm.

【0029】すなわち、まず、AlN粉末にハロゲンを
含む焼結助剤を添加し、ボールミル等の方法で混合し、
必要に応じてバインダなどを加えて混練、造粒を行って
原料を調製した後、この原料を成形することにより成形
体を作製する。
That is, first, a sintering aid containing halogen is added to AlN powder and mixed by a method such as a ball mill,
If necessary, a binder or the like is added, kneading and granulation are performed to prepare a raw material, and then the raw material is molded to produce a molded body.

【0030】前記AlN粉末は、前述した第1の方法で
説明したのと同様の粒径、不純物酸素量を有することが
好ましい。
The AlN powder preferably has the same particle size and the same amount of impurity oxygen as those described in the first method.

【0031】前記ハロゲンを含む焼結助剤としては、例
えばアルカリ土類金属のハロゲン化物、酸ハロゲン化
物、Sc,Yを含む希土類元素のハロゲン化物、酸ハロ
ゲン化物から選ばれる少なくとも1種を用いることがで
きる。
As the halogen-containing sintering aid, for example, at least one selected from an alkaline earth metal halide, an acid halide, a rare earth element halide containing Sc, Y, and an acid halide is used. You can

【0032】前記焼結助剤の添加量は、前記AlN粉末
100重量部に対してアルカリ土類金属換算および/ま
たは希土類元素換算で0.5〜10重量部の範囲とする
ことが好ましい。また、前記焼結助剤はその一部をアル
カリ土類金属の酸化物および/または希土類元素の酸化
物で置き換えることも許容される。
The addition amount of the sintering aid is preferably in the range of 0.5 to 10 parts by weight in terms of alkaline earth metal and / or rare earth element based on 100 parts by weight of the AlN powder. It is also permissible to partially replace the sintering aid with an oxide of an alkaline earth metal and / or an oxide of a rare earth element.

【0033】前記AlN粉末および焼結助剤からなる原
料中には、前述した第1の方法と同様にさらに前記平均
粒径(0.03〜1.2μm)より大きい粒径を有する
AlN粉末が含有されることを許容する。また、必要に
応じて着色化、高強度化のためにTi,W,Mo,T
a,Nb,Mn等の遷移金属の酸化物、炭化物、フッ化
物、炭酸塩、シュウ酸塩、硝酸塩を前記AlN粉末に対
して遷移金属換算で0.05〜1重量%の範囲で配合し
てもよい。さらに、焼結温度の低下に有効なAl
2 3 、AlF3 等のアルミニウム化合物、リンの化合
物、ホウ素の化合物や機械的強度を向上させるための酸
化珪素(SiO2 )、窒化珪素(Si3 4 )等の珪素
化合物をAlN粉末に対して1重量%以下の範囲で配合
することを許容する。
In the raw material consisting of the AlN powder and the sintering aid, the AlN powder having a particle size larger than the average particle size (0.03 to 1.2 μm) is further added as in the first method described above. Allowed to be included. Further, if necessary, Ti, W, Mo, T may be added for coloring and strengthening.
a, Nb, Mn and other transition metal oxides, carbides, fluorides, carbonates, oxalates, and nitrates are mixed in the range of 0.05 to 1% by weight in terms of transition metal with respect to the AlN powder. Good. Furthermore, Al that is effective in lowering the sintering temperature
Aluminum compounds such as 2 O 3 and AlF 3 , phosphorus compounds, boron compounds and silicon compounds such as silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) for improving mechanical strength are converted into AlN powder. On the other hand, it is allowed to be compounded in the range of 1% by weight or less.

【0034】前記成形方法としては、例えば金型プレ
ス、静水圧プレスまたはシート成形などを採用すること
ができる。
As the molding method, for example, a die press, a hydrostatic press or a sheet molding can be adopted.

【0035】次いで、前記成形体を窒素ガス気流中など
の非酸化性雰囲気中で加熱して前記バインダを除去した
後、0.5〜10気圧の非酸化性雰囲気中、1600℃
以下、好ましくは1550℃以下で焼結させることによ
りAlN焼結体を製造する。なお、前記バインダを除去
する工程は、AlNの酸化などに留意して加熱する最高
温度を適宜選択することにより、酸素を含む雰囲気、あ
るいは水蒸気を含む雰囲気を用いることも可能である。
Then, the molded body is heated in a non-oxidizing atmosphere such as a nitrogen gas stream to remove the binder, and then at 1600 ° C. in a non-oxidizing atmosphere of 0.5 to 10 atm.
Hereinafter, the AlN sintered body is manufactured by sintering at preferably 1550 ° C. or lower. In the step of removing the binder, an atmosphere containing oxygen or an atmosphere containing water vapor can be used by appropriately selecting the maximum temperature for heating while paying attention to the oxidation of AlN.

【0036】前記焼結工程は、前記成形体をAlN製容
器などに収納し前記圧力の窒素ガス等の雰囲気で10分
間〜90時間を行うことが望ましい。
It is desirable that the sintering step is carried out for 10 minutes to 90 hours in an atmosphere of nitrogen gas or the like having the above-mentioned pressure, with the molded body being housed in an AlN container or the like.

【0037】前記焼結工程における雰囲気の圧力を前記
範囲に限定したのは、次のような理由によるものであ
る。雰囲気の圧力を0.5気圧未満にすると、前記成形
体からの焼結助剤であるハロゲン化物の蒸発、あるいは
酸ハロゲン化物の分解が激しくなり焼結性が著しく悪化
するため好ましくない。一方、雰囲気の圧力が10気圧
を越えると内部の粒界相を表面に位置するAlN粒子表
面に移行させることが困難になり、前記焼結体表面に位
置するAlN粒子表面を粒界相によって被覆することが
できなくなる。好ましい雰囲気の圧力範囲は、0.7〜
5気圧である。
The reason why the pressure of the atmosphere in the sintering process is limited to the above range is as follows. When the pressure of the atmosphere is less than 0.5 atm, it is not preferable because evaporation of the halide which is the sintering aid from the molded body or decomposition of the acid halide becomes severe and the sinterability is significantly deteriorated. On the other hand, when the pressure of the atmosphere exceeds 10 atm, it becomes difficult to transfer the internal grain boundary phase to the surface of the AlN particles located on the surface, and the surface of the AlN particles located on the surface of the sintered body is coated with the grain boundary phase. Can not do. The preferable pressure range of the atmosphere is 0.7 to
It is 5 atm.

【0038】以上のような第2の方法によれば、所定の
平均一次粒子径および不純物酸素量を有するAlN粒子
にアルカリ土類金属のハロゲン化物、酸ハロゲン化物、
Sc,Yを含む希土類元素のハロゲン化物、酸ハロゲン
化物から選ばれる少なくとも1種の焼結助剤、ハロゲン
を含む特定の焼結助剤を添加した後、0.5〜0.9気
圧の非酸化性製雰囲気中、1600℃以下で焼結するこ
とにより、AlN粒子の成長を抑制できる。その結果、
平均粒径が2μm以下のAlN粒子を有し、高熱伝導性
でAlN粒子の微細化による強度向上がなされたAlN
焼結体を製造できる。前記熱伝導率が向上されるメカニ
ズムは、焼結工程における添加された焼結助剤によるA
lN粉末の不純物酸素のトラップ効果である。焼結助剤
がAlNに含まれる不純物酸素(Al2 3 )と反応し
て、希土類−Al−O系あるいはアルカリ土類−Al−
O系化合物等の形で不純物酸素をAlN焼結体の粒界に
移動させるため、AlN格子内への酸素の固溶が防止さ
れる。これにより熱伝導率を向上させることができるも
のと考えられる。
According to the second method as described above, AlN particles having a predetermined average primary particle diameter and impurity oxygen content are added to an alkaline earth metal halide, an acid halide,
After adding a rare earth element halide containing Sc, Y, at least one kind of sintering aid selected from acid halides, and a specific sintering aid containing halogen, a non-volatile material of 0.5 to 0.9 atm is added. By sintering at 1600 ° C. or lower in an oxidizing atmosphere, growth of AlN particles can be suppressed. as a result,
AlN having AlN particles with an average particle diameter of 2 μm or less, having high thermal conductivity and having improved strength by refining AlN particles
A sintered body can be manufactured. The mechanism by which the thermal conductivity is improved is A due to the sintering aid added in the sintering process.
This is a trap effect of impurity oxygen of 1N powder. The sintering aid reacts with impurity oxygen (Al 2 O 3 ) contained in AlN to form a rare earth-Al-O system or an alkaline earth-Al- system.
Since the impurity oxygen is moved to the grain boundaries of the AlN sintered body in the form of an O-based compound or the like, solid solution of oxygen in the AlN lattice is prevented. It is considered that this can improve the thermal conductivity.

【0039】また、前記焼結工程において内部の焼結助
剤に起因する粒界相をその表面に位置するAlN粒子表
面に移行させることができる。このメカニズムは、生成
したハロゲンを含む前記希土類−Al−O系あるいはア
ルカリ土類−Al−O系化合物が焼結工程で粘度の低下
した液相となるが、この液相はハロゲン成分が比較的蒸
発しやすいため表面での濃度が低下し、結果としてこの
濃度勾配を緩和するために焼結体内部から表面へ移動し
やすくなると考えられる。このため、ハロゲンを含む焼
結助剤を添加する第2の方法では前述した第1の方法に
比べて焼結工程での圧力がやや高くても容易に粒界相が
焼結体表面に位置するAlN粒子表面を覆うものと推定
される。その結果、表面に位置するAlN粒子表面が5
〜100%の面積率で被覆されたAlN焼結体を製造で
きる。前記粒界相としては、例えば焼結助剤として希土
類元素のフッ化物であるYF3 を添加した場合には、Y
23 、Y3 Al5 12、YAlO3 、Y4 Al
2 9 、YOF等を挙げることができる。また、これら
の表面を覆う粒界相の面積率は、焼結助剤の添加量、焼
結時の最高温度での保持時間、圧力、昇降温の速度等を
適宜選択することによって制御可能なものである。
Further, in the above-mentioned sintering step, the grain boundary phase caused by the internal sintering aid can be transferred to the surface of the AlN particles located on the surface thereof. The mechanism is that the rare earth-Al-O-based or alkaline earth-Al-O-based compound containing the generated halogen becomes a liquid phase in which the viscosity is lowered in the sintering process. It is considered that the concentration on the surface decreases due to the easy evaporation, and as a result, the concentration gradient is relaxed, and thus the particles easily move from the inside of the sintered body to the surface. Therefore, in the second method in which the sintering aid containing halogen is added, the grain boundary phase is easily located on the surface of the sintered body even if the pressure in the sintering step is slightly higher than that in the first method described above. It is presumed that the surface of the AlN particles is covered. As a result, the surface of the AlN particles located on the surface is 5
An AlN sintered body coated with an area ratio of ˜100% can be produced. As the grain boundary phase, for example, when YF 3 which is a fluoride of a rare earth element is added as a sintering aid, Y
2 O 3 , Y 3 Al 5 O 12 , YAlO 3 , Y 4 Al
2 O 9 , YOF and the like can be mentioned. Further, the area ratio of the grain boundary phase covering these surfaces can be controlled by appropriately selecting the addition amount of the sintering aid, the holding time at the maximum temperature during sintering, the pressure, the rate of temperature increase and decrease, etc. It is a thing.

【0040】したがって、平均粒径が2μm以下のAl
N粒子を有することにより高熱伝導性でAlN粒子の微
細化による強度向上がなされ、かつ表面に位置するAl
N粒子表面が0.05〜100%の面積率で被覆される
ことによりメタライズ層との濡れ性が改善されたAlN
焼結体を製造することができる。
Therefore, Al having an average particle size of 2 μm or less
By having N particles, high thermal conductivity is achieved, and strength is improved by refining AlN particles.
AlN in which the wettability with the metallized layer is improved by coating the N particle surface with an area ratio of 0.05 to 100%
A sintered body can be manufactured.

【0041】本発明に係わる回路基板は、前述したAl
N焼結体からなる基材に金属を金属を接合した構造を有
する。
The circuit board according to the present invention is the above-mentioned Al.
It has a structure in which a metal is joined to a base material made of N sintered body.

【0042】前記金属は、例えばメタライズ法などによ
り前記基材に直接接合される。
The metal is directly bonded to the base material by, for example, a metallizing method.

【0043】前述した表面に位置するAlN粒子表面が
ハロゲンを含む粒界相で被覆されてたAlN焼結体から
なる基材はメタライズ層に対して高い濡れ性を有するた
め、前記基材にメタライズ層(導体回路)を接合するこ
とによって、前記導体回路が前記基材に対して強固に接
合された回路基板を得ることができる。
Since the base material made of the AlN sintered body, in which the surface of the AlN particles located on the above-mentioned surface is covered with the grain boundary phase containing halogen, has high wettability with respect to the metallized layer, the metallized layer is applied to the base material. By joining the layers (conductor circuits), it is possible to obtain a circuit board in which the conductor circuits are firmly joined to the base material.

【0044】また、表面に位置するAlN粒子表面がハ
ロゲンを含む粒界相で被覆されているAlN焼結体を基
材とした場合、前記粒界相の誘電率はハロゲンを含まな
い粒界相に比べてわずかに低下する。このようなAlN
焼結体からなる基材上にメタライズ法などによって導体
回路を形成すると、前記誘電率の低下に起因して前記導
体回路の信号伝達を高速化することができる。
Further, when the AlN sintered body having the surface of the AlN particles located on the surface covered with the grain boundary phase containing halogen is used as the base material, the dielectric constant of the grain boundary phase is such that the grain boundary phase containing no halogen is present. Slightly lower than. Such AlN
When a conductor circuit is formed on a base material made of a sintered body by a metallizing method or the like, the signal transmission of the conductor circuit can be accelerated due to the decrease in the dielectric constant.

【0045】[0045]

【実施例】以下、本発明を実施例を用いてさらに詳細に
説明する。なお、これら実施例は本発明の理解を容易に
する目的で記載されるものであり、本発明を特に限定す
るものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples. Note that these examples are described for the purpose of facilitating the understanding of the present invention, and do not particularly limit the present invention.

【0046】(実施例1)平均一次粒径が0.2μmで
不純物酸素量が1.8重量%のAlN粉末に平均粒径が
0.1μm、純度99.9%のY2 3 粉末を5重量%
と平均粒径が0.1μmで純度99.9%のWO3 をW
換算で0.3重量%添加し、さらにアクリル系バインダ
を有機溶剤とともに加えボールミルを用いて混合、脱泡
した後テープキャスティング法により厚さ0.7mmの
シートを成形した。つづいて、前記シートを切断した
後、3枚積層して熱圧着することにより100×100
×2.1mm3 の成形体を作製した。ひきつづき、前記
成形体を窒素中、最高温度700℃まで加熱してバイン
ダを除去した。
Example 1 Y 2 O 3 powder having an average particle size of 0.1 μm and a purity of 99.9% was added to AlN powder having an average primary particle size of 0.2 μm and an impurity oxygen content of 1.8% by weight. 5% by weight
And WO 3 having an average particle size of 0.1 μm and a purity of 99.9%
0.3% by weight of conversion was added, and an acrylic binder was added together with an organic solvent to mix and defoam using a ball mill, and then a 0.7 mm-thick sheet was formed by a tape casting method. Subsequently, after cutting the above-mentioned sheets, three sheets are laminated and thermocompression-bonded to obtain 100 × 100.
A molded body of × 2.1 mm 3 was produced. Subsequently, the molded body was heated in nitrogen to a maximum temperature of 700 ° C. to remove the binder.

【0047】次いで、脱脂後の前記成形体をAlN製容
器に入れ、この容器をカーボン製ヒータ炉内にセット
し、窒素ガス0.6気圧の雰囲気下、1600℃、12
時間の焼結を行ってAlN焼結体を製造した。
Next, the molded body after degreasing is placed in an AlN container, the container is set in a carbon heater furnace, and the atmosphere is nitrogen gas at 0.6 atm, 1600 ° C., 12
Sintering was performed for a time to produce an AlN sintered body.

【0048】(比較例1)実施例1と同様な脱脂後の成
形体をAlN製容器に入れ、この容器をカーボン製ヒー
タ炉内にセットし、窒素ガス0.6気圧の雰囲気下、1
800℃、12時間の焼結を行ってAlN焼結体を製造
した。
(Comparative Example 1) The same degreased molded body as in Example 1 was placed in an AlN container, and the container was set in a carbon heater furnace.
Sintering was performed at 800 ° C. for 12 hours to produce an AlN sintered body.

【0049】(比較例2)実施例1と同様な脱脂後の成
形体をAlN製容器に入れ、この容器をカーボン製ヒー
タ炉内にセットし、窒素ガス1気圧の雰囲気下、160
0℃、8時間の焼結を行ってAlN焼結体を製造した。
(Comparative Example 2) The same degreased molded body as in Example 1 was placed in an AlN container, and the container was set in a carbon heater furnace.
Sintering was performed at 0 ° C. for 8 hours to produce an AlN sintered body.

【0050】(実施例2)平均一次粒径が0.08μm
で不純物酸素量が2.8重量%のAlN粉末に焼結助剤
として平均粒径が0.2μm、純度99.9%のCaC
3 をCaO換算で1重量%添加し、さらにアクリル系
バインダを有機溶剤とともに加えボールミルを用いて混
合、脱泡した後テープキャスティング法により厚さ0.
7mmのシートを成形した。このシートを切断し、積層
した後、実施例1と同様に脱脂し、さらに脱脂後の成形
体をAlN製容器内に入れ、この容器をカーボン製ヒー
タ炉内にセットし、窒素ガス0.9気圧の雰囲気下、1
550℃、12時間の焼結を行ってAlN焼結体を製造
した。
(Example 2) Average primary particle size is 0.08 μm
And AlC powder with an impurity oxygen content of 2.8% by weight was added to CaC with a sintering aid having an average particle size of 0.2 μm and a purity of 99.9%.
O 3 was added in an amount of 1% by weight in terms of CaO, an acrylic binder was added together with an organic solvent, and the mixture was defoamed using a ball mill and defoamed.
A 7 mm sheet was molded. After this sheet was cut and laminated, it was degreased in the same manner as in Example 1, and the molded body after degreasing was placed in a container made of AlN, and this container was set in a heater furnace made of carbon, and nitrogen gas 0.9 Under atmospheric pressure, 1
Sintering was performed at 550 ° C. for 12 hours to produce an AlN sintered body.

【0051】(実施例3)平均一次粒径が0.2μm、
不純物酸素量が1.5重量%のAlN粉末に焼結助剤と
して平均粒径が0.1μm、純度99.9%のDy2
3 を3重量%、平均粒径0.2μm、純度99.9%の
CaCO3 をCaO換算で1重量%および平均粒径0.
1μm、純度99.9%の酸化チタン(TiO2 )粉末
をTi換算で0.3重量%添加し、さらにアクリル系バ
インダを有機溶剤とともに加えボールミルを用いて混
合、脱泡した後テープキャスティング法により厚さ0.
7mmのシートを成形した。このシートを切断し、積層
した後、実施例1と同様に脱脂し、さらに脱脂後の成形
体をAlN製容器内に入れ、この容器をカーボン製ヒー
タ炉内にセットし、窒素ガス0.1気圧の雰囲気下、1
500℃、10時間の焼結を行ってAlN焼結体を製造
した。
Example 3 The average primary particle size is 0.2 μm,
Dy 2 O having an average particle size of 0.1 μm and a purity of 99.9% as a sintering aid in AlN powder having an impurity oxygen content of 1.5 wt%.
3 % by weight, average particle size 0.2 μm, purity 99.9% CaCO 3 in terms of CaO 1% by weight and average particle size 0.
Titanium oxide (TiO 2 ) powder having a particle size of 1 μm and a purity of 99.9% was added in an amount of 0.3% by weight in terms of Ti. Further, an acrylic binder was added together with an organic solvent and mixed using a ball mill, followed by defoaming by tape casting method. Thickness 0.
A 7 mm sheet was molded. After this sheet was cut and laminated, it was degreased in the same manner as in Example 1, and the molded body after degreasing was placed in an AlN container, and this container was set in a carbon heater furnace and nitrogen gas 0.1 Under atmospheric pressure, 1
Sintering was performed at 500 ° C. for 10 hours to produce an AlN sintered body.

【0052】(実施例4)平均一次粒径が0.6μm、
不純物酸素量が0.8重量%のAlN粉末に焼結助剤と
して平均粒径が0.2μmで純度99.9%のYF3
3重量%、平均粒径が1.0μmで純度99.9%のA
2 3 を0.5重量%および平均粒径が0.1μmで
純度99.9%のWO3 をW換算で0.3重量%添加し
た混合物にn−ブタノールを加え、湿式ボールミルによ
り解砕、混合した後、n−ブタノールを除去して原料粉
体とした。つづいて、この原料粉にアクリル系バインダ
5重量%を有機溶剤とともに添加して造粒した後、50
MPaの圧力で一軸加圧して成形体を作製した。この成
形体をAlN焼結体からなる容器にいれ、この容器をグ
ラファイト製ヒータ炉内にセットし、窒素ガス1気圧の
雰囲気下、1550℃、8時間の焼結を行ってAlN焼
結体を製造した。
Example 4 The average primary particle size is 0.6 μm,
3% by weight of YF 3 having an average particle size of 0.2 μm and a purity of 99.9% was used as a sintering aid in AlN powder having an amount of impurity oxygen of 0.8% by weight, and an average particle size of 1.0 μm and a purity of 99. 9% A
n-Butanol was added to a mixture containing 0.5% by weight of 1 2 O 3 and 0.3% by weight of WO 3 having an average particle size of 0.1 μm and a purity of 99.9% in terms of W, and the mixture was dissolved by a wet ball mill. After crushing and mixing, n-butanol was removed to obtain a raw material powder. Subsequently, 5% by weight of an acrylic binder was added to this raw material powder together with an organic solvent for granulation, and then 50
A molded body was produced by uniaxially pressing with a pressure of MPa. This molded body is placed in a container made of an AlN sintered body, the container is set in a graphite heater furnace, and sintered at 1550 ° C. for 8 hours in an atmosphere of nitrogen gas at 1 atm to obtain an AlN sintered body. Manufactured.

【0053】得られた実施例1〜4および比較例1〜2
のAlN焼結体について、密度、熱伝導率、平均粒径、
機械的強度ならびに粒界相による焼結体表面の被覆率を
測定した。前記密度はアルキメデス法により測定し、前
記熱伝導率はJIS−R1611にしたがってレーザー
フラッシュ法により測定した。前記平均粒径は、前記焼
結体の破断面をSEMで観察し、インターセプト法によ
り求めた。前記機械的強度は、JIS−R1601にし
たがって4点曲げ法で測定した。粒界相による表面の被
覆率は、焼結体表面の低倍のSEM写真、あるいは光学
顕微鏡写真をスキャナーで読み取り画像解析することに
よって粒界相の面積率を求めた。これらの結果を下記表
1に示す。
Obtained Examples 1-4 and Comparative Examples 1-2
About the AlN sintered body of, density, thermal conductivity, average particle size,
The mechanical strength and the coverage of the surface of the sintered body with the grain boundary phase were measured. The density was measured by the Archimedes method, and the thermal conductivity was measured by the laser flash method according to JIS-R1611. The average particle size was obtained by observing the fracture surface of the sintered body with an SEM and by an intercept method. The mechanical strength was measured by the 4-point bending method according to JIS-R1601. The surface coverage of the grain boundary phase was determined by reading a low-magnification SEM photograph of the surface of the sintered body or an optical microscope photograph with a scanner and analyzing the image to determine the area percentage of the grain boundary phase. The results are shown in Table 1 below.

【0054】また、実施例4および比較例2により得ら
れた焼結体の表面付近の破断面のSEM写真を図1およ
び図2にそれぞれ示す。
Further, SEM photographs of fracture surfaces near the surface of the sintered bodies obtained in Example 4 and Comparative Example 2 are shown in FIGS. 1 and 2, respectively.

【0055】さらに、前記各AlN焼結体に酸素を40
0ppm含有する35×35mm2の銅板を接触させ、
酸素を7ppm含有する窒素ガス雰囲気中で、最高温度
1070℃で3分間保存して、前記焼結体と銅板を接合
させてピール強度を測定した。前記ピール強度は、イン
ストロン製強度試験機を用いて、クロスヘッド50mm
/minの速度で銅板の剥離強度を測定することにより
求めた。その結果を下記表1に併記する。
Further, oxygen is added to each of the AlN sintered bodies at 40%.
A 35 × 35 mm 2 copper plate containing 0 ppm is contacted,
In a nitrogen gas atmosphere containing 7 ppm of oxygen, the product was stored at a maximum temperature of 1070 ° C. for 3 minutes, the sintered body and the copper plate were joined, and the peel strength was measured. The peel strength was measured using an Instron strength tester with a crosshead of 50 mm.
It was determined by measuring the peel strength of the copper plate at a speed of / min. The results are also shown in Table 1 below.

【0056】また、実施例4のAlN焼結体からなる基
材に接合した銅板を選択的にエッチングすることにより
図3および図4に示す回路基板1を製造した。なお、図
3および図4の回路基板1はるAlN焼結体からなる基
材2を有し、この基材2の表面に滲み出した粒界相3に
銅回路パターン4が共晶液相の固化層5を介して接合さ
れた構造になっている。
Further, the circuit board 1 shown in FIGS. 3 and 4 was manufactured by selectively etching the copper plate bonded to the base material made of the AlN sintered body of Example 4. The circuit board 1 of FIGS. 3 and 4 has a base material 2 made of an AlN sintered body, and the copper circuit pattern 4 is eutectic liquid phase on the grain boundary phase 3 exuded on the surface of the base material 2. It has a structure in which it is joined via the solidified layer 5.

【0057】[0057]

【表1】 (実施例5〜12)下記表2に示すAlN粉末および添
加物を用い、かつ焼結条件を下記表2に示す温度、時
間、圧力にした以外、実施例1と同様な方法により8種
のAlN焼結体を製造した。なお、実施例6ではY2
3 をY(NO3 3 ・6H2 Oをn−ブタノールに溶解
して添加した。
[Table 1] (Examples 5 to 12) AlN powders and additives shown in Table 2 below were used, and 8 kinds of materials were prepared in the same manner as in Example 1 except that the sintering conditions were set to the temperature, time and pressure shown in Table 2 below. An AlN sintered body was manufactured. In Example 6, Y 2 O
3 was added by dissolving Y (NO 3) 3 · 6H 2 O to n- butanol.

【0058】得られた実施例5〜12のAlN焼結体に
ついて、密度、熱伝導率、平均粒径、機械的強度ならび
に粒界相による焼結体表面の被覆率を実施例1と同様な
方法により測定した。また、前記各AlN焼結体に実施
例1と同様な条件で銅板を接合させてピール強度を測定
した。これらの結果を下記表3に示す。
With respect to the obtained AlN sintered bodies of Examples 5 to 12, the density, thermal conductivity, average grain size, mechanical strength, and coverage of the surface of the sintered body with the grain boundary phase were the same as in Example 1. It was measured by the method. Further, a peel strength was measured by bonding a copper plate to each AlN sintered body under the same conditions as in Example 1. The results are shown in Table 3 below.

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 (実施例13〜21)下記表4に示すAlN粉末および
添加物を用い、かつ焼結条件を下記表4に示す温度、時
間、圧力にした以外、実施例1と同様な方法により9種
のAlN焼結体を製造した。
[Table 3] (Examples 13 to 21) Nine kinds of samples were prepared in the same manner as in Example 1 except that the AlN powder and the additives shown in Table 4 below were used and the sintering conditions were the temperature, time and pressure shown in Table 4 below. An AlN sintered body was manufactured.

【0061】得られた実施例13〜21のAlN焼結体
について、密度、熱伝導率、平均粒径、機械的強度なら
びに粒界相による焼結体表面の被覆率を実施例1と同様
な方法により測定した。また、前記各AlN焼結体に実
施例1と同様な条件で銅板を接合させてピール強度を測
定した。これらの結果を下記表5に示す。
Regarding the obtained AlN sintered bodies of Examples 13 to 21, the density, the thermal conductivity, the average particle size, the mechanical strength and the coverage of the surface of the sintered body with the grain boundary phase were the same as in Example 1. It was measured by the method. Further, a peel strength was measured by bonding a copper plate to each AlN sintered body under the same conditions as in Example 1. The results are shown in Table 5 below.

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 (比較例3)実施例4と同じ組成物を同じ条件で、ただ
し圧力を0.2気圧にして1550℃で8時間焼結し
た。しかし密度は3.24g・cm-3と完全には緻密化
しなかった。
[Table 5] (Comparative Example 3) The same composition as in Example 4 was sintered under the same conditions, except that the pressure was 0.2 atm and 1550 ° C for 8 hours. However, the density was 3.24 g · cm −3 , which was not completely densified.

【0064】(比較例4)実施例4と同じ組成物を同じ
条件で、ただし圧力を12気圧にして1550℃で8時
間焼結した。密度は3.31g・cm-3と十分緻密化し
ていたが、表面に粒界相がほとんど見られずまた実施例
1〜4までと同様の方法で鋼板を接合しようとしたが、
接合できなかった。
Comparative Example 4 The same composition as in Example 4 was sintered under the same conditions, except that the pressure was 12 atm and the temperature was 1550 ° C. for 8 hours. Although the density was sufficiently densified as 3.31 g · cm −3 , almost no grain boundary phase was observed on the surface, and an attempt was made to join the steel sheets by the same method as in Examples 1 to 4,
I couldn't join.

【0065】(実施例22)実施例4と同じ組成物を同
じ条件で焼結してAlN焼結体を得た。この表面にMo
とTiNの混合比が1:2(重量比)のメタライズペー
ストをスクリーン印刷法で塗布した。この焼結体を窒素
ガス雰囲気中、最高温度1700℃、保持時間1時間、
圧力1.2気圧で熱処理し焼結体表面をメタライズし
た。得られたメタライズAlN回路基板は外観上はがれ
や色むらはほとんどなく十分実用に供することができる
ものであった。
Example 22 The same composition as in Example 4 was sintered under the same conditions to obtain an AlN sintered body. Mo on this surface
A metallizing paste with a mixing ratio of TiN and TiN of 1: 2 (weight ratio) was applied by a screen printing method. In a nitrogen gas atmosphere, this sintered body had a maximum temperature of 1700 ° C. and a holding time of 1 hour,
The surface of the sintered body was metallized by heat treatment at a pressure of 1.2 atm. The obtained metallized AlN circuit board had practically no peeling or color unevenness and could be sufficiently put into practical use.

【0066】[0066]

【発明の効果】以上詳述したように本発明によれば、平
均粒径が小さいことに起因して機械的強度が高く、かつ
酸化処理を施さずにメタライズ金属との濡れ性が良好な
AlN焼結体を提供することができる。
As described above in detail, according to the present invention, AlN has high mechanical strength due to its small average grain size and has good wettability with metallized metal without oxidation treatment. A sintered body can be provided.

【0067】また、前記AlN焼結体を基材としてメタ
ライズ金属を直接接合することにより前記基材と前記メ
タライズ金属との界面での剥離発生を抑制した信頼性の
高い回路基板を提供できる。
By directly bonding the metallized metal using the AlN sintered body as the base material, it is possible to provide a highly reliable circuit board in which the occurrence of peeling at the interface between the base material and the metallized metal is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例4により得られたAlN焼結体
付近の断面構造を示すSEM写真。
FIG. 1 is an SEM photograph showing a cross-sectional structure in the vicinity of an AlN sintered body obtained in Example 4 of the present invention.

【図2】比較例2により得られたAlN焼結体表面付近
の断面構造を示すSEM写真。
FIG. 2 is an SEM photograph showing a cross-sectional structure near the surface of an AlN sintered body obtained in Comparative Example 2.

【図3】本発明の実施例4により得られたAlN焼結体
からなる基材を有する回路基板の断面図。
FIG. 3 is a cross-sectional view of a circuit board having a base material made of an AlN sintered body obtained according to Example 4 of the present invention.

【図4】図3の平面図。FIG. 4 is a plan view of FIG.

【符号の説明】[Explanation of symbols]

1…回路基板、2…AlN焼結体からなる基材、3…粒
界相、4…銅回路パターン、5…共晶液相の固化層
DESCRIPTION OF SYMBOLS 1 ... Circuit board, 2 ... Base material consisting of AlN sintered body, 3 ... Grain boundary phase, 4 ... Copper circuit pattern, 5 ... Solidified layer of eutectic liquid phase

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加曽利 光男 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuo Kazo 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research and Development Center (72) Inventor Fumio Ueno Komukai-Toshiba, Kawasaki-shi, Kanagawa Town No. 1 Toshiba Corporation Research & Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径2μm以下の窒化アルミニウム
粒子を有し、かつ表面に位置する窒化アルミニウム粒子
表面の5〜100%が粒界相で覆われていることを特徴
とする窒化アルミニウム焼結体。
1. Aluminum nitride sinter characterized in that it has aluminum nitride particles having an average particle diameter of 2 μm or less, and 5 to 100% of the surface of the aluminum nitride particles is covered with a grain boundary phase. body.
【請求項2】 前記窒化アルミニウム粒子表面を覆う粒
界相はハロゲンを含むことを特徴とする請求項1項記載
の窒化アルミニウム焼結体。
2. The aluminum nitride sintered body according to claim 1, wherein the grain boundary phase covering the surface of the aluminum nitride particles contains halogen.
【請求項3】 平均粒径2μm以下の窒化アルミニウム
粒子を有し、かつ表面に位置する窒化アルミニウム粒子
表面の5〜100%が粒界相で覆われている窒化アルミ
ニウム焼結体の製造に際し、窒化アルミニウム粉末およ
び焼結助剤を含む原料を成形した後、この成形体を0.
1〜0.9気圧の減圧の非酸化性雰囲気中、1600℃
以下で焼結することを特徴とする窒化アルミニウム焼結
体の製造方法。
3. In the production of an aluminum nitride sintered body, which comprises aluminum nitride particles having an average particle diameter of 2 μm or less, and 5 to 100% of the surface of the aluminum nitride particles is covered with a grain boundary phase, After molding the raw material containing the aluminum nitride powder and the sintering aid,
1600 ° C in a non-oxidizing atmosphere at a reduced pressure of 1 to 0.9 atm
A method for producing an aluminum nitride sintered body, which comprises the following sintering.
【請求項4】 平均粒径2μm以下の窒化アルミニウム
粒子を有し、かつ表面に位置する窒化アルミニウム粒子
表面の5〜100%が粒界相で覆われている窒化アルミ
ニウム焼結体の製造に際し、窒化アルミニウム粉末とハ
ロゲンを含む焼結助剤とを含有する原料を成形した後、
この成形体を0.5〜10気圧の非酸化性雰囲気中、1
600℃以下で焼結することを特徴とする窒化アルミニ
ウム焼結体の製造方法。
4. In the production of an aluminum nitride sintered body, which comprises aluminum nitride particles having an average particle diameter of 2 μm or less, and 5 to 100% of the surface of the aluminum nitride particles is covered with a grain boundary phase, After molding a raw material containing aluminum nitride powder and a sintering aid containing halogen,
This molded body was placed in a non-oxidizing atmosphere of 0.5 to 10 atm for 1
A method for producing an aluminum nitride sintered body, which comprises sintering at 600 ° C. or lower.
【請求項5】 請求項1または2記載の窒化アルミニウ
ム焼結体からなる基材に金属を接合したことを特徴とす
る回路基板。
5. A circuit board, wherein a metal is bonded to a base material made of the aluminum nitride sintered body according to claim 1 or 2.
JP6246832A 1994-09-16 1994-09-16 Sintered material of aluminum nitride, its production and circuit substrate Pending JPH0891935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6246832A JPH0891935A (en) 1994-09-16 1994-09-16 Sintered material of aluminum nitride, its production and circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6246832A JPH0891935A (en) 1994-09-16 1994-09-16 Sintered material of aluminum nitride, its production and circuit substrate

Publications (1)

Publication Number Publication Date
JPH0891935A true JPH0891935A (en) 1996-04-09

Family

ID=17154361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6246832A Pending JPH0891935A (en) 1994-09-16 1994-09-16 Sintered material of aluminum nitride, its production and circuit substrate

Country Status (1)

Country Link
JP (1) JPH0891935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2006001834A (en) * 2004-06-18 2006-01-05 Ngk Insulators Ltd Aluminum nitride ceramic, member for producing semiconductor and method for producing aluminum nitride ceramic
JP2008239387A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride corrosion resistant member and member for semiconductor manufacturing apparatus
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2006001834A (en) * 2004-06-18 2006-01-05 Ngk Insulators Ltd Aluminum nitride ceramic, member for producing semiconductor and method for producing aluminum nitride ceramic
US7553788B2 (en) 2006-09-26 2009-06-30 Tokuyama Corporation Process for producing an aluminum nitride sintered body
JP2008239387A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride corrosion resistant member and member for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3629783B2 (en) Circuit board
EP0798781B1 (en) Silicon nitride circuit board and producing method therefor
EP0286690B1 (en) Aluminum nitride and semiconductor substrate formed therefrom
JP2937850B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0969672A (en) Silicon nitride circuit board
JPH0891935A (en) Sintered material of aluminum nitride, its production and circuit substrate
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
EP3799965A1 (en) Metallized ceramic substrate and method for manufacturing same
JP2772273B2 (en) Silicon nitride circuit board
JP5611554B2 (en) High thermal conductivity aluminum nitride sintered body, substrate, circuit board, and semiconductor device using the same, and method for producing high thermal conductivity aluminum nitride sintered body
JP2807429B2 (en) Aluminum nitride sintered body
JP4434384B2 (en) Aluminum nitride sintered body and semiconductor device using the same
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JPH0881266A (en) Production of aluminum nitride sintered compact
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JP2777344B2 (en) Manufacturing method of aluminum nitride sintered body
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JP2620326B2 (en) Method for producing aluminum nitride sintered body having metallized layer
JPH09124383A (en) Aluminum nitride substrate
JPH11135906A (en) Board and manufacture thereof
JP3488794B2 (en) Aluminum nitride metallized substrate and method of manufacturing the same
JP3307862B2 (en) Ceramic substrate
JP2001122666A (en) Aluminum nitride sintered compact, and semiconductor device and heating device using the same
JPH0653624A (en) High-strength aluminum nitride circuit board and its manufacture
JPH0888453A (en) Ceramic circuit board and its manufacture