JPH0969672A - Silicon nitride circuit board - Google Patents

Silicon nitride circuit board

Info

Publication number
JPH0969672A
JPH0969672A JP7344238A JP34423895A JPH0969672A JP H0969672 A JPH0969672 A JP H0969672A JP 7344238 A JP7344238 A JP 7344238A JP 34423895 A JP34423895 A JP 34423895A JP H0969672 A JPH0969672 A JP H0969672A
Authority
JP
Japan
Prior art keywords
silicon nitride
circuit board
substrate
thermal conductivity
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7344238A
Other languages
Japanese (ja)
Other versions
JP2698780B2 (en
Inventor
Kazuo Ikeda
和男 池田
Michiyasu Komatsu
通泰 小松
Nobuyuki Mizunoya
信幸 水野谷
Yutaka Komorida
裕 小森田
Yoshitoshi Satou
孔俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27297445&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0969672(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7344238A priority Critical patent/JP2698780B2/en
Publication of JPH0969672A publication Critical patent/JPH0969672A/en
Application granted granted Critical
Publication of JP2698780B2 publication Critical patent/JP2698780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the radiation characteristic and mechanical strength of a high-thermal conductivity Si nitride substrate as well as its heat resistance cycle characteristic by setting the relation of the thickness of the substrate to those of metal circuit sheets to meet specified relational expression. SOLUTION: Si nitride circuit board has a high-thermal conductivity Si nitride substrate 2 having a thermal conductivity of 60W/mK or more and 3-point bending strength of 650MPa or more (at room temp.) and metal circuits 4 and 5 bonded through an oxide layer on the substrate. If the thickness of the substrate 2 is DS(<0.8mm) and those of the sheets 4 and 5 are DM, they are set so as to meet an expression DS< or =2DM or DM< or DS< or =(5/3)DM. The substrate 2 is made from a sintered Si nitride contg. an rare earth element 2.0-17.5wt.% as converted in oxide and impurity cation elements Li, Ha, K, Fe, Ca, Mg, Sr, Ba, Mn and B 0.3wt.% in total.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置等に使用
されるセラミックス回路基板に係り、特に放熱特性およ
び機械的強度を同時に改善し耐熱サイクル特性を向上さ
せた窒化けい素回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board used for a semiconductor device or the like, and more particularly to a silicon nitride circuit board having improved heat dissipation characteristics and mechanical strength and improved heat resistance cycle characteristics.

【0002】[0002]

【従来の技術】従来からアルミナ(Al2 3 )焼結体
などのように絶縁性に優れたセラミックス基板の表面
に、導電性を有する金属回路層をろう材で一体に接合
し、さらに金属回路層の所定位置に半導体素子を搭載し
た回路基板が広く普及している。
2. Description of the Related Art Conventionally, a conductive metal circuit layer is integrally joined with a brazing material to the surface of a ceramic substrate having excellent insulating properties such as an alumina (Al 2 O 3 ) sintered body, A circuit board in which a semiconductor element is mounted at a predetermined position on a circuit layer is widely used.

【0003】一方、窒化けい素を主成分とするセラミッ
クス焼結体は、一般に1000℃以上の高温度環境下で
も優れた耐熱性を有し、かつ耐熱衝撃性にも優れている
ことから、従来の耐熱性超合金に代わる高温構造材料と
してガスタービン用部品、エンジン用部品、製鋼用機械
部品等の各種高強度耐熱部品への応用が試みられてい
る。また、金属に対する耐食性が優れていることから溶
融金属の耐溶材料としての応用も試みられ、さらに耐摩
耗性も優れていることから、軸受等の摺動部材,切削工
具への実用化も図られている。
On the other hand, a ceramic sintered body containing silicon nitride as a main component generally has excellent heat resistance even in a high temperature environment of 1000 ° C. or higher, and also has excellent thermal shock resistance. As a high-temperature structural material that replaces the heat-resistant superalloy described above, it has been tried to be applied to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steel-making machine parts. In addition, because of its excellent corrosion resistance to metals, it has been tried to apply molten metal as a melt-resistant material, and because of its excellent wear resistance, it can be put to practical use in sliding members such as bearings and cutting tools. ing.

【0004】従来より窒化けい素セラミックス焼結体の
組成として、窒化けい素に酸化イットリウム(Y
2 3 ),酸化セリウム(CeO),酸化カルシウム
(CaO)などの希土類元素あるいはアルカリ土類元素
の酸化物を焼結助剤として添加されたものが知られてお
り、これら焼結助剤により焼結性を高めて緻密化・高強
度化が図られている。
Conventionally, as a composition of a silicon nitride ceramics sintered body, yttrium oxide (Y
2 O 3 ), cerium oxide (CeO), calcium oxide (CaO) and other rare earth elements or alkaline earth element oxides are known to be added as sintering aids. The sinterability is enhanced to achieve higher density and higher strength.

【0005】従来の窒化けい素焼結体は、窒化けい素原
料粉末に上記のような焼結助剤を添加し成形し、得られ
た成形体を1600〜2000℃程度の温度で焼成炉で
所定時間焼成した後に炉冷し、得られた焼結体を研削研
摩加工する製法で製造されている。
A conventional silicon nitride sintered body is formed by adding the above-mentioned sintering aid to a silicon nitride raw material powder, and molding the obtained molded body at a temperature of about 1600 to 2000 ° C. in a firing furnace. It is manufactured by a manufacturing method in which after firing for a time, the furnace is cooled, and the resulting sintered body is ground and polished.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来方法によって製造された窒化けい素焼結体では、靭性
値などの機械的強度は優れているものの、熱伝導特性の
点では、他の窒化アルミニウム(AlN)焼結体、酸化
ベリリウム(BeO)焼結体や炭化けい素(SiC)焼結体
などと比較して著しく低いため、特に放熱性を要求され
る半導体用回路基板などの電子用材料としては実用化さ
れておらず、用途範囲が狭い難点があった。
However, although the silicon nitride sintered body manufactured by the above-mentioned conventional method has excellent mechanical strength such as toughness, it is different from other aluminum nitrides in terms of thermal conductivity. AlN) sintered body, beryllium oxide (BeO) sintered body, silicon carbide (SiC) sintered body, etc. are significantly lower than those in electronic materials such as semiconductor circuit boards that require heat dissipation. Has not been put to practical use, and has a drawback that its application range is narrow.

【0007】一方窒化アルミニウム焼結体は他のセラミ
ックス焼結体と比較して高い熱伝導率と低熱膨張係数の
特長を有するため、高速化、高出力化、多機能化、大型
化が進展する半導体素子(チップ)を搭載するための回
路基板部品やパッケージ材料として広く使用されてい
る。しかしながら、機械的強度の点で充分に満足できる
ものは得られていないため、回路基板の実装工程におい
て破損を生じたり、実装工程が煩雑になって半導体装置
の製造効率が低下する問題点があった。
On the other hand, the aluminum nitride sintered body has the characteristics of high thermal conductivity and low thermal expansion coefficient as compared with other ceramics sintered bodies, and therefore, higher speed, higher output, multi-functionality and larger size are progressing. It is widely used as a circuit board component for mounting a semiconductor element (chip) and a package material. However, since what has been sufficiently satisfied in terms of mechanical strength has not been obtained, there are problems that damage occurs in the mounting process of the circuit board or the mounting process becomes complicated and the manufacturing efficiency of the semiconductor device decreases. It was

【0008】すなわち、上記窒化アルミニウム焼結体基
板や酸化アルミニウム焼結体基板などのセラミックス基
板を主たる構成材とする回路基板を、アッセンブリ工程
にて実装ボートにねじ止め等により固定しようとする
と、ねじの押圧力による僅かな変形やハンドリング時の
衝撃によって回路基板が破損し、半導体装置の製造歩留
りを大幅に低減させる場合がある。したがって、回路基
板においても、外力に耐える高強度特性と、高靭性特性
と、高出力化,高発熱量化に対応できる優れた放熱特性
とを兼ね備えたものが要請されている。
That is, when a circuit board whose main constituent material is a ceramics substrate such as the above aluminum nitride sintered body substrate or aluminum oxide sintered body substrate is fixed to the mounting boat by screwing or the like in the assembly process, In some cases, the circuit board may be damaged by a slight deformation due to the pressing force of or and the impact at the time of handling, and the manufacturing yield of the semiconductor device may be significantly reduced. Accordingly, there is a demand for a circuit board that has both high strength characteristics to withstand external force, high toughness characteristics, and excellent heat dissipation characteristics capable of coping with high output and high heat generation.

【0009】また上記のような窒化アルミニウム基板表
面に金属回路層および半導体素子を一体に接合して形成
した回路基板においては、窒化アルミニウム基板自体の
機械的強度および靭性が不充分であったため、半導体素
子の作動に伴う繰り返しの熱サイクルを受けて、金属回
路層の接合部付近の窒化アルミニウム基板にクラックが
発生し易く、耐熱サイクル特性および信頼性が低いとい
う問題点があった。
Further, in a circuit board formed by integrally bonding a metal circuit layer and a semiconductor element on the surface of the aluminum nitride substrate as described above, the mechanical strength and toughness of the aluminum nitride substrate itself are insufficient, so that the semiconductor Due to repeated thermal cycles associated with the operation of the element, cracks are likely to occur in the aluminum nitride substrate in the vicinity of the joint portion of the metal circuit layer, and the heat cycle characteristics and reliability are low.

【0010】さらに窒化アルミニウムのように熱伝導率
が大きいセラミックス基板を使用して回路基板を製造し
た場合においても、ある程度の強度値および絶縁耐性を
確保するために、厚さが大きい窒化アルミニウム基板を
用いる必要があった。そのため、AlN基板の高い熱伝
導率にも拘らず、回路基板全体としての熱抵抗値が増加
することになり、熱伝導率に比例した放熱性が得られな
いという問題点があった。
Further, even when a circuit board is manufactured by using a ceramic substrate having a large thermal conductivity such as aluminum nitride, an aluminum nitride substrate having a large thickness is used to secure a certain strength value and insulation resistance. Had to use. Therefore, despite the high thermal conductivity of the AlN substrate, the thermal resistance value of the circuit board as a whole increases, and there is a problem in that heat dissipation proportional to the thermal conductivity cannot be obtained.

【0011】本発明は上記のような課題要請に対処する
ためになされたものであり、窒化けい素焼結体が本来備
える高強度高靭性特性を利用し、さらに熱伝導率が高く
放熱性に優れるとともに耐熱サイクル特性を大幅に改善
した窒化けい素回路基板を提供することを目的とする。
The present invention has been made in order to meet the above-mentioned demands, and utilizes the high-strength and high-toughness characteristics originally possessed by a silicon nitride sintered body, and further has high thermal conductivity and excellent heat dissipation. Another object of the present invention is to provide a silicon nitride circuit board having significantly improved heat resistance cycle characteristics.

【0012】[0012]

【課題を解決するための手段】本発明者は上記目的を達
成するために、回路基板の放熱性(熱伝導率)を劣化さ
せず、強度および靭性値を共に満足するような基板材料
を研究するとともに、回路基板のアッセンブリ工程にお
いて発生する締め付け割れや熱サイクル付加時に発生す
るクラックを防止する対策について鋭意研究を重ねた。
その結果、基板材料については、組成および製造条件を
適正に制御することにより、高い熱伝導率を有する窒化
けい素焼結体が得られたこと、この窒化けい素焼結体を
基板材料として使用し、基板表面に金属回路板などの回
路層を一体に形成するとともに、基板の厚さおよび金属
回路板の厚さを所定比率に設定して回路基板とした場
合、または回路基板のたわみ量や抗折強度値を所定値以
上に設定した場合に、アッセンブリ工程における回路基
板の締め付け割れ等を効果的に低減できること、耐熱サ
イクル特性を大幅に改善できること、特に基板の厚さを
低減できるために回路基板の放熱性を大幅に改善できる
こと、などを見出し本発明を完成するに至った。
In order to achieve the above object, the present inventor has researched a substrate material which does not deteriorate the heat dissipation (thermal conductivity) of a circuit board and satisfies both strength and toughness values. At the same time, we conducted extensive research into measures to prevent tightening cracks that occur during the circuit board assembly process and cracks that occur during the application of heat cycles.
As a result, regarding the substrate material, by appropriately controlling the composition and manufacturing conditions, a silicon nitride sintered body having a high thermal conductivity was obtained, using this silicon nitride sintered body as a substrate material, When a circuit layer such as a metal circuit board is integrally formed on the surface of the board and the thickness of the board and the thickness of the metal circuit board are set to a predetermined ratio to form a circuit board, or the amount of bending or bending of the circuit board When the strength value is set to a predetermined value or more, it is possible to effectively reduce the tightening cracks of the circuit board in the assembly process, to greatly improve the heat resistance cycle characteristics, and especially to reduce the thickness of the board The inventors have completed the present invention by discovering that heat dissipation can be greatly improved.

【0013】すなわち、基板材料自体に関して、本発明
者らは、従来使用されていた窒化けい素粉末の種類、焼
結助剤や添加物の種類および添加量、焼結条件に検討を
加え、従来の窒化けい素焼結体の有する熱伝導率の2倍
以上の高い熱伝導性を有する窒化けい素焼結体を開発し
た。さらに、この窒化けい素焼結体を基板材料として使
用し、その表面に、導電性を有する金属回路板を一体に
接合して回路基板を製造したときに、機械的強度、靭性
値、耐熱サイクル特性および放熱性を全て満足する窒化
けい素回路基板が得られることを実験により確認した。
That is, with respect to the substrate material itself, the present inventors have studied the types of silicon nitride powder, the types and amounts of sintering aids and additives, and the sintering conditions which have been conventionally used. We have developed a silicon nitride sintered body that has high thermal conductivity, which is more than twice the thermal conductivity of the silicon nitride sintered body. Furthermore, when this silicon nitride sintered body is used as a substrate material and a metal circuit board having conductivity is integrally bonded to the surface of the circuit board to produce a circuit board, mechanical strength, toughness value, heat cycle characteristics It was confirmed by experiments that a silicon nitride circuit board satisfying all the heat dissipation characteristics was obtained.

【0014】具体的には、微細で高純度を有する窒化け
い素粉末に希土類元素酸化物等を所定量ずつ添加した原
料混合体を成形脱脂し、得られた成形体を所定温度で一
定時間加熱保持して緻密化焼結を実施した後、所定以下
の冷却速度で徐冷し、得られた焼結体を研削研摩加工し
て製造したときに熱伝導率が従来の窒化けい素焼結体の
2倍以上、具体的には60W/m・K以上と大きく向上
し、かつ常温(25℃)における三点曲げ強度が650
MPa以上となるような高強度高靭性を有する窒化けい
素焼結体が得られることが判明し、放熱特性および強度
特性を共に満足する新規な窒化けい素材料を開発した。
そして、この窒化けい素材料を、回路基板の基板材料に
適用したときに、優れた放熱特性と耐久性と耐熱サイク
ル特性とを同時に改善できることが判明した。
Specifically, a raw material mixture obtained by adding a predetermined amount of a rare earth element oxide or the like to fine and highly pure silicon nitride powder is molded and degreased, and the obtained molded body is heated at a predetermined temperature for a certain period of time. After carrying out densification sintering while holding, it is gradually cooled at a cooling rate not higher than a predetermined value, and when the obtained sintered body is manufactured by grinding and grinding, the thermal conductivity of the conventional silicon nitride sintered body is Greatly more than doubled, specifically 60 W / mK or more, and three-point bending strength of 650 at room temperature (25 ° C)
It was found that a silicon nitride sintered body having high strength and high toughness such as MPa or more can be obtained, and a new silicon nitride material satisfying both heat dissipation characteristics and strength characteristics was developed.
It has been found that when this silicon nitride material is applied to a substrate material of a circuit board, excellent heat dissipation characteristics, durability and heat cycle characteristics can be simultaneously improved.

【0015】また、酸素や高熱伝導化を阻害するLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bと
いう特定の不純物陽イオン元素含有量を低減した高純度
の窒化けい素原料粉末を使用し、上記条件にて焼結する
ことにより、粒界相におけるガラス相(非晶質相)の生
成を効果的に抑制でき、粒界相における結晶化合物を2
0体積%以上(粒界相全体に対し)、より好ましくは5
0体積%以上とすることにより、希土類元素酸化物のみ
を原料粉末に添加した場合においても60W/m・K以
上、さらに好ましくは80W/m・K以上の高熱伝導率
を有する窒化けい素焼結体基板が得られるという知見を
得た。
Li, which inhibits oxygen and high heat conductivity,
By using high-purity silicon nitride raw material powder with a reduced content of specific impurity cation elements such as Na, K, Fe, Ca, Mg, Sr, Ba, Mn, and B, and sintering under the above conditions , Can effectively suppress the formation of the glass phase (amorphous phase) in the grain boundary phase, and can reduce the crystal compound in the grain boundary phase to 2
0% by volume or more (based on the entire grain boundary phase), more preferably 5
By setting the content to 0% by volume or more, a silicon nitride sintered body having a high thermal conductivity of 60 W / m · K or more, and more preferably 80 W / m · K or more, even when only the rare earth element oxide is added to the raw material powder. We have obtained the knowledge that a substrate can be obtained.

【0016】また、従来、焼結操作終了後に焼成炉の加
熱用電源をOFFとして焼結体を炉冷していた場合に
は、冷却速度が毎時400〜800℃と急速であった
が、本発明者の実験によれば、特に冷却速度を毎時10
0℃以下、好ましくは毎時50℃以下に緩速に制御する
ことにより、窒化けい素焼結体組織の粒界相が非結晶質
状態から結晶相を含む相に変化し、高強度特性と高伝熱
特性とが同時に達成されることが判明した。
Further, conventionally, when the heating power source of the firing furnace was turned off after the sintering operation and the sintered body was cooled in the furnace, the cooling rate was as rapid as 400 to 800 ° C./hour. According to the experiments by the inventor, the cooling rate is 10
By controlling the temperature slowly to 0 ° C. or less, preferably 50 ° C. or less per hour, the grain boundary phase of the silicon nitride sintered body structure changes from an amorphous state to a phase containing a crystalline phase, and high strength characteristics and high transmission are obtained. It has been found that the thermal properties are achieved at the same time.

【0017】このような熱伝導率が60W/m・K以上
の高熱伝導性窒化けい素焼結体自体は、その一部が既に
本発明者により特許出願されており、さらに特開平6−
135771号公報および特開平7−48174号公報
によって出願公開されている。そして、これらの特許出
願において記載されている窒化けい素焼結体は、希土類
元素を酸化物に換算して2.0〜7.5重量%含有する
ものである。しかしながら、本発明者はさらに改良研究
を進めた結果、含有される希土類元素は酸化物に換算し
て7.5重量%を超えた場合の方が焼結体の高熱伝導化
がさらに進み、焼結性も良好であるため、7.5重量%
を超えたものを用いることが好ましい。特に希土類元素
がランタノイド系列の元素である場合に、その効果は顕
著である。ちなみに粒界相中における結晶化合物相の粒
界相全体に対する割合が60〜70%である場合におい
ても、焼結体は110〜120W/m・K以上の高熱伝
導率を達成することができる。
A part of the high thermal conductivity silicon nitride sintered body itself having a thermal conductivity of 60 W / m · K or more has already been applied for a patent by the inventor of the present invention.
The application has been disclosed in Japanese Patent No. 135771 and Japanese Patent Laid-Open No. 7-48174. The silicon nitride sintered bodies described in these patent applications contain the rare earth element in an amount of 2.0 to 7.5% by weight in terms of oxide. However, as a result of further improvement research conducted by the present inventor, when the contained rare earth element exceeds 7.5% by weight in terms of oxide, the sintered body has a higher thermal conductivity, and the sintered body has a higher thermal conductivity. 7.5% by weight due to good binding
It is preferable to use a material having a viscosity of more than. In particular, the effect is remarkable when the rare earth element is a lanthanoid series element. By the way, even when the ratio of the crystal compound phase in the grain boundary phase to the whole grain boundary phase is 60 to 70%, the sintered body can achieve a high thermal conductivity of 110 to 120 W / m · K or more.

【0018】このように高強度特性および高伝熱特性を
共に満足する窒化けい素焼結体を基板材料とし、金属回
路板を基板材料表面に一体に接合して回路基板を形成す
ることにより、回路基板全体の靭性強度および熱伝導性
を改善することができ、特に回路基板のアッセンブリ工
程における締め付け割れや熱サイクルの付加によるクラ
ックの発生を効果的に防止できることが判明した。
As described above, the silicon nitride sintered body satisfying both the high strength property and the high heat transfer property is used as the substrate material, and the metal circuit board is integrally bonded to the surface of the substrate material to form the circuit board. It has been found that the toughness and thermal conductivity of the entire board can be improved, and in particular, the occurrence of tightening cracks in the circuit board assembly process and cracks due to the addition of heat cycles can be effectively prevented.

【0019】特に上記窒化けい素焼結体は、高強度特性
と高熱伝導性とに加えて、優れた絶縁耐性を有している
ため、回路基板の基板材料とした場合に、基板厚さを従
来と比較して薄く形成することが可能となる。そして基
板厚さの減少により回路基板全体の熱抵抗を低減でき、
基板材料自体の高熱伝導性にも起因して回路基板の放熱
性を相乗的に改善できることが判明した。
In particular, the above-mentioned silicon nitride sintered body has not only high strength characteristics and high thermal conductivity but also excellent insulation resistance. It becomes possible to form a thin film as compared with. And by reducing the board thickness, the thermal resistance of the entire circuit board can be reduced,
It was found that the heat dissipation of the circuit board can be synergistically improved due to the high thermal conductivity of the board material itself.

【0020】本発明は上記知見に基づいて完成されたも
のである。すなわち本願の第1の発明に係る窒化けい素
回路基板は、熱伝導率が60W/m・K以上で三点曲げ
強度(常温)が650MPa以上である高熱伝導性窒化
けい素基板上に酸化層を介して金属回路板を接合してな
る窒化けい素回路基板において、上記高熱伝導性窒化け
い素基板の厚さをDS ,金属回路板の厚さをDM とした
ときに関係式DS ≦2DM を満たすことを特徴とする。
The present invention has been completed based on the above findings. That is, the silicon nitride circuit substrate according to the first invention of the present application has an oxide layer on a high thermal conductivity silicon nitride substrate having a thermal conductivity of 60 W / mK or more and a three-point bending strength (normal temperature) of 650 MPa or more. In a silicon nitride circuit board formed by joining a metal circuit board through the above, a relational expression D S is obtained when the thickness of the high thermal conductivity silicon nitride board is D S and the thickness of the metal circuit board is D M. It is characterized by satisfying ≦ 2D M.

【0021】また本願の第2の発明に係る窒化けい素回
路基板は、熱伝導率が60W/m・K以上で三点曲げ強
度(常温)が650MPa以上である高熱伝導性窒化け
い素基板上にTi,Zr,HfおよびNbから選択され
る少なくとも1種の活性金属を含有する金属接合層を介
して金属回路板を接合してなる窒化けい素回路基板にお
いて、上記高熱伝導性窒化けい素基板の厚さをDS ,金
属回路板の厚さをDMとしたときに関係式DS ≦2DM
を満たすことを特徴とする。
The silicon nitride circuit board according to the second invention of the present application is a highly heat conductive silicon nitride board having a thermal conductivity of 60 W / mK or more and a three-point bending strength (normal temperature) of 650 MPa or more. A silicon nitride circuit board obtained by bonding a metal circuit board through a metal bonding layer containing at least one active metal selected from Ti, Zr, Hf and Nb, wherein the high thermal conductivity silicon nitride substrate is used. Where D S is the thickness of the metal circuit board and D M is the thickness of the metal circuit board, the relational expression D S ≦ 2D M
It is characterized by satisfying.

【0022】なお上記第1および第2の発明に係る窒化
けい素回路基板において、高熱伝導性窒化けい素基板の
厚さDS および金属回路板の厚さDM が関係式DM ≦D
S ≦(5/3)DM を満たすと更に好ましい。
In the silicon nitride circuit boards according to the first and second aspects of the present invention, the thickness D S of the high thermal conductivity silicon nitride substrate and the thickness D M of the metal circuit board are related by the relational expression D M ≤D
It is more preferable that S ≤ (5/3) D M is satisfied.

【0023】また本願の第3の発明に係る窒化けい素回
路基板は、熱伝導率が60W/m・K以上である高熱伝
導性窒化けい素基板に回路層を一体に接合した回路基板
であり、回路基板を50mmの支持間隔で保持した状態で
中央部に荷重を付加したときに窒化けい素基板が破断に
至るまでの最大たわみ量が0.6mm以上であることを特
徴とする。
The silicon nitride circuit board according to the third invention of the present application is a circuit board in which a circuit layer is integrally bonded to a high thermal conductivity silicon nitride board having a thermal conductivity of 60 W / mK or more. It is characterized in that when a load is applied to the central portion while the circuit board is held at a support interval of 50 mm, the maximum amount of deflection until the silicon nitride board breaks is 0.6 mm or more.

【0024】また他の態様として、熱伝導率が60W/
m・K以上である高熱伝導性窒化けい素基板に回路層を
一体に接合した回路基板であり、回路基板を50mmの支
持間隔で保持した状態で抗折試験を実施したときに抗折
強度が500MPa以上であることを特徴とする。
In another embodiment, the thermal conductivity is 60 W /
A circuit board in which a circuit layer is integrally bonded to a high thermal conductivity silicon nitride substrate of m · K or more, and when the bending test is carried out with the circuit board held at a support interval of 50 mm, the bending strength is It is characterized by being 500 MPa or more.

【0025】さらに高熱伝導性窒化けい素基板の厚さは
0.8mm以下に設定するとよい。また回路層が銅回路板
であり、この銅回路板がCu−O共晶化合物によって窒
化けい素基板に直接接合されていることを特徴とする。
さらに回路層が銅回路板であり、Ti,Zr,Hfおよ
びNbから選択される少なくとも1種の活性金属を含有
する活性金属ろう材層を介して上記銅回路板が窒化けい
素基板に接合されるように構成してもよい。また回路層
はWあるいはMoにTi,Zr,HfおよびNbから選
択される少なくとも1種の活性金属を含有する高融点金
属メタライズ層から構成してもよい。
Further, the thickness of the silicon nitride substrate having high thermal conductivity may be set to 0.8 mm or less. Further, the circuit layer is a copper circuit board, and the copper circuit board is directly bonded to the silicon nitride substrate by a Cu—O eutectic compound.
Further, the circuit layer is a copper circuit board, and the copper circuit board is bonded to the silicon nitride substrate through an active metal brazing material layer containing at least one active metal selected from Ti, Zr, Hf and Nb. It may be configured to. The circuit layer may be composed of a refractory metallized layer containing W or Mo and at least one active metal selected from Ti, Zr, Hf and Nb.

【0026】また高熱伝導性窒化けい素基板は、希土類
元素を酸化物に換算して2.0〜17.5重量%、不純
物陽イオン元素としてのLi,Na,K,Fe,Ca,
Mg,Sr,Ba,Mn,Bを合計で0.3重量%以下
含有する窒化けい素焼結体から成ることを特徴とする。
The high-thermal-conductivity silicon nitride substrate is 2.0 to 17.5% by weight in terms of oxide of rare earth element, and Li, Na, K, Fe, Ca, as impurity cation elements.
It is characterized by being composed of a silicon nitride sintered body containing Mg, Sr, Ba, Mn and B in a total amount of 0.3% by weight or less.

【0027】さらに高熱伝導性窒化けい素基板は、希土
類元素を酸化物に換算して2.0〜17.5重量%含有
し、窒化けい素結晶および粒界相から成るとともに粒界
相中における結晶化合物相の粒界相全体に対する割合が
20%以上である窒化けい素焼結体から構成してもよ
い。
Further, the high thermal conductivity silicon nitride substrate contains the rare earth element in an amount of 2.0 to 17.5% by weight in terms of oxide, and is composed of a silicon nitride crystal and a grain boundary phase and in the grain boundary phase. It may be made of a silicon nitride sintered body in which the ratio of the crystal compound phase to the entire grain boundary phase is 20% or more.

【0028】さらに高熱伝導性窒化けい素基板は、窒化
けい素結晶および粒界相から成るとともに粒界相中にお
ける結晶化合物相の粒界相全体に対する割合が50%以
上である窒化けい素焼結体から構成することがさらに好
ましい。
Further, the high thermal conductivity silicon nitride substrate is composed of a silicon nitride crystal and a grain boundary phase, and the ratio of the crystal compound phase in the grain boundary phase to the whole grain boundary phase is 50% or more. More preferably,

【0029】上記第1の発明に係る窒化けい素回路基板
においては、ろう材などの接合剤を使用せず、窒化けい
素基板表面に酸化層を形成後、金属回路板と直接接合さ
れる例えば金属回路板が銅回路板の場合には、酸素を1
00〜1000ppm程度含有するタフピッチ電解銅が
使用され、銅と酸化銅との共晶化合物により接合界面に
おいて両部材が直接的に接合される(DBC法)。即
ち、DBC法においては、共晶化合物を形成するために
必要な酸素を含有したタフピッチ電解銅が使用される。
In the silicon nitride circuit board according to the first aspect of the present invention, a bonding agent such as a brazing material is not used, and after an oxide layer is formed on the surface of the silicon nitride board, it is directly bonded to a metal circuit board, for example. If the metal circuit board is a copper circuit board, add 1 oxygen
Tough pitch electrolytic copper containing about 0 to 1000 ppm is used, and both members are directly bonded at the bonding interface by the eutectic compound of copper and copper oxide (DBC method). That is, in the DBC method, tough pitch electrolytic copper containing oxygen necessary for forming a eutectic compound is used.

【0030】一方、第2の発明に係る窒化けい素回路基
板おいては、窒化けい素基板の表面に酸化層を形成せ
ず、活性金属を含有する金属接合層を接合剤として使用
して窒化けい素基板と金属回路板とを接合している。こ
の場合の金属回路板は酸素を含む必要がなく、無酸素銅
やリン酸銅や無電解銅で形成したものが使用される。
On the other hand, in the silicon nitride circuit substrate according to the second aspect of the present invention, an oxide layer is not formed on the surface of the silicon nitride substrate and a metal bonding layer containing an active metal is used as a bonding agent. The silicon substrate and the metal circuit board are joined. In this case, the metal circuit board does not need to contain oxygen, and one formed of oxygen-free copper, copper phosphate or electroless copper is used.

【0031】なお、上記希土類元素としてランタノイド
系列の元素を使用することが、窒化けい素基板の熱伝導
率を向上させるために特に好ましい。
It is particularly preferable to use a lanthanoid series element as the rare earth element in order to improve the thermal conductivity of the silicon nitride substrate.

【0032】また、高熱伝導性窒化けい素基板が窒化ア
ルミニウムおよびアルミナの少なくとも一方を1.0重
量%以下含有するように構成してもよい。さらにアルミ
ナを1.0重量%以下と窒化アルミニウムを1.0重量
%以下とを併用してもよい。
The high-thermal-conductivity silicon nitride substrate may contain at least one of aluminum nitride and alumina in an amount of 1.0% by weight or less. Further, 1.0% by weight or less of alumina and 1.0% by weight or less of aluminum nitride may be used together.

【0033】また本発明で使用する高熱伝導性窒化けい
素基板は、Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wからなる群より選択される少なくとも1種を酸
化物に換算して0.1〜0.3重量%含有することが好
ましい。このTi,Zr,Hf,V,Nb,Ta,C
r,Mo,Wから成る群より選択される少なくとも1種
は、酸化物、炭化物、窒化物、けい化物,硼化物として
窒化けい素粉末に添加することにより含有させることが
できる。
The high thermal conductivity silicon nitride substrate used in the present invention is made of Ti, Zr, Hf, V, Nb, Ta, Cr,
It is preferable that at least one selected from the group consisting of Mo and W is contained in an amount of 0.1 to 0.3% by weight in terms of oxide. This Ti, Zr, Hf, V, Nb, Ta, C
At least one selected from the group consisting of r, Mo and W can be contained by adding it to the silicon nitride powder as an oxide, a carbide, a nitride, a silicide or a boride.

【0034】本発明で使用する高熱伝導性窒化けい素基
板は、例えば以下の方法で製造される。すなわち、酸素
を1.7重量%以下、不純物陽イオン元素としてのL
i,Na,K,Fe,Ca,Mg,Sr,Ba,Mn,
Bを合計で0.3重量%以下、α相型窒化けい素を90
重量%以上含有し、平均粒径1.0μm以下の窒化けい
素粉末に、希土類元素を酸化物に換算して2.0〜1
7.5重量%と、必要に応じてアルミナおよび窒化アル
ミニウムの少なくとも一方を1.0重量%以下添加した
原料混合体を成形して成形体を調製し、得られた成形体
を脱脂後、温度1800〜2100℃で雰囲気加圧焼結
し、上記焼結温度から、上記希土類元素により焼結時に
形成された液相が凝固する温度までに至る焼結体の冷却
速度を毎時100℃以下にして徐冷する。
The high thermal conductivity silicon nitride substrate used in the present invention is manufactured, for example, by the following method. That is, 1.7 wt% or less of oxygen, L as an impurity cation element
i, Na, K, Fe, Ca, Mg, Sr, Ba, Mn,
0.3% by weight or less of B in total and 90% of α-phase silicon nitride
2.0 to 1 in terms of oxide of a rare earth element in a silicon nitride powder having an average particle size of 1.0 μm or less, which is contained by weight% or more.
7.5 wt% and, if necessary, at least one of alumina and aluminum nitride was added at 1.0 wt% or less to form a raw material mixture to prepare a green body, and after degreasing the obtained green body, the temperature was adjusted. Atmospheric pressure sintering at 1800 to 2100 ° C., and the cooling rate of the sintered body from the above sintering temperature to the temperature at which the liquid phase formed during sintering by the above rare earth element solidifies is set to 100 ° C. or less per hour. Slowly cool.

【0035】さらに窒化けい素粉末に、さらにTi,Z
r,Hf,V,Nb,Ta,Cr,Mo,Wの酸化物、
炭化物、窒化物、けい化物、硼化物からなる群より選択
される少なくとも1種を0.1〜3.0重量%添加する
とよい。
In addition to silicon nitride powder, Ti, Z
oxides of r, Hf, V, Nb, Ta, Cr, Mo, W,
It is preferable to add 0.1 to 3.0% by weight of at least one selected from the group consisting of carbides, nitrides, silicides and borides.

【0036】上記製造方法によれば、窒化けい素結晶組
織中に希土類元素等を含む粒界相が形成され、気孔率が
2.5%以下、熱伝導率が90W/m・K以上、三点曲
げ強度が室温で650MPa以上の機械的特性および熱
伝導特性が共に優れた窒化けい素焼結体が得られる。
According to the above manufacturing method, a grain boundary phase containing a rare earth element or the like is formed in the silicon nitride crystal structure, the porosity is 2.5% or less, the thermal conductivity is 90 W / m · K or more, and It is possible to obtain a silicon nitride sintered body having a point bending strength of 650 MPa or more at room temperature, which is excellent in both mechanical properties and heat conduction properties.

【0037】本発明において使用される高熱伝導性窒化
けい素基板の主成分となる窒化けい素粉末としては、焼
結性、強度および熱伝導率を考慮して、酸素含有量が
1.7重量%以下、好ましくは0.5〜1.5重量%、
Li,Na,K,Fe,Mg,Ca,Sr,Ba,M
n,Bなどの不純物陽イオン元素含有量が合計で0.3
重量%以下、好ましくは0.2重量%以下に抑制された
α相型窒化けい素を90重量%以上、好ましくは93重
量%以上含有し、平均粒径が1.0μm以下、好ましく
は0.4〜0.8μm程度の微細な窒化けい素粉末を使
用することができる。
The silicon nitride powder, which is the main component of the high thermal conductivity silicon nitride substrate used in the present invention, has an oxygen content of 1.7 wt% in consideration of sinterability, strength and thermal conductivity. % Or less, preferably 0.5 to 1.5% by weight,
Li, Na, K, Fe, Mg, Ca, Sr, Ba, M
The total content of impurity cation elements such as n and B is 0.3.
It contains 90% by weight or more, preferably 93% by weight or more, of α-phase type silicon nitride suppressed to a weight% or less, preferably 0.2% by weight or less, and has an average particle size of 1.0 μm or less, preferably 0. Fine silicon nitride powder of about 4 to 0.8 μm can be used.

【0038】平均粒径が1.0μm以下の微細な原料粉
末を使用することにより、少量の焼結助剤であっても気
孔率が2.5%以下の緻密な焼結体を形成することが可
能であり、また焼結助剤が熱伝導特性を阻害するおそれ
も減少する。
By using a fine raw material powder having an average particle size of 1.0 μm or less, it is possible to form a dense sintered body having a porosity of 2.5% or less even with a small amount of a sintering aid. It is also possible to reduce the risk of the sintering aid impairing the heat conduction characteristics.

【0039】またLi,Na,K,Fe,Ca,Mg,
Sr,Ba,Mn,Bの不純物陽イオン元素は熱伝導性
を阻害する物質となるため、60W/m・K以上の熱伝
導率を確保するためには、上記不純物陽イオン元素の含
有量は合計で0.3重量%以下とすることにより達成可
能である。特に同様の理由により、上記不純物陽イオン
元素の含有量は合計で0.2重量%以下とすることが、
さらに好ましい。ここで通常の窒化けい素焼結体を得る
ために使用される窒化けい素粉末には、特にFe,C
a,Mgが比較的に多く含有されているため、Fe,C
a,Mgの合計量が上記不純物陽イオン元素の合計含有
量の目安となる。
Li, Na, K, Fe, Ca, Mg,
Impurity cation elements of Sr, Ba, Mn, and B are substances that impede thermal conductivity. Therefore, in order to ensure a thermal conductivity of 60 W / m · K or more, the content of the impurity cation elements is It can be achieved by setting the total to 0.3% by weight or less. Particularly, for the same reason, the total content of the above-mentioned impurity cation elements is 0.2% by weight or less,
More preferred. The silicon nitride powder used for obtaining the usual silicon nitride sintered body is particularly Fe, C.
Since a and Mg are contained in relatively large amounts, Fe and C
The total amount of a and Mg is a measure of the total content of the above impurity cation elements.

【0040】さらに、β相型と比較して焼結性に優れた
α相型窒化けい素を90重量%以上含有する窒化けい素
原料粉末を使用することにより、高密度の焼結体を製造
することができる。
Further, by using a silicon nitride raw material powder containing 90% by weight or more of α-phase type silicon nitride, which is superior in sinterability as compared with the β-phase type, a high density sintered body is manufactured. can do.

【0041】また窒化けい素原料粉末に焼結助剤として
添加する希土類元素としては、Ho,Er,Yb,Y,
La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなど
の酸化物もしくは焼結操作により、これらの酸化物とな
る物質が単独で、または2種以上の酸化物を組み合せた
ものを含んでもよいが、特に酸化ホルミウム(Ho2
3 ),酸化エルビウム(Er2 3 )が好ましい。
The rare earth elements added to the silicon nitride raw material powder as a sintering aid include Ho, Er, Yb, Y,
Depending on the oxide such as La, Sc, Pr, Ce, Nd, Dy, Sm, Gd or the sintering operation, these oxide substances may be used alone or in combination of two or more kinds. Good, but especially holmium oxide (Ho 2 O
3 ) and erbium oxide (Er 2 O 3 ) are preferred.

【0042】特に希土類元素としてランタノイド系列の
元素であるHo,Er,Ybを使用することにより、焼
結性あるいは高熱伝導化が良好になり、1850℃程度
の低温度領域においても十分に緻密な焼結体が得られ
る。したがって焼成装置の設備費およびランニングコス
トを低減できる効果も得られる。これらの焼結助剤は、
窒化けい素原料粉末と反応して液相を生成し、焼結促進
剤として機能する。
In particular, by using lanthanoid series elements Ho, Er and Yb as the rare earth element, the sinterability or high thermal conductivity is improved, and the firing is sufficiently dense even in the low temperature region of about 1850 ° C. A union is obtained. Therefore, the effect of reducing the equipment cost and running cost of the firing apparatus can be obtained. These sintering aids are
It reacts with the silicon nitride raw material powder to form a liquid phase and functions as a sintering accelerator.

【0043】上記焼結助剤の添加量は、酸化物換算で原
料粉末に対して2.0〜17.5重量%の範囲とする。
この添加量が2.0重量%未満の場合は、焼結体の緻密
化が不十分であり、特に希土類元素がランタノイド系元
素のように原子量が大きい元素の場合には、低強度で低
熱伝導率の焼結体が形成される。一方、添加量が17.
5重量%を超える過量となると、過量の粒界相が生成
し、熱伝導率の低下や強度が低下し始めるので上記範囲
とする。特に同様の理由により4〜15重量%とするこ
とが望ましい。
The amount of the above-mentioned sintering aid added is in the range of 2.0 to 17.5% by weight based on the raw material powder in terms of oxide.
If the addition amount is less than 2.0% by weight, the densification of the sintered body is insufficient. Especially, when the rare earth element is an element having a large atomic weight such as a lanthanoid element, the strength is low and the thermal conductivity is low. A rate of sintered body is formed. On the other hand, the addition amount is 17.
If the amount exceeds 5% by weight, an excessive amount of grain boundary phase is generated, and thermal conductivity and strength start to decrease, so the above range is set. Particularly, for the same reason, it is desirable that the amount is 4 to 15% by weight.

【0044】また上記製造方法において他の選択的な添
加成分として使用するTi,Zr,Hf,V,Nb,T
a,Cr,Mo,Wの酸化物,炭化物、窒化物、けい化
物、硼化物は、上記希土類元素の焼結促進剤の機能を促
進すると共に、結晶組織において分散強化の機能を果し
Si3 4 焼結体の機械的強度を向上させるものであ
り、特に、Hf,Tiの化合物が好ましい。これらの化
合物の添加量が0.1重量%未満の場合においては添加
効果が不充分である一方、3.0重量%を超える過量と
なる場合には熱伝導率および機械的強度や電気絶縁破壊
強度の低下が起こるため、添加量は0.1〜3.0重量
%の範囲とする。特に0.2〜2重量%とすることが望
ましい。
Further, Ti, Zr, Hf, V, Nb and T used as other selective addition components in the above manufacturing method.
The oxides, carbides, nitrides, suicides, and borides of a, Cr, Mo, and W promote the function of the above-mentioned rare earth element sintering promoter and, at the same time, function as a dispersion strengthener in the crystal structure of Si 3 It improves the mechanical strength of the N 4 sintered body, and a compound of Hf and Ti is particularly preferable. If the addition amount of these compounds is less than 0.1% by weight, the effect of addition is insufficient, while if it exceeds 3.0% by weight, the thermal conductivity, mechanical strength, and electrical breakdown Since the strength decreases, the addition amount is set to the range of 0.1 to 3.0% by weight. In particular, it is desirable that the content be 0.2 to 2% by weight.

【0045】また上記Ti,Zr,Hf等の化合物は窒
化けい素焼結体を黒色系に着色し不透明性を付与する遮
光剤としても機能する。そのため、特に光によって誤動
作を生じ易い集積回路等を搭載する回路基板を製造する
場合には、上記Ti等の化合物を適正に添加し、遮光性
に優れた窒化けい素基板とすることが望ましい。
The compounds of Ti, Zr, Hf and the like also function as a light-shielding agent for coloring the silicon nitride sintered body in a black system and imparting opacity. Therefore, particularly when manufacturing a circuit board on which an integrated circuit or the like is likely to malfunction due to light, it is desirable to appropriately add the compound such as Ti to obtain a silicon nitride substrate having an excellent light shielding property.

【0046】さらに上記製造方法において、他の選択的
な添加成分としてのアルミナ(Al2 3 )は、前記希
土類元素の焼結促進剤の機能を助長する役目を果すもの
であり、特に加圧焼結を行なう場合に著しい効果を発揮
するものである。このAl2 3 の添加量が0.1重量
%未満の場合においては、より高温度での焼結が必要に
なる一方、1.0重量%を超える過量となる場合には過
量の粒界相を生成したり、または窒化けい素に固溶し始
め、熱伝導の低下が起こるため、添加量は1重量%以
下、好ましくは0.1〜0.75重量%の範囲とする。
特に強度、熱伝導率共に良好な性能を確保するためには
添加量を0.1〜0.5重量%の範囲とすることが望ま
しい。
Further, in the above-mentioned manufacturing method, alumina (Al 2 O 3 ) as another optional additional component plays a role of promoting the function of the sintering promoter for the rare earth element, and particularly, the pressurization. It exhibits a remarkable effect when sintering is performed. When the added amount of Al 2 O 3 is less than 0.1% by weight, it is necessary to sinter at a higher temperature, while when the added amount exceeds 1.0% by weight, an excessive amount of grain boundary is used. A phase is generated or a solid solution begins to form a solid solution in silicon nitride and the thermal conductivity is lowered. Therefore, the addition amount is 1% by weight or less, preferably 0.1 to 0.75% by weight.
In particular, in order to secure good performances in both strength and thermal conductivity, it is desirable that the addition amount be in the range of 0.1 to 0.5% by weight.

【0047】また、後述するAlNと併用する場合に
は、その合計添加量は1.0重量%以下にすることが望
ましい。
When used in combination with AlN, which will be described later, the total addition amount is preferably 1.0% by weight or less.

【0048】さらに他の添加成分としての窒化アルミニ
ウム(AlN)は焼結過程における窒化けい素の蒸発な
どを抑制するとともに、上記希土類元素の焼結促進剤と
しての機能をさらに助長する役目を果すものである。
Aluminum nitride (AlN) as another additional component not only suppresses evaporation of silicon nitride in the sintering process, but also promotes the function of the rare earth element as a sintering accelerator. Is.

【0049】AlNの添加量が0.1重量%未満(アル
ミナと併用する場合では0.05重量%未満)の場合に
おいては、より高温度での焼結が必要になる一方、1.
0重量%を超える過量となる場合には過量の粒界相を生
成したり、または窒化けい素に固溶し始め、熱伝導率の
低下が起こるため、添加量は0.1〜1.0重量%の範
囲とする。特に焼結性,強度,熱伝導率共に良好な性能
を確保するためには添加量を0.1〜0.5重量%の範
囲とすることが望ましい。なお前記Al2 3と併用す
る場合には、AlNの添加量は0.05〜0.5重量%
の範囲が好ましい。
When the amount of AlN added is less than 0.1% by weight (less than 0.05% by weight when used in combination with alumina), sintering at a higher temperature is required, while
If the amount exceeds 0% by weight, an excessive amount of grain boundary phase is generated or begins to form a solid solution in silicon nitride, and the thermal conductivity decreases, so the addition amount is 0.1 to 1.0. The range is wt%. In particular, in order to secure good performances in terms of sinterability, strength, and thermal conductivity, it is desirable that the addition amount be in the range of 0.1 to 0.5% by weight. When used in combination with Al 2 O 3 , the addition amount of AlN is 0.05 to 0.5% by weight.
Is preferred.

【0050】また焼結体の気孔率は熱伝導率および強度
に大きく影響するため2.5%以下となるように製造す
る。気孔率が2.5%を超えると熱伝導の妨げとなり、
焼結体の熱伝導率が低下するとともに、焼結体の強度低
下が起こる。
The porosity of the sintered body has a great effect on the thermal conductivity and the strength, so that the sintered body is manufactured so as to have a porosity of 2.5% or less. If the porosity exceeds 2.5%, it will hinder heat conduction,
The thermal conductivity of the sintered body decreases and the strength of the sintered body also decreases.

【0051】また、窒化けい素焼結体は組織的に窒化け
い素結晶と粒界相とから構成されるが、粒界相中の結晶
化合物相の割合は焼結体の熱伝導率に大きく影響し、本
発明において使用される高熱伝導性窒化けい素焼結体に
おいては粒界相の20%以上とすることが必要であり、
より好ましくは50%以上が結晶相で占めることが望ま
しい。結晶相が20%未満では熱伝導率が60W/m・
K以上となるような放熱特性に優れ、かつ高温強度に優
れた焼結体が得られないからである。
Further, the silicon nitride sintered body is structurally composed of silicon nitride crystals and a grain boundary phase. The proportion of the crystalline compound phase in the grain boundary phase has a great influence on the thermal conductivity of the sintered body. However, in the high thermal conductivity silicon nitride sintered body used in the present invention, it is necessary to make it 20% or more of the grain boundary phase,
More preferably, 50% or more is preferably occupied by the crystal phase. If the crystal phase is less than 20%, the thermal conductivity will be 60 W / m.
This is because it is not possible to obtain a sintered body having excellent heat dissipation characteristics of K or more and excellent high temperature strength.

【0052】さらに上記のように窒化けい素焼結体の気
孔率を2.5%以下にし、また窒化けい素結晶組織に形
成される粒界相の20%以上が結晶相で占めるようにす
るためには、窒化けい素成形体を温度1800〜210
0℃で2〜10時間程度、加圧焼結し、かつ焼結操作完
了直後における焼結体の冷却速度を毎時100℃以下に
して徐冷することが重要である。
Further, as described above, the porosity of the silicon nitride sintered body is set to 2.5% or less, and 20% or more of the grain boundary phase formed in the silicon nitride crystal structure is occupied by the crystal phase. A silicon nitride compact at a temperature of 1800-210.
It is important to perform pressure sintering at 0 ° C. for about 2 to 10 hours and gradually cool the sintered body immediately after the completion of the sintering operation to 100 ° C. or less per hour.

【0053】焼結温度を1800℃未満とした場合に
は、焼結体の緻密化が不充分で気孔率が2.5vol%以上
になり機械的強度および熱伝導性が共に低下してしま
う。一方焼結温度が2100℃を超えると窒化けい素成
分自体が蒸発分解し易くなる。特に加圧焼結ではなく、
常圧焼結を実施した場合には、1800℃付近より窒化
けい素の分解蒸発が始まる。
If the sintering temperature is less than 1800 ° C., the densification of the sintered body will be insufficient and the porosity will be 2.5 vol% or more, resulting in a decrease in both mechanical strength and thermal conductivity. On the other hand, if the sintering temperature exceeds 2100 ° C., the silicon nitride component itself tends to evaporate and decompose. Not especially pressure sintering,
When pressureless sintering is carried out, decomposition vaporization of silicon nitride begins at around 1800 ° C.

【0054】上記焼結操作完了直後における焼結体の冷
却速度は粒界相を結晶化させるために重要な制御因子で
あり、冷却速度が毎時100℃を超えるような急速冷却
を実施した場合には、焼結体組織の粒界相が非結晶質
(ガラス相)となり、焼結体に生成した液相が結晶相と
して粒界相に占める割合が20%未満となり、強度およ
び熱伝導性が共に低下してしまう。
The cooling rate of the sintered body immediately after the completion of the above-mentioned sintering operation is an important control factor for crystallizing the grain boundary phase, and when performing the rapid cooling such that the cooling rate exceeds 100 ° C. per hour. The grain boundary phase of the sintered body structure becomes amorphous (glass phase), the liquid phase generated in the sintered body occupies less than 20% of the grain boundary phase as a crystal phase, and the strength and thermal conductivity are Both will decrease.

【0055】上記冷却速度を厳密に調整すべき温度範囲
は、所定の焼結温度(1800〜2100℃)から、前
記の焼結助剤の反応によって生成する液相が凝固するま
での温度範囲で充分である。ちなみに前記のような焼結
助剤を使用した場合の液相凝固点は概略1600〜15
00℃程度である。そして少なくとも焼結温度から上記
液相凝固温度に至るまでの焼結体の冷却速度を毎時10
0℃以下、好ましくは50℃以下、さらに好ましくは2
5℃以下に制御することにより、粒界相の20%以上、
特に好ましくは50%以上が結晶相になり、熱伝導率お
よび機械的強度が共に優れた窒化けい素焼結体が得られ
る。
The temperature range in which the cooling rate should be strictly adjusted is a temperature range from a predetermined sintering temperature (1800 to 2100 ° C.) to the solidification of the liquid phase produced by the reaction of the above-mentioned sintering aid. Is enough. By the way, the liquidus freezing point when the above-mentioned sintering aid is used is approximately 1600 to 15
It is about 00 ° C. The cooling rate of the sintered body from at least the sintering temperature to the liquidus solidification temperature is set to 10 per hour.
0 ° C or lower, preferably 50 ° C or lower, more preferably 2
By controlling the temperature to 5 ° C or lower, 20% or more of the grain boundary phase,
Particularly preferably, 50% or more becomes a crystalline phase, and a silicon nitride sintered body excellent in both thermal conductivity and mechanical strength can be obtained.

【0056】本発明において使用する高熱伝導性窒化け
い素基板は、例えば以下のようなプロセスを経て製造さ
れる。すなわち前記所定の微細粒径を有し、また不純物
含有量が少ない微細な窒化けい素粉末に対して所定量の
焼結助剤、有機バインダ等の必要な添加剤および必要に
応じてAl2 3 やAlN,Ti化合物等を加えて原料
混合体を調整し、次に得られた原料混合体を成形して所
定形状の成形体を得る。原料混合体の成形法としては、
汎用の金型プレス法、ドクターブレード法のようなシー
ト成形法などが適用できる。
The high thermal conductivity silicon nitride substrate used in the present invention is manufactured, for example, through the following process. That is, with respect to the fine silicon nitride powder having a predetermined fine particle diameter and a small amount of impurities, a predetermined amount of a sintering aid, an organic binder, and other necessary additives and, if necessary, Al 2 O. A raw material mixture is prepared by adding 3 , AlN, Ti compounds and the like, and the obtained raw material mixture is then molded to obtain a molded product having a predetermined shape. As a molding method of the raw material mixture,
A general-purpose die pressing method, a sheet forming method such as a doctor blade method, or the like can be applied.

【0057】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中で温度600〜800℃、または空気中で
温度400〜500℃で1〜2時間加熱して、予め添加
していた有機バインダ成分を充分に除去し、脱脂する。
次に脱脂処理された成形体を窒素ガス、水素ガスやアル
ゴンガスなどの不活性ガス雰囲気中で1800〜210
0℃の温度で所定時間雰囲気加圧焼結を行う。
Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours, and the organic binder added in advance is added. Remove components thoroughly and degrease.
Next, the degreased molded body is subjected to 1800 to 210 in an inert gas atmosphere such as nitrogen gas, hydrogen gas or argon gas.
Atmosphere pressure sintering is performed at a temperature of 0 ° C. for a predetermined time.

【0058】上記製法によって製造された高熱伝導性窒
化けい素基板は気孔率が2.5%以下、60W/m・K
(25℃)以上、さらには100W/m・K以上の熱伝
導率を有し、また三点曲げ強度が常温で650MPa以
上、さらには800MPa以上と機械的特性にも優れて
いる。
The high thermal conductivity silicon nitride substrate manufactured by the above manufacturing method has a porosity of 2.5% or less, 60 W / m · K.
It has a thermal conductivity of (25 ° C.) or higher, further 100 W / m · K or higher, and a three-point bending strength of 650 MPa or higher at room temperature, further 800 MPa or higher, which is excellent in mechanical properties.

【0059】なお、低熱伝導性の窒化けい素に高熱伝導
性のSiC等を添加して焼結体全体としての熱伝導率を
60W/m・K以上にした窒化けい素焼結体は本発明の
範囲には含まれない。しかしながら、熱伝導率が60W
/m・K以上である窒化けい素焼結体に高熱伝導性のS
iC等を複合させた窒化けい素系焼結体の場合には、窒
化けい素焼結体自体の熱伝導率が60W/m・K以上で
ある限り、本発明の範囲に含まれることは言うまでもな
い。
It should be noted that a silicon nitride sintered body obtained by adding SiC or the like having a high thermal conductivity to silicon nitride having a low thermal conductivity so that the thermal conductivity of the whole sintered body is 60 W / m · K or more is the present invention. Not included in the range. However, the thermal conductivity is 60W
/ M · K or higher silicon nitride sintered body with high thermal conductivity S
Needless to say, a silicon nitride-based sintered body in which iC or the like is compounded is included in the scope of the present invention as long as the thermal conductivity of the silicon nitride sintered body itself is 60 W / m · K or more. .

【0060】また上記高熱伝導性窒化けい素基板の厚さ
S は、回路基板として使用した場合の要求特性に応じ
て種々の厚さに設定されるが、本発明では金属回路板の
厚さをDM としたときに、関係式DS ≦2DM を満たす
ものとする。すなわち、高熱伝導性窒化けい素基板の厚
さDS は金属回路板の厚さの2倍以下とする。窒化けい
素基板の厚さDS が金属回路板の厚さDM の2倍以下と
することにより、特定の熱伝導率を有する窒化けい素基
板の熱抵抗を小さくし、ひいては回路基板全体の熱抵抗
を小さくすることができる。なお高熱伝導性窒化けい素
基板の厚さDSおよび金属回路板の厚さDM が、関係式
M ≦DS ≦(5/3)DM を満たすようにすることに
より、セラミックス回路基板としての強度特性および放
熱性を同時に満足することができるので、さらに好まし
い。
The thickness D S of the high-thermal-conductivity silicon nitride substrate is set to various thicknesses according to the required characteristics when it is used as a circuit board. In the present invention, the thickness of the metal circuit board is set. Is defined as D M , the relational expression D S ≦ 2D M is satisfied. That is, the thickness D S of the high thermal conductivity silicon nitride substrate is not more than twice the thickness of the metal circuit board. By making the thickness D S of the silicon nitride substrate less than or equal to twice the thickness D M of the metal circuit board, the thermal resistance of the silicon nitride substrate having a specific thermal conductivity can be reduced, and by extension, the entire circuit substrate The thermal resistance can be reduced. The thickness D S of the high-thermal-conductivity silicon nitride substrate and the thickness D M of the metal circuit board satisfy the relational expression D M ≦ D S ≦ (5/3) D M to obtain a ceramic circuit board. Since it is possible to simultaneously satisfy the strength characteristics and the heat dissipation property, it is more preferable.

【0061】この場合の高熱伝導性窒化けい素基板の具
体的な厚さは、0.25〜0.8mmの範囲である。特
に、この窒化けい素基板の厚さを0.5mm以下、好まし
くは0.4mm以下に設定することにより、回路基板全体
の厚さを低減することができ、回路基板の上下面間の熱
抵抗差を、より効果的に減少させることが可能になり、
回路基板全体の放熱性を、より改善することができる。
但し、基板としての強度特性を確保するため、高熱伝導
性窒化けい素基板についても、厚さDS は金属回路板の
厚さDM 以上であることが望ましい。
The specific thickness of the high thermal conductivity silicon nitride substrate in this case is in the range of 0.25 to 0.8 mm. In particular, by setting the thickness of this silicon nitride substrate to 0.5 mm or less, preferably 0.4 mm or less, the thickness of the entire circuit board can be reduced and the thermal resistance between the upper and lower surfaces of the circuit board can be reduced. It is possible to reduce the difference more effectively,
The heat dissipation of the entire circuit board can be further improved.
However, in order to secure the strength characteristics of the substrate, it is desirable that the thickness D S of the high-thermal-conductivity silicon nitride substrate be equal to or greater than the thickness D M of the metal circuit board.

【0062】本発明に係る窒化けい素回路基板は、上記
のように製造した高熱伝導性窒化けい素基板の表面に、
導電性を有する金属回路板などの回路層を一体に接合形
成し、さらにこの金属回路板上に半導体素子を搭載して
製造される。
The silicon nitride circuit board according to the present invention has the high thermal conductivity silicon nitride substrate manufactured as described above,
It is manufactured by integrally forming a circuit layer such as a metal circuit board having conductivity with a semiconductor element and mounting the semiconductor element on the metal circuit board.

【0063】上記金属回路板などの回路層の形成方法ま
たは接合方法は、特に限定されず、以下に説明する直接
接合法,活性金属法またはメタライズ法などを適用する
ことができる。
The method of forming or joining the circuit layer such as the metal circuit board is not particularly limited, and a direct joining method, an active metal method, a metallizing method, or the like described below can be applied.

【0064】直接接合法は、高熱伝導性窒化けい素基板
の表面に、厚さが0.5〜10μm程度の酸化層を形成
し、この酸化層を介して、回路層となる金属回路板を上
記窒化けい素基板に直接接合する方法である。ここで上
記金属回路板は、ろう材などの接合剤を使用せずに窒化
けい素基板表面に直接的に一体に接合される。すなわ
ち、例えば金属回路板が銅回路板の場合、酸素を数10
0ppm含有する銅材が使用され、銅と酸化銅との共晶
化合物により、両部材が直接的に接合される。
In the direct bonding method, an oxide layer having a thickness of about 0.5 to 10 μm is formed on the surface of a high thermal conductivity silicon nitride substrate, and a metal circuit board to be a circuit layer is formed through this oxide layer. This is a method of directly bonding to the silicon nitride substrate. Here, the metal circuit board is directly and integrally bonded to the surface of the silicon nitride substrate without using a bonding agent such as a brazing material. That is, for example, when the metal circuit board is a copper circuit board, oxygen is added in several tens.
A copper material containing 0 ppm is used, and both members are directly bonded by a eutectic compound of copper and copper oxide.

【0065】なお、この直接接合法はAl2 3 などの
酸化物系セラミックスについてのみ適用可能であり、窒
化けい素基板にそのまま適用しても基板に対する濡れ性
が低いため、金属回路板の充分な接合強度が得られな
い。
This direct bonding method can be applied only to oxide-based ceramics such as Al 2 O 3 , and even if it is directly applied to a silicon nitride substrate, the wettability with respect to the substrate is low. Cannot obtain good bonding strength.

【0066】そこで窒化けい素基板の表面に予め酸化層
を形成し、基板に対する濡れ性を高める必要がある。こ
の酸化層は上記高熱伝導性窒化けい素基板を、空気中な
どの酸化雰囲気中で温度1000〜1400℃程度で2
〜15時間加熱して形成される。この酸化層の厚さが
0.5μm未満の場合には、上記濡れ性の改善効果が少
ない一方、10μmを超えるように厚く形成しても改善
効果が飽和するとともに、却って熱伝導率が低下し易く
なるため、酸化層の厚さは0.5〜10μmの範囲、よ
り好ましくは1〜5μmの範囲に設定される。
Therefore, it is necessary to previously form an oxide layer on the surface of the silicon nitride substrate to enhance the wettability with respect to the substrate. This oxide layer is formed on the silicon nitride substrate having high thermal conductivity at a temperature of about 1000 to 1400 ° C. in an oxidizing atmosphere such as air.
Formed by heating for ~ 15 hours. When the thickness of the oxide layer is less than 0.5 μm, the effect of improving the wettability is small, but even when the oxide layer is formed to be thicker than 10 μm, the improving effect is saturated and the thermal conductivity is rather lowered. Therefore, the thickness of the oxide layer is set in the range of 0.5 to 10 μm, more preferably 1 to 5 μm.

【0067】上記酸化層は、当初Si3 4 基板成分の
酸化物であるSiO2 のみから構成されているが、加熱
による金属回路板の接合操作時において、Si3 4
板に焼結助剤として添加されていた希土類元素酸化物が
酸化層方向に拡散移動する結果、希土類酸化物が酸化層
中に濃縮された構成となる。例えば焼結助剤としてY2
3 を使用した場合には加熱接合操作後の酸化層は、Y
2 3 を1〜20重量%程度含有するイットリアシリケ
ートなどのSiO2 −Y2 3 化合物から構成されるよ
うになる。
The above oxide layer is initially composed only of SiO 2 which is an oxide of the Si 3 N 4 substrate component, but during the bonding operation of the metal circuit board by heating, the Si 3 N 4 substrate has a sintering aid. As a result of the rare earth element oxide added as the agent diffusing and moving toward the oxide layer, the rare earth oxide is concentrated in the oxide layer. For example, as a sintering aid, Y 2
When O 3 is used, the oxide layer after the heat bonding operation is Y
Comes to be composed of SiO 2 -Y 2 O 3 compound such yttria silicate containing about a 2 O 3 1 to 20% by weight.

【0068】また上記金属回路板を構成する金属として
は、銅,アルミニウム,鉄,ニッケル,クロム,銀,モ
リブデン,コバルトの単体またはその合金など、基板成
分との共晶化合物を生成し、直接接合法を適用できる金
属であれば特に限定されないが、特に導電性および価格
の観点から銅,アルミニウムまたはその合金が好まし
い。
As a metal constituting the above-mentioned metal circuit board, a eutectic compound with a substrate component such as a simple substance of copper, aluminum, iron, nickel, chromium, silver, molybdenum, cobalt, or an alloy thereof is formed and directly contacted. There is no particular limitation as long as it is a metal to which legality can be applied, but copper, aluminum or an alloy thereof is particularly preferable from the viewpoint of conductivity and cost.

【0069】金属回路板の厚さは、通電容量等を勘案し
て決定されるが、窒化けい素基板の厚さを0.25〜
1.2mmの範囲とする一方、金属回路板の厚さを0.1
〜0.5mmの範囲に設定して両者を組み合せると熱膨張
差による変形などの影響を受けにくくなる。
The thickness of the metal circuit board is determined in consideration of the current-carrying capacity and the like, but the thickness of the silicon nitride substrate is 0.25 to 0.25.
The thickness of the metal circuit board is set to 0.1 mm while the range is set to 1.2 mm.
If they are set in the range of about 0.5 mm and they are combined, the influence of deformation due to a difference in thermal expansion becomes less likely.

【0070】そして、金属回路板が銅回路板である場合
には、以下のように接合操作が実施される。すなわち酸
化層を形成した高熱伝導性窒化けい素基板の表面の所定
位置に、銅回路板を接触配置して基板方向に押圧した状
態で、銅の融点(1083℃)未満の温度で、かつ銅−
酸化銅の共晶温度(1065℃)以上に加熱し、生成し
たCu−O共晶化合物液相を接合剤として銅回路板が高
熱伝導性窒化けい素基板表面に直接的に接合される。こ
の直接接合法は、いわゆる銅直接接合法(DBC:Dire
ct Bonding Copper 法)である。さらに直接接合した銅
回路板の所定位置に半導体素子(Siチップ)を半田接
合して搭載することにより、本発明に係るSi3 4
路基板が製造される。
When the metal circuit board is a copper circuit board, the joining operation is carried out as follows. That is, a copper circuit board is placed in contact with a predetermined position on the surface of a silicon nitride substrate having a high thermal conductivity on which an oxide layer is formed, and is pressed toward the substrate at a temperature lower than the melting point (1083 ° C.) of copper and −
The copper circuit board is directly bonded to the surface of the high thermal conductivity silicon nitride substrate by heating it to a temperature higher than the eutectic temperature of copper oxide (1065 ° C.) and using the generated Cu—O eutectic compound liquid phase as a bonding agent. This direct bonding method is a so-called copper direct bonding method (DBC: Dire
ct Bonding Copper method). Further, a semiconductor element (Si chip) is soldered and mounted at a predetermined position on the directly bonded copper circuit board, whereby the Si 3 N 4 circuit board according to the present invention is manufactured.

【0071】一方、金属回路板がアルミニウム回路板で
ある場合には、Si3 4 基板表面にAl回路板を押圧
した状態でアルミニウム−けい素の共晶温度以上に加熱
し、生成したAl−Si共晶化合物を接合剤としてAl
回路板がSi3 4 基板表面に直接的に接合される。そ
して直接接合したAl回路板の所定位置に半導体素子を
半田接合して搭載することにより、本発明のSi3 4
回路基板が製造される。
On the other hand, when the metal circuit board is an aluminum circuit board, the Al circuit board is heated to a temperature higher than the eutectic temperature of aluminum-silicon while the Al circuit board is pressed against the surface of the Si 3 N 4 substrate, and the generated Al- Al using Si eutectic compound as a bonding agent
The circuit board is bonded directly to the Si 3 N 4 substrate surface. Then, the semiconductor element is solder-bonded and mounted on a predetermined position of the directly bonded Al circuit board, whereby the Si 3 N 4 of the present invention is mounted.
A circuit board is manufactured.

【0072】このように直接接合法を使用して金属回路
板をSi3 4 基板表面に直接接合し、さらに半導体素
子を金属回路板上に搭載して形成した本発明に係るSi
3 4 回路基板によれば、金属回路板とSi3 4 基板
との間に、接着剤やろう材のような介在物が存在しない
ため、両者間の熱抵抗が小さく、金属回路板上に設けら
れた半導体素子の発熱を系外に迅速に放散させることが
可能である。
As described above, the metal circuit board is directly bonded to the surface of the Si 3 N 4 substrate by using the direct bonding method, and further the semiconductor element is mounted on the metal circuit board to form the Si according to the present invention.
According to the 3 N 4 circuit board, since there is no inclusion such as an adhesive or a brazing material between the metal circuit board and the Si 3 N 4 board, the thermal resistance between the two is small, and It is possible to quickly dissipate the heat generated by the semiconductor element provided in the outside of the system.

【0073】次に活性金属法による金属回路板の接合方
法を説明する。
Next, a method for joining metal circuit boards by the active metal method will be described.

【0074】活性金属法では、Ti,Zr,Hfおよび
Nbから選択される少なくとも1種の活性金属を含有し
適切な組成比を有するAg−Cu−Ti系ろう材等で窒
化けい素基板表面に、厚さ20μm前後の活性金属ろう
材層(金属接合層)を形成し、この金属接合層を介し
て、銅回路板などの金属回路板が接合される。活性金属
は、基板に対するろう材の濡れ性を改善し、接合強度を
高める作用を有する。活性金属ろう材の具体例として
は、重量%で上記活性金属を1〜10%,Cuを15〜
35%,残部が実質的にAgから成るろう材組成物が好
適である。上記金属接合層は、このろう材組成物を有機
溶媒中に分散して調製した接合用組成物ペーストを窒化
けい素基板表面にスクリーン印刷する等の方法で形成さ
れる。
In the active metal method, an Ag-Cu-Ti-based brazing material containing at least one active metal selected from Ti, Zr, Hf and Nb and having an appropriate composition ratio is used to form a silicon nitride substrate surface. An active metal brazing material layer (metal bonding layer) having a thickness of about 20 μm is formed, and a metal circuit board such as a copper circuit board is bonded via the metal bonding layer. The active metal has an effect of improving the wettability of the brazing material with respect to the substrate and increasing the bonding strength. Specific examples of the active metal brazing material include 1 to 10% by weight of the active metal and 15 to 15% of Cu.
A brazing filler metal composition having 35% and the balance being substantially Ag is preferable. The metal bonding layer is formed by a method such as screen-printing a bonding composition paste prepared by dispersing the brazing material composition in an organic solvent on the surface of the silicon nitride substrate.

【0075】そしてスクリーン印刷した金属接合層上
に、回路層となる金属回路板を接触配置した状態で、真
空中または不活性ガス雰囲気中で、例えばAg−Cu共
晶温度(780℃)以上で、かつ金属回路板の融点(銅
の場合は1083℃)以下の温度に加熱することによ
り、金属回路板が金属接合層を介して窒化けい素基板に
一体に接合される。
Then, in a state where a metal circuit board to be a circuit layer is placed in contact with the screen-printed metal bonding layer, in a vacuum or in an inert gas atmosphere, for example, at an Ag-Cu eutectic temperature (780 ° C.) or higher. By heating the metal circuit board to a temperature equal to or lower than the melting point (1083 ° C. in the case of copper) of the metal circuit board, the metal circuit board is integrally bonded to the silicon nitride substrate via the metal bonding layer.

【0076】次に、メタライズ法による回路層の形成法
を説明する。メタライズ法では、例えばモリブデン(M
o)やタングステン(W)などの高融点金属とTiやそ
の化合物とを主成分とするメタライズ組成物を窒化けい
素基板表面に焼き付けて、厚さ15μm程度の回路層と
しての高融点金属メタライズ層を形成する方法である。
Next, a method of forming a circuit layer by the metallizing method will be described. In the metallization method, for example, molybdenum (M
o) or a refractory metal such as tungsten (W) and a metallized composition mainly containing Ti or a compound thereof are baked on the surface of the silicon nitride substrate to form a refractory metal metallized layer as a circuit layer having a thickness of about 15 μm. Is a method of forming.

【0077】このメタライズ法により、回路層を形成す
る場合には、メタライズ層表面にさらにNiやAuから
成る厚さ3〜5μm程度の金属めっき層を形成すること
が好ましい。この金属めっき層を形成することにより、
メタライズ層の表面平滑性が改善され、半導体素子との
密着性がより改善されるとともに、半田濡れ性が向上す
るため、半田を使用した半導体素子の接合強度をより高
めることができる。
When the circuit layer is formed by this metallizing method, it is preferable to further form a metal plating layer of Ni or Au having a thickness of about 3 to 5 μm on the surface of the metallizing layer. By forming this metal plating layer,
The surface smoothness of the metallized layer is improved, the adhesion with the semiconductor element is further improved, and the solder wettability is improved, so that the bonding strength of the semiconductor element using solder can be further increased.

【0078】上記のようにして製造した窒化けい素回路
基板の最大たわみ量は、回路基板のアッセンブリ工程に
おける締め付け割れの発生割合に大きな影響を及ぼす因
子であり、本発明では0.6mm以上、より好ましくは
0.8mm以上に設定される。上記最大たわみ量が0.6
mm未満では、アッセンブリ工程における回路基板の締め
付け割れが急増し、回路基板を使用した半導体装置の製
造歩留りが急減してしまう。
The maximum amount of deflection of the silicon nitride circuit board manufactured as described above is a factor that has a great influence on the rate of occurrence of tightening cracks in the assembly process of the circuit board. It is preferably set to 0.8 mm or more. The maximum deflection is 0.6
If it is less than mm, tightening cracks of the circuit board in the assembly process rapidly increase, and the manufacturing yield of the semiconductor device using the circuit board sharply decreases.

【0079】また回路基板の抗折強度も上記締め付け割
れの発生割合に影響を及ぼすとともに、窒化けい素基板
の薄型化の可否を支配する因子であり、本発明では50
0MPa以上に規定される。この抗折強度が500MP
a未満の場合では回路基板の締め付け割れが増加する。
また、従来の他のセラミックス基板よりも厚さを薄くす
ることが困難となり、薄型化に伴う回路基板全体の熱抵
抗値を相乗的に低減することが困難となる。したがって
回路基板の抗折強度は500MPa以上に設定される
が、600MPa以上に設定することが、より好まし
い。
The flexural strength of the circuit board is a factor that affects the rate of occurrence of the above-mentioned tightening cracks and controls whether or not the silicon nitride board can be thinned.
It is regulated to 0 MPa or more. This bending strength is 500MP
If it is less than a, tightening cracks on the circuit board increase.
Further, it becomes difficult to make the thickness thinner than other conventional ceramics substrates, and it becomes difficult to synergistically reduce the thermal resistance value of the entire circuit board accompanying the reduction in thickness. Therefore, the bending strength of the circuit board is set to 500 MPa or more, but it is more preferable to set it to 600 MPa or more.

【0080】上記構成に係る窒化けい素回路基板によれ
ば、窒化けい素焼結体が本来的に有する高強度高靭性特
性に加えて特に熱伝導率を大幅に改善した高熱伝導性窒
化けい素基板表面に金属回路板を一体に接合して形成さ
れている。したがって、回路基板の靭性値が高いため、
最大たわみ量を0.6mm以上と大きく確保することがで
きる。また窒化けい素基板を従来より薄くすることが可
能であり、その場合でも回路基板の抗折強度が500M
Pa以上となる。そのため、アッセンブリ工程において
回路基板の締め付け割れが発生せず、回路基板を用いた
半導体装置を高い製造歩留りで量産することが可能にな
る。
According to the silicon nitride circuit board having the above-described structure, in addition to the high strength and high toughness characteristics inherent in the silicon nitride sintered body, especially the high thermal conductivity silicon nitride board in which the thermal conductivity is greatly improved. It is formed by integrally joining a metal circuit board to the surface. Therefore, since the toughness value of the circuit board is high,
It is possible to secure a large maximum deflection of 0.6 mm or more. In addition, it is possible to make the silicon nitride substrate thinner than before, and even in that case, the bending strength of the circuit substrate is 500M.
It becomes Pa or more. For this reason, the circuit board does not suffer from cracking in the assembly process, and semiconductor devices using the circuit board can be mass-produced with a high manufacturing yield.

【0081】また窒化けい素基板の靭性値が高いため、
熱サイクルによって基板に割れが発生することが少な
く、耐熱サイクル特性が著しく向上し、耐久性および信
頼性に優れた半導体装置を提供することができる。
Since the toughness value of the silicon nitride substrate is high,
It is possible to provide a semiconductor device in which cracks are less likely to occur in a substrate due to heat cycle, heat cycle characteristics are remarkably improved, and durability and reliability are excellent.

【0082】さらに従来では達成されていない高い熱伝
導率を有する窒化けい素基板を使用しているため、高出
力化および高集積化を指向する半導体素子を搭載した場
合においても、熱抵抗特性の劣化が少なく、優れた放熱
性を発揮する。
Furthermore, since a silicon nitride substrate having a high thermal conductivity, which has not been achieved in the past, is used, the thermal resistance characteristics of the semiconductor device can be improved even when a semiconductor element for high output and high integration is mounted. Shows excellent heat dissipation with little deterioration.

【0083】特に窒化けい素基板自体の機械的強度が優
れているため、要求される機械的強度特性を一定とした
場合に、他のセラミックス基板を使用した場合と比較し
て基板厚さをより低減することが可能となる。この基板
厚さを低減できることから熱抵抗値を相乗的に小さくで
き、放熱特性をさらに改善することができる。また要求
される機械的特性に対して、従来より薄い基板でも充分
に対応可能となるため、回路基板の高密度実装も可能と
なり、半導体装置をより小型化することが可能となる。
In particular, since the silicon nitride substrate itself is excellent in mechanical strength, when the required mechanical strength characteristics are kept constant, the substrate thickness is made larger than that when other ceramic substrates are used. It becomes possible to reduce. Since the substrate thickness can be reduced, the thermal resistance value can be synergistically reduced, and the heat dissipation characteristics can be further improved. Further, since it is possible to sufficiently meet the required mechanical characteristics even with a substrate thinner than before, it is possible to mount the circuit board at a high density and further downsize the semiconductor device.

【0084】[0084]

【発明の実施の形態】次に本発明の実施形態について以
下に示す実施例を参照して具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be specifically described with reference to the following examples.

【0085】実施例1〜3 酸素を1.3重量%、不純物陽イオン元素としてLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを
合計で0.15重量%含有し、α相型窒化けい素97%
を含む平均粒径0.55μmの窒化けい素原料粉末に対
して、焼結助剤として平均粒径0.7μmのY2
3 (酸化イットリウム)粉末5重量%、平均粒径0.5
μmのAl2 3 (アルミナ)粉末1.0重量%を添加
し、エチルアルコール中で24時間湿式混合した後に乾
燥して原料粉末混合体を調整した。
Examples 1 to 3 1.3 wt% oxygen, Li as the impurity cation element,
Containing 0.15 wt% of Na, K, Fe, Ca, Mg, Sr, Ba, Mn and B in total, and 97% of α-phase type silicon nitride
With respect to the average particle size silicon nitride material powder of 0.55μm comprising, an average particle size of 0.7μm as a sintering aid Y 2 O
3 (yttrium oxide) powder 5% by weight, average particle size 0.5
1.0 wt% of Al 2 O 3 (alumina) powder of μm was added, wet-mixed in ethyl alcohol for 24 hours, and then dried to prepare a raw material powder mixture.

【0086】次に得られた原料粉末混合体に有機バイン
ダを所定量添加して均一に混合した後に、1000kg/
cm2 の成形圧力でプレス成形し、成形体を多数製作し
た。次に得られた成形体を700℃の雰囲気ガス中にお
いて2時間脱脂した後に、この脱脂体を窒素ガス雰囲気
中9気圧にて1900℃で6時間保持し、緻密化焼結を
実施した後に、焼結炉に付設した加熱装置への通電量を
制御して焼結炉内温度が1500℃まで降下するまでの
間における焼結体の冷却速度がそれぞれ100℃/hrと
なるように調整して焼結体を冷却し、さらに得られた各
焼結体を研摩加工して熱伝導率kが70W/m・Kであ
り、厚さがそれぞれ0.25mm,0.4mm,0.6mmで
あり、縦29mm×横63mmである実施例1〜3用の窒化
けい素基板を調製した。上記窒化けい素基板の粒界相に
おいて結晶相が占める体積割合は30%であり、基板の
気孔率は0.2%であった。
Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture and the mixture was uniformly mixed.
A large number of compacts were produced by press molding with a compacting pressure of cm 2 . Next, after degreasing the obtained molded body in an atmospheric gas at 700 ° C. for 2 hours, the degreased body was held at 1900 ° C. for 6 hours at 9 atm in a nitrogen gas atmosphere, and after performing densification sintering, Control the amount of electricity to the heating device attached to the sintering furnace and adjust the cooling rate of the sintered body to 100 ° C / hr until the temperature inside the sintering furnace drops to 1500 ° C. The sintered body was cooled, and the obtained sintered body was subjected to polishing to obtain a thermal conductivity k of 70 W / m · K and thicknesses of 0.25 mm, 0.4 mm and 0.6 mm, respectively. A silicon nitride substrate having a length of 29 mm and a width of 63 mm for Examples 1 to 3 was prepared. The volume fraction of the crystal phase in the grain boundary phase of the silicon nitride substrate was 30%, and the porosity of the substrate was 0.2%.

【0087】次に図1に示すように各窒化けい素基板2
表面の回路層を形成する部位および裏面の銅板を接合す
る部位に、30wt%Ag−65%Cu−5%Tiろう
材をスクリーン印刷し乾燥して厚さ20μmの活性金属
ろう材層7a,7bを形成した。この活性金属ろう材層
7a,7bの所定位置に、無酸素銅から成る厚さ0.3
mmの銅回路板4と厚さ0.25mmの裏銅板5とを接触配
置した状態で、真空中で温度850℃で10分間保持し
て接合体とした。次に各接合体をエッチング処理するこ
とにより、所定回路パターン(回路層)を形成した。さ
らに銅回路板4の中央部に、16mm角×厚さ0.5mmの
半導体素子(出力:300W)6を半田接合して実施例
1〜3に係る窒化けい素回路基板1を多数製造した。
Next, as shown in FIG. 1, each silicon nitride substrate 2
30 wt% Ag-65% Cu-5% Ti brazing filler metal is screen-printed on the portion where the front surface circuit layer is formed and the rear portion where the copper plate is joined, and the active metal brazing filler metal layers 7 a and 7 b having a thickness of 20 μm are dried. Was formed. At a predetermined position on the active metal brazing material layers 7a and 7b, a thickness of oxygen-free copper of 0.3
The copper circuit board 4 having a thickness of 0.25 mm and the back copper plate 5 having a thickness of 0.25 mm were placed in contact with each other, and were held in vacuum at a temperature of 850 ° C. for 10 minutes to form a bonded body. Next, a predetermined circuit pattern (circuit layer) was formed by etching each bonded body. Further, a 16 mm square × 0.5 mm thick semiconductor element (output: 300 W) 6 was soldered to the central portion of the copper circuit board 4 to manufacture a large number of silicon nitride circuit boards 1 according to Examples 1 to 3.

【0088】実施例4 実施例3において使用した厚さ0.3mmおよび0.25
mmの銅回路板に代えて表側に厚さ0.5mmの銅回路板お
よび裏側に厚さ0.3mmの裏銅板を使用した点以外は、
実施例3と同様に処理して実施例4に係るSi3 4
路基板を調製した。
Example 4 Thickness 0.3 mm and 0.25 used in Example 3
Except for using a 0.5 mm thick copper circuit board on the front side and a 0.3 mm thick back copper plate on the back side instead of the mm copper circuit board,
The same treatment as in Example 3 was carried out to prepare a Si 3 N 4 circuit board according to Example 4.

【0089】実施例5 実施例2において使用した熱伝導率70W/m・Kの高
熱伝導性窒化けい素基板に代えて、焼結完了後における
冷却速度を調整して熱伝導率100W/m・Kの窒化け
い素基板を使用した以外は実施例2と同様に処理して実
施例5に係るSi3 4 回路基板を調製した。
Example 5 Instead of the high thermal conductivity silicon nitride substrate having a thermal conductivity of 70 W / mK used in Example 2, the cooling rate after completion of sintering was adjusted to obtain a thermal conductivity of 100 W / mK. A Si 3 N 4 circuit board according to Example 5 was prepared in the same manner as in Example 2 except that the K silicon nitride substrate was used.

【0090】比較例1 実施例3で使用した厚さ0.6mmの窒化けい素基板に代
えて、熱伝導率kが170W/m・Kであり厚さが0.
8mmの窒化アルミニウム(AlN)基板を使用した以外
は実施例3と同様に活性金属法によって基板表面に銅回
路板および裏銅板を一体に接合して比較例1に係る回路
基板を製造した。
Comparative Example 1 In place of the silicon nitride substrate having a thickness of 0.6 mm used in Example 3, the thermal conductivity k was 170 W / m · K and the thickness was 0.
A circuit board according to Comparative Example 1 was manufactured by integrally bonding a copper circuit board and a back copper plate to the surface of the board by the active metal method in the same manner as in Example 3 except that an 8 mm aluminum nitride (AlN) board was used.

【0091】比較例2 実施例3で使用した厚さ0.6mmの窒化けい素基板に代
えて、厚さが0.8mmの窒化けい素基板を使用した以外
は実施例3と同様に活性金属法によって基板表面に銅回
路板および裏銅板を一体に接合して比較例2に係る回路
基板を製造した。
Comparative Example 2 An active metal was prepared in the same manner as in Example 3 except that a silicon nitride substrate having a thickness of 0.8 mm was used in place of the silicon nitride substrate having a thickness of 0.6 mm used in Example 3. A circuit board according to Comparative Example 2 was manufactured by integrally bonding a copper circuit board and a back copper plate to the surface of the board by the method.

【0092】このようにして調製した実施例1〜5およ
び比較例1〜2に係る回路基板の最大たわみ量および抗
折強度を測定したところ、実施例1〜5に係る窒化けい
素回路基板1は、従来の窒化アルミニウム基板を使用し
た比較例1の回路基板と比較して2倍以上の最大たわみ
量と抗折強度とを有することが判明した。また窒化けい
素基板の厚さを低減するに伴って、さらにたわみ量およ
び抗折強度が改善されることも確認できた。
The maximum deflection amount and bending strength of the circuit boards according to Examples 1 to 5 and Comparative Examples 1 and 2 thus prepared were measured, and the silicon nitride circuit board 1 according to Examples 1 to 5 was measured. Was found to have a maximum deflection amount and a bending strength twice or more as compared with the circuit board of Comparative Example 1 using the conventional aluminum nitride substrate. It was also confirmed that as the thickness of the silicon nitride substrate was reduced, the amount of deflection and the bending strength were further improved.

【0093】さらに各回路基板について放熱性評価試験
を実施した。放熱性評価試験は図3に示すように、出力
300Wの半導体素子6を搭載した回路基板1を、10
9000W/m2 ・Kの放熱容量を有する銅製ヒートシ
ンク8に接合した状態で半導体素子6に通電しながら半
導体素子6の表面温度Tiを測定した。そして表面温度
Tiが定常状態になった時点における外気温(T=30
0K)との差(ΔTi=Ti−T)を算出し、この半導
体素子6の温度上昇幅(ΔTi)の大小によって放熱性
の良否を評価した。温度上昇幅(ΔTi)の測定値を表
1に示す。
Further, a heat dissipation evaluation test was conducted on each circuit board. In the heat dissipation evaluation test, as shown in FIG. 3, the circuit board 1 on which the semiconductor element 6 having an output of 300 W is mounted is
The surface temperature Ti of the semiconductor element 6 was measured while energizing the semiconductor element 6 while being bonded to the copper heat sink 8 having a heat dissipation capacity of 9000 W / m 2 · K. Then, the outside air temperature (T = 30
The difference (ΔTi = Ti−T) from 0 K) was calculated, and the quality of heat dissipation was evaluated by the size of the temperature rise width (ΔTi) of the semiconductor element 6. Table 1 shows the measured values of the temperature rise width (ΔTi).

【0094】表1に示す結果から明らかなように、各実
施例の回路基板によれば、従来のAlN基板(比較例
1)よりも熱伝導率が小さいSi3 4 基板を使用して
いるにも拘らず、Si3 4 基板の厚さを薄く形成でき
るため、回路基板全体の熱抵抗を低減することができ
る。したがって、半導体素子の温度上昇幅ΔTiは従来
のAlN回路基板とほぼ同等になり、優れた放熱性を示
すことが判明した。さらにSi3 4 基板厚さの低減化
により、熱抵抗が減少するため、回路基板全体としての
放熱特性をさらに改善できることも確認できた。
As is clear from the results shown in Table 1, according to the circuit boards of the respective examples, the Si 3 N 4 substrate whose thermal conductivity is smaller than that of the conventional AlN substrate (Comparative Example 1) is used. Nevertheless, since the thickness of the Si 3 N 4 substrate can be reduced, the thermal resistance of the entire circuit board can be reduced. Therefore, it was found that the temperature rise width ΔTi of the semiconductor element is almost the same as that of the conventional AlN circuit board, and exhibits excellent heat dissipation. Further, it was also confirmed that the thermal resistance is reduced by reducing the thickness of the Si 3 N 4 substrate, so that the heat dissipation characteristics of the entire circuit substrate can be further improved.

【0095】一方、金属回路板の厚さの2倍を超える
0.8mm厚のSi3 4 基板を使用した比較例2におい
ては、半導体素子の温度上昇ΔTiが大きく、放熱特性
が相対的に低いことが判明した。
On the other hand, in Comparative Example 2 using the 0.8 mm thick Si 3 N 4 substrate which is more than twice the thickness of the metal circuit board, the temperature rise ΔTi of the semiconductor element is large and the heat dissipation characteristics are relatively high. Turned out to be low.

【0096】上記各実施例の回路基板をアッセンブリ工
程においてボードに実装したところ、締め付け割れが発
生せず、回路基板を用いた半導体装置を高い製造歩留り
で量産することができた。
When the circuit board of each of the above-mentioned embodiments was mounted on the board in the assembly process, tightening cracks did not occur, and the semiconductor device using the circuit board could be mass-produced with a high manufacturing yield.

【0097】また各回路基板について−45℃から室温
(RT)まで加熱し、引き続き室温から+125℃まで
加熱した後に、室温を経て再び−45℃に冷却するまで
を1サイクルとする昇温−降温サイクルを繰り返して付
加し、基板部にクラック等が発生するまでのサイクル数
を測定する耐熱サイクル試験を実施したところ、実施例
1〜5の回路基板では1000サイクル経過後において
も、Si3 4 基板の割れや金属回路板(Cu回路板)
の剥離が皆無であり、優れた耐熱サイクル特性を示すこ
とが判明した。一方、比較例1のAlN回路基板におい
ては、100サイクルでクラックが発生し、耐久性が低
いことが確認された。
Each circuit board is heated from −45 ° C. to room temperature (RT), then heated from room temperature to + 125 ° C., and then cooled to −45 ° C. after passing through room temperature as one cycle. A cycle was repeatedly added, and a heat resistance cycle test was conducted to measure the number of cycles until a crack or the like was generated in the substrate part. With the circuit boards of Examples 1 to 5, even after 1000 cycles, Si 3 N 4 Board cracks and metal circuit boards (Cu circuit boards)
It was found that no peeling was observed and the excellent heat cycle characteristics were exhibited. On the other hand, in the AlN circuit board of Comparative Example 1, it was confirmed that cracks occurred at 100 cycles and the durability was low.

【0098】実施例6〜10 活性金属法に代えて銅直接接合法(DBC法)によって
金属回路板をSi3 4 基板に一体に接合し、実施例1
〜5に対応する同一寸法の実施例6〜10に係るSi3
4 基板を下記要領で製造した。
Examples 6 to 10 The metal circuit board was integrally bonded to the Si 3 N 4 substrate by the copper direct bonding method (DBC method) instead of the active metal method, and Example 1 was used.
Si 3 according to Examples 6 to 10 of the same size corresponding to
The N 4 substrate was manufactured as follows.

【0099】すなわち、実施例1〜5において調製した
Si3 4 基板であり熱伝導率kが70W/m・Kまた
は100W/m・Kであり厚さがそれぞれ0.25mm,
0.4mm,0.6mm,0.8mmである各Si3 4 基板
を酸化炉中で温度1300℃で12時間加熱することに
より、基板の全表面を酸化し、厚さ2μmの酸化層を形
成した。酸化層はSiO2 皮膜で形成される。
That is, the Si 3 N 4 substrate prepared in Examples 1 to 5 has a thermal conductivity k of 70 W / m · K or 100 W / m · K and a thickness of 0.25 mm,
By heating each 0.4 mm, 0.6 mm, and 0.8 mm Si 3 N 4 substrate in an oxidation furnace at a temperature of 1300 ° C. for 12 hours, the entire surface of the substrate is oxidized to form an oxide layer having a thickness of 2 μm. Formed. The oxide layer is formed of a SiO 2 film.

【0100】次に酸化層を形成した各Si3 4 基板表
面側に、表1に示すように、厚さ0.3mmまたは0.5
mmのタフピッチ電解銅から成る銅回路板を接触配置する
一方、背面側に厚さ0.25mmまたは0.3mmのタフピ
ッチ電解銅から成る銅回路板を裏当て材として接触配置
させて積層体とし、この積層体を窒素ガス雰囲気に調整
した温度1075℃の加熱炉に挿入して1分間加熱する
ことにより、各Si3 4 基板の両面に銅回路板を直接
接合し、さらに半導体素子を半田接合して実施例6〜1
0に係るSi3 4 回路基板をそれぞれ調製した。
Next, as shown in Table 1, a thickness of 0.3 mm or 0.5 was formed on the surface of each Si 3 N 4 substrate on which an oxide layer was formed.
While a copper circuit board made of tough pitch electrolytic copper of mm is placed in contact, a copper circuit board made of tough pitch electrolytic copper of 0.25 mm or 0.3 mm in thickness is placed in contact as a backing material to form a laminated body on the back side. This laminated body is inserted into a heating furnace adjusted to a nitrogen gas atmosphere at a temperature of 1075 ° C. and heated for 1 minute to directly bond copper circuit boards to both sides of each Si 3 N 4 substrate, and further solder bond semiconductor elements. Examples 6 to 1
No. 0 Si 3 N 4 circuit boards were prepared.

【0101】各Si3 4 回路基板1aは、図2に示す
ようにSi3 4 基板2の全表面にSiO2 から成る酸
化層3が形成されており、Si3 4 基板2の表面側に
金属回路板としての銅回路板4が直接接合される一方、
背面側に裏銅板としての銅回路板5が同様に直接接合さ
れ、さらに表面側の銅回路板4の所定位置に図示しない
半田層を介して半導体素子6がそれぞれ一体に接合され
た構造を有する。なおSi3 4 基板2の両面に銅回路
板4,5を接合した場合、裏銅板としての銅回路板5は
放熱促進および反り防止に寄与するので有効である。
[0102] Each Si 3 N 4 circuit board 1a is oxidized layer 3 made of SiO 2 is formed on the entire surface the Si 3 N 4 substrate 2 as shown in FIG. 2, Si 3 N 4 surface of the substrate 2 While the copper circuit board 4 as a metal circuit board is directly joined to the side,
Similarly, a copper circuit board 5 as a back copper plate is directly joined to the back side, and further, semiconductor elements 6 are integrally joined to predetermined positions of the copper circuit board 4 on the front side via a solder layer (not shown). . When the copper circuit boards 4 and 5 are bonded to both surfaces of the Si 3 N 4 substrate 2, the copper circuit board 5 as the back copper plate contributes to promotion of heat dissipation and prevention of warpage, which is effective.

【0102】上記のように直接接合法によって回路層を
形成した実施例6〜10に係るSi3 4 回路基板の最
大たわみ量は0.8〜1.6mmの範囲であり、また抗折
強度は550〜900MPaの範囲であり、実施例1〜
5のように活性金属法で回路層を形成した場合と同等の
特性値が得られた。また耐熱サイクル試験において10
00サイクル経過後においてもSi3 4 基板の割れや
金属回路板の剥離が皆無であり、優れた耐熱サイクル特
性を示した。
The maximum deflection of the Si 3 N 4 circuit boards according to Examples 6 to 10 in which the circuit layers were formed by the direct bonding method as described above was in the range of 0.8 to 1.6 mm, and the bending strength was Is in the range of 550 to 900 MPa, and
As in the case of No. 5, the characteristic value equivalent to that when the circuit layer was formed by the active metal method was obtained. In the heat resistance cycle test, 10
Even after the lapse of 00 cycles, there was no cracking of the Si 3 N 4 substrate or peeling of the metal circuit board, and excellent heat cycle characteristics were exhibited.

【0103】比較例3 実施例8で使用した窒化けい素基板に代えて、熱伝導率
kが170W/m・Kであり厚さが0.8mmの窒化アル
ミニウム(AlN)基板を使用した以外は実施例8と同
様に銅直接接合法によって基板表面に銅回路板および裏
銅板を一体に接合して比較例3に係る回路基板を製造し
た。
Comparative Example 3 An aluminum nitride (AlN) substrate having a thermal conductivity k of 170 W / m · K and a thickness of 0.8 mm was used instead of the silicon nitride substrate used in Example 8. A circuit board according to Comparative Example 3 was manufactured by integrally bonding a copper circuit board and a back copper plate to the surface of the board by the direct copper bonding method as in Example 8.

【0104】比較例4 実施例8で使用した厚さ0.6mmの窒化けい素基板に代
えて、厚さが0.8mmの窒化けい素基板を使用した以外
は実施例8と同様に銅直接接合法によって基板表面に銅
回路板および裏銅板を一体に接合して比較例4に係る回
路基板を製造した。
Comparative Example 4 The same method as in Example 8 was repeated except that a silicon nitride substrate having a thickness of 0.8 mm was used instead of the silicon nitride substrate having a thickness of 0.6 mm used in Example 8. A circuit board according to Comparative Example 4 was manufactured by integrally bonding a copper circuit board and a back copper plate to the surface of the board by a bonding method.

【0105】上記のように製造した実施例6〜10およ
び比較例3〜4に係る回路基板について、実施例1〜5
および比較例1〜2と同様に図3に示す放熱性評価試験
を実施し、出力300Wの半導体素子の発熱に伴う温度
上昇幅ΔTiを測定して下記表1に示す結果を得た。ま
た窒化けい素基板等のセラミックス基板の厚さと半導体
素子の温度上昇ΔTiとの関係をグラフ化して図4に示
す。
Regarding the circuit boards according to Examples 6 to 10 and Comparative Examples 3 to 4 manufactured as described above, Examples 1 to 5 were used.
And the heat dissipation evaluation test shown in FIG. 3 was carried out in the same manner as in Comparative Examples 1 and 2, and the temperature rise width ΔTi due to the heat generation of the semiconductor device with an output of 300 W was measured to obtain the results shown in Table 1 below. 4 is a graph showing the relationship between the thickness of a ceramic substrate such as a silicon nitride substrate and the temperature rise ΔTi of the semiconductor element.

【0106】[0106]

【表1】 [Table 1]

【0107】上記表1および図4に示す結果から明らか
なように、窒化けい素基板の厚さを減少させるにつれ
て、回路基板全体の熱抵抗が減少し、半導体素子の温度
上昇ΔTiが一次的に減少して放熱性が改善されること
が確認できた。特に実施例6(◎印)と実施例10(▽
印)と比較例3(●印)との比較から明らかなように、
熱伝導率が70W/m・Kで厚さが0.25mmのSi3
4 基板または熱伝導率が100W/m・Kで厚さが
0.4mmのSi3 4 基板を使用して回路基板を形成す
ることにより、熱伝導率が170W/m・Kで厚さが
0.8mmのAlN基板を使用して形成した回路基板と同
等の放熱性を確保することができた。そして基板厚さを
従来と比較して1/2以下に低減することが可能とな
り、基板の製造コストを低減することも可能となる。
As is clear from the results shown in Table 1 and FIG. 4, as the thickness of the silicon nitride substrate is reduced, the thermal resistance of the entire circuit substrate is reduced and the temperature rise ΔTi of the semiconductor element is temporarily increased. It was confirmed that the heat dissipation was reduced and the heat dissipation was improved. In particular, Example 6 (circle) and Example 10 (▽
(Mark) and Comparative Example 3 (mark), as is clear from the comparison,
Si 3 with thermal conductivity of 70 W / mK and thickness of 0.25 mm
By forming a circuit board by using an N 4 substrate or a Si 3 N 4 substrate having a thermal conductivity of 100 W / m · K and a thickness of 0.4 mm, the thermal conductivity is 170 W / m · K. It was possible to secure heat dissipation equivalent to that of a circuit board formed by using an AlN substrate having a thickness of 0.8 mm. Further, the substrate thickness can be reduced to 1/2 or less as compared with the conventional one, and the substrate manufacturing cost can be reduced.

【0108】なお各Si3 4 基板は薄く形成した場合
においても絶縁耐性が良好であり、従来と同等以上の絶
縁破壊耐性を保持できることも判明した。一方、金属回
路板の厚さの2倍を超える0.8mm厚のSi3 4 基板
を使用した比較例4においては、半導体素子の温度上昇
ΔTiが大きく、放熱特性が相対的に低いことが判明し
た。
It was also found that each Si 3 N 4 substrate had a good insulation resistance even when formed thin, and could maintain a dielectric breakdown resistance equal to or higher than the conventional one. On the other hand, in Comparative Example 4 using the 0.8 mm thick Si 3 N 4 substrate that is more than twice the thickness of the metal circuit board, the temperature rise ΔTi of the semiconductor element is large and the heat dissipation characteristic is relatively low. found.

【0109】次に本発明で使用する窒化けい素基板の厚
さの大小が回路基板のたわみ量や抗折る強度に及ぼす影
響について、以下に示す実施例を参照して説明する。
Next, the influence of the thickness of the silicon nitride substrate used in the present invention on the deflection amount and bending strength of the circuit substrate will be described with reference to the following examples.

【0110】実施例11〜13 酸素を1.3重量%、前記不純物陽イオン元素を合計で
0.15重量%含有し、α相型窒化けい素97%を含む
平均粒径0.55μmの窒化けい素原料粉末に対して、
焼結助剤として平均粒径0.7μmのY2 3 (酸化イ
ットリウム)粉末5重量%、平均粒径0.5μmのAl
2 3 (アルミナ)粉末1.5重量%を添加し、エチル
アルコール中で24時間湿式混合した後に乾燥して原料
粉末混合体を調整した。
Examples 11 to 13 Nitrogen containing 1.3% by weight of oxygen, 0.15% by weight of the impurity cation elements in total, and 97% of α-phase type silicon nitride, and having an average particle diameter of 0.55 μm. For silicon raw material powder,
5% by weight of Y 2 O 3 (yttrium oxide) powder having an average particle size of 0.7 μm as a sintering aid and Al having an average particle size of 0.5 μm
1.5 wt% of 2 O 3 (alumina) powder was added, wet-mixed in ethyl alcohol for 24 hours, and then dried to prepare a raw material powder mixture.

【0111】次に得られた原料粉末混合体に有機バイン
ダを所定量添加して均一に混合した後に、1000kg/
cm2 の成形圧力でプレス成形し、長さ80mm×幅50mm
×厚さ1〜5mmの成形体を多数製作した。次に得られた
成形体を700℃の雰囲気ガス中において2時間脱脂し
た後に、この脱脂体を窒素ガス雰囲気中9気圧にて19
00℃で6時間保持し、緻密化焼結を実施した後に、焼
結炉に付設した加熱装置への通電量を制御して焼結炉内
温度が1500℃まで降下するまでの間における焼結体
の冷却速度がそれぞれ100℃/hrとなるように調整し
て焼結体を冷却し、さらに得られた各焼結体を研摩加工
してそれぞれ熱伝導率kが70W/m・Kであり、厚さ
が0.4mm,0.6mm,0.8mmである実施例11〜1
3用の窒化けい素基板を調製した。
Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture and the mixture was uniformly mixed.
Press-formed with a forming pressure of cm 2 , length 80 mm × width 50 mm
× Many molded products having a thickness of 1 to 5 mm were manufactured. Next, the obtained molded body was degreased in an atmosphere gas at 700 ° C. for 2 hours, and then the degreased body was subjected to a nitrogen gas atmosphere at 9 atmospheric pressure for 19 hours.
After carrying out densification sintering by holding at 00 ° C for 6 hours, the amount of electricity supplied to the heating device attached to the sintering furnace is controlled to perform sintering until the temperature inside the sintering furnace drops to 1500 ° C. The cooling rate of each body was adjusted to 100 ° C./hr, the sintered body was cooled, and each obtained sintered body was ground to obtain a thermal conductivity k of 70 W / m · K. Examples 11 to 1 having thicknesses of 0.4 mm, 0.6 mm and 0.8 mm
A silicon nitride substrate for 3 was prepared.

【0112】次に図5に示すように各窒化けい素基板2
表面の回路層を形成する部位および裏面の銅板を接合す
る部位に、30wt%Ag−65%Cu−5%Tiろう
材をスクリーン印刷し乾燥して厚さ20μmの活性金属
ろう材層7a,7bを形成した。この活性金属ろう材層
7a,7bの所定位置に、タフピッチ電解銅から成る厚
さ0.3mmの銅回路板4と厚さ0.25mm値の裏銅板5
とを接触配置した状態で、真空中で温度850℃で10
分間保持して接合体とした。次に各接合体をエッチング
処理することにより、所定回路パターンを形成した。さ
らに銅回路板4の中央部に半導体素子6を半田接合して
実施例11〜13に係る窒化けい素回路基板1bを多数
製造した。
Next, as shown in FIG. 5, each silicon nitride substrate 2
30 wt% Ag-65% Cu-5% Ti brazing filler metal is screen-printed on the portion where the front surface circuit layer is formed and the rear portion where the copper plate is joined, and the active metal brazing filler metal layers 7 a and 7 b having a thickness of 20 μm are dried. Was formed. A copper circuit board 4 made of tough pitch electrolytic copper and having a thickness of 0.3 mm and a back copper plate 5 having a thickness of 0.25 mm are provided at predetermined positions of the active metal brazing material layers 7a and 7b.
10 and 10 are placed in contact with each other in vacuum at a temperature of 850 ° C.
It was held for a minute to form a joined body. Next, a predetermined circuit pattern was formed by etching each bonded body. Further, the semiconductor element 6 was soldered to the central portion of the copper circuit board 4 to manufacture a large number of silicon nitride circuit boards 1b according to Examples 11 to 13.

【0113】比較例5 実施例11〜13で使用した窒化けい素基板に代えて、
熱伝導率kが70W/m・Kであり厚さが0.8mmの窒
化アルミニウム(AlN)基板を使用した以外は実施例
11〜13と同様に活性金属法によって基板表面に銅回
路板および裏銅板を一体に接合して比較例5に係る回路
基板を製造した。
Comparative Example 5 Instead of the silicon nitride substrate used in Examples 11 to 13,
A copper circuit board and a back surface were formed on the substrate surface by the active metal method in the same manner as in Examples 11 to 13 except that an aluminum nitride (AlN) substrate having a thermal conductivity k of 70 W / m · K and a thickness of 0.8 mm was used. A circuit board according to Comparative Example 5 was manufactured by integrally joining copper plates.

【0114】このようにして調製した実施例11〜13
および比較例5に係る回路基板の最大たわみ量および抗
折強度を測定して図6および図7に示す結果を得た。こ
こで最大たわみ量は、支持スパン50mmで各回路基板を
支持した状態で中央部に荷重を付加し、Si3 4 基板
またはAlN基板が破断に至るまでの最大たわみ高さと
して測定した。また抗折強度は、破断時の荷重と基板断
面積とから算出した。
Examples 11 to 13 thus prepared
The maximum deflection amount and the bending strength of the circuit board according to Comparative Example 5 were measured, and the results shown in FIGS. 6 and 7 were obtained. Here, the maximum deflection amount was measured as the maximum deflection height until the Si 3 N 4 substrate or the AlN substrate was broken by applying a load to the central portion while supporting each circuit substrate with a supporting span of 50 mm. The bending strength was calculated from the load at break and the substrate cross-sectional area.

【0115】図6および図7に示す結果から明らかなよ
うに、実施例11〜13に係る窒化けい素回路基板1b
は、従来の窒化アルミニウム基板を使用した比較例5の
回路基板と比較して2倍以上の最大たわみ量と抗折強度
とを有することが判明した。また窒化けい素基板の厚さ
を低減するに伴って、さらにたわみ量および抗折強度が
改善されることも確認できた。さらに基板厚さの低減化
により、熱抵抗が減少するため、回路基板全体としての
放熱特性をさらに改善できることも確認できた。
As is clear from the results shown in FIGS. 6 and 7, the silicon nitride circuit board 1b according to Examples 11 to 13 is obtained.
Was found to have a maximum deflection amount and a bending strength that are at least twice as high as the circuit board of Comparative Example 5 using the conventional aluminum nitride substrate. It was also confirmed that as the thickness of the silicon nitride substrate was reduced, the amount of deflection and the bending strength were further improved. Further, it was confirmed that the thermal resistance is reduced due to the reduction of the board thickness, so that the heat dissipation characteristics of the entire circuit board can be further improved.

【0116】上記回路基板をアッセンブリ工程において
ボードに実装したところ、締め付け割れが発生せず、回
路基板を用いた半導体装置を高い製造歩留りで量産する
ことができた。
When the above circuit board was mounted on the board in the assembly process, tightening cracks did not occur, and semiconductor devices using the circuit board could be mass-produced with a high manufacturing yield.

【0117】また各回路基板について−45℃から室温
(RT)まで加熱し、引き続き室温から+125℃まで
加熱した後に、室温を経て再び−45℃に冷却するまで
を1サイクルとする昇温−降温サイクルを繰り返して付
加し、基板部にクラック等が発生するまでのサイクル数
を測定する耐熱サイクル試験を実施したところ、実施例
11〜13の回路基板では1000サイクル経過後にお
いても、Si3 4 基板の割れや金属回路板(Cu回路
板)の剥離が皆無であり、優れた耐熱サイクル特性を示
すことが判明した。一方、比較例5の回路基板において
は、100サイクルでクラックが発生し、耐久性が低い
ことが確認された。
Each circuit board is heated from −45 ° C. to room temperature (RT), then heated from room temperature to + 125 ° C., and then cooled again to −45 ° C. through room temperature, which is one cycle. A cycle was repeatedly added, and a heat resistance cycle test was conducted to measure the number of cycles until a crack or the like was generated in the substrate part. The circuit boards of Examples 11 to 13 showed Si 3 N 4 even after 1000 cycles. It was found that there was no cracking of the substrate or peeling of the metal circuit board (Cu circuit board), and that it showed excellent heat cycle characteristics. On the other hand, in the circuit board of Comparative Example 5, cracking occurred after 100 cycles, and it was confirmed that the durability was low.

【0118】実施例14 実施例11〜13において調製したSi3 4 基板であ
り熱伝導率kが70W/m・K,厚さがそれぞれ0.4
mm,0.6mm,0.8mmである各Si3 4基板を酸化
炉中で温度1300℃で12時間加熱することにより、
基板の全表面を酸化し、厚さ2μmの酸化層を形成し
た。
Example 14 The Si 3 N 4 substrate prepared in Examples 11 to 13 having a thermal conductivity k of 70 W / m · K and a thickness of 0.4 respectively.
By heating each Si 3 N 4 substrate having a size of 0.6 mm, 0.6 mm, and 0.8 mm in an oxidation furnace at a temperature of 1300 ° C. for 12 hours,
The entire surface of the substrate was oxidized to form an oxide layer having a thickness of 2 μm.

【0119】次に酸化層を形成した各Si3 4 基板表
面側に、厚さ0.3mmのタフピッチ電解銅から成る銅回
路板を接触配置する一方、背面側に厚さ0.25mmのタ
フピッチ銅から成る銅回路板を裏当て材として接触配置
させて積層体とし、この積層体を窒素ガス雰囲気に調整
した温度1075℃の加熱炉に挿入して1分間加熱する
ことにより、図8に示すように各Si3 4 基板2の両
面に銅回路板を直接接合したSi3 4 回路基板をそれ
ぞれ調製した。
Next, a copper circuit board made of tough pitch electrolytic copper having a thickness of 0.3 mm is placed in contact with the surface side of each Si 3 N 4 substrate on which an oxide layer has been formed, while a tough pitch of 0.25 mm thickness is provided on the back side. As shown in FIG. 8, a copper circuit board made of copper is placed as a backing material in contact with each other to form a laminated body, which is inserted into a heating furnace adjusted to a nitrogen gas atmosphere at a temperature of 1075 ° C. and heated for 1 minute. as the Si 3 N 4 circuit board directly bonded copper circuit board on both sides of the Si 3 N 4 substrate 2 were prepared.

【0120】各Si3 4 回路基板1cは、図8に示す
ようにSi3 4 基板2の全表面に酸化層3が形成され
ており、Si3 4 基板2の表面側に金属回路板として
の銅回路板4が直接接合される一方、背面側に裏銅板と
しての銅回路板5が同様に直接接合され、さらに表面側
の銅回路板4の所定位置に図示しない半田層を介して半
導体素子6が一体に接合された構造を有する。なおSi
3 4 基板2の両面に銅回路板4,5を接合した場合、
裏銅板としての銅回路板5は放熱促進および反り防止に
寄与するので有効である。
In each Si 3 N 4 circuit board 1c, an oxide layer 3 is formed on the entire surface of the Si 3 N 4 board 2 as shown in FIG. 8, and a metal circuit is formed on the surface side of the Si 3 N 4 board 2. While the copper circuit board 4 as a board is directly joined, the copper circuit board 5 as a back copper board is similarly directly joined to the back side, and a solder layer (not shown) is further provided at a predetermined position of the front side copper circuit board 4. Thus, the semiconductor element 6 is integrally joined. Si
When copper circuit boards 4 and 5 are bonded to both sides of 3 N 4 substrate 2,
The copper circuit board 5 as the back copper plate is effective because it contributes to promotion of heat dissipation and prevention of warpage.

【0121】上記のように直接接合法によって回路層を
形成した実施例4に係るSi3 4回路基板の最大たわ
み量は0.8〜1.6mmの範囲であり、また抗折強度は
550〜900MPaの範囲であり、実施例11〜13
のように活性金属法で回路層を形成した場合と同等の特
性値が得られた。また耐熱サイクル試験において100
0サイクル経過後においてもSi3 4 基板の割れや金
属回路板の剥離が皆無であり、優れた耐熱サイクル特性
を示した。
The maximum deflection of the Si 3 N 4 circuit board according to Example 4 in which the circuit layer was formed by the direct bonding method as described above was in the range of 0.8 to 1.6 mm, and the bending strength was 550. In the range of up to 900 MPa, Examples 11 to 13
As described above, the characteristic value equivalent to that when the circuit layer was formed by the active metal method was obtained. In the heat resistance cycle test, 100
Even after 0 cycles, there was no cracking of the Si 3 N 4 substrate or peeling of the metal circuit board, and excellent heat cycle characteristics were exhibited.

【0122】実施例15 図9に示すように、実施例11〜13において調製した
Si3 4 基板であり熱伝導率kが70W/m・Kで、
厚さがそれぞれ0.4mm,0.6mm,0.8mmであるS
3 4 基板2の表面に、モリブデン(Mo)と酸化チ
タン(TiO2 )との混合粉末に適量のバインダと溶剤
とを加えてペースト状にしたものをスクリーン印刷し、
加熱焼成して厚さ15μmの高融点金属メイタライズ層
10を形成した。さらにメタライズ層10の上に無電解
めっき法により厚さ3μmのNiめっき層9を形成し、
所定パターンを有する回路層とした。次に回路層上に半
導体素子6を半田付けにより接合して実施例15に係る
窒化けい素回路基板1dを多数製造した。
Example 15 As shown in FIG. 9, the Si 3 N 4 substrate prepared in Examples 11 to 13 has a thermal conductivity k of 70 W / m · K,
S whose thickness is 0.4mm, 0.6mm and 0.8mm respectively
On the surface of the i 3 N 4 substrate 2, a mixed powder of molybdenum (Mo) and titanium oxide (TiO 2 ) added with an appropriate amount of a binder and a solvent to form a paste was screen-printed,
It was heated and baked to form a refractory metal materize layer 10 having a thickness of 15 μm. Further, a Ni plating layer 9 having a thickness of 3 μm is formed on the metallized layer 10 by an electroless plating method,
The circuit layer has a predetermined pattern. Next, the semiconductor element 6 was joined onto the circuit layer by soldering to manufacture a large number of silicon nitride circuit boards 1d according to Example 15.

【0123】上記のようにメタライズ法によって回路層
を形成した実施例15に係るSi3 4 回路基板の最大
たわみ量は1.0〜1.8mmの範囲であり、また抗折強
度は650〜950MPaの範囲であり、実施例11〜
13のように活性金属法で回路層を形成した場合と同等
の特性値が得られた。また耐熱サイクル試験において1
000サイクル経過後においてもSi3 4 基板の割れ
や金属回路板の剥離が皆無であり、めっき処理を施した
回路基板においても優れた耐熱サイクル特性を示した。
The maximum deflection amount of the Si 3 N 4 circuit board according to Example 15 in which the circuit layer was formed by the metallizing method as described above was in the range of 1.0 to 1.8 mm, and the bending strength was 650 to 650. The range is 950 MPa, and
As shown in No. 13, characteristic values equivalent to those when the circuit layer was formed by the active metal method were obtained. In the heat cycle test, 1
Even after 000 cycles, there was no cracking of the Si 3 N 4 substrate or peeling of the metal circuit board, and the circuit board subjected to the plating treatment also exhibited excellent heat resistance cycle characteristics.

【0124】次に種々の組成および特性値を有する他の
窒化けい素基板を使用した回路基板の実施形態について
以下に示す実施例16を参照して具体的に説明する。
Next, an embodiment of a circuit board using another silicon nitride substrate having various compositions and characteristic values will be specifically described with reference to Example 16 shown below.

【0125】実施例16 まず回路基板の構成材となる各種窒化けい素基板を以下
の手順で製造した。
Example 16 First, various silicon nitride substrates which are constituent materials of a circuit board were manufactured by the following procedure.

【0126】すなわち酸素を1.3重量%、前記不純物
陽イオン元素を合計で0.15重量%含有し、α相型窒
化けい素97%を含む平均粒径0.55μmの窒化けい
素原料粉末に対して、表2〜4に示すように、焼結助剤
としてのY2 3 ,Ho2 3 などの希土類酸化物と、
必要に応じてTi,Hf化合物,Al2 3粉末,Al
N粉末とを添加し、エチルアルコール中で窒化けい素製
ボールを用いて72時間湿式混合した後に乾燥して原料
粉末混合体をそれぞれ調整した。次に得られた各原料粉
末混合体に有機バインダを所定量添加して均一に混合し
た後に、1000kg/cm2 の成形圧力でプレス成形し、
各種組成を有する成形体を多数製作した。
That is, a silicon nitride raw material powder having an average particle diameter of 0.55 μm, containing 1.3% by weight of oxygen, 0.15% by weight of the impurity cation elements in total, and 97% of α-phase type silicon nitride. On the other hand, as shown in Tables 2 to 4, rare earth oxides such as Y 2 O 3 and Ho 2 O 3 as sintering aids,
If necessary, Ti, Hf compound, Al 2 O 3 powder, Al
N powder was added, and the mixture was wet-mixed in ethyl alcohol for 72 hours using a silicon nitride ball and then dried to prepare raw material powder mixtures. Next, a predetermined amount of an organic binder was added to each of the obtained raw material powder mixtures and uniformly mixed, followed by press molding at a molding pressure of 1000 kg / cm 2 .
Many molded articles having various compositions were manufactured.

【0127】次に得られた各成形体を700℃の雰囲気
ガス中において2時間脱脂した後に、この脱脂体を表2
〜4に示す焼結条件で緻密化焼結を実施した後に、焼結
炉に付設した加熱装置への通電量を制御して焼結炉内温
度が1500℃まで降下するまでの間における焼結体の
冷却速度がそれぞれ表2〜4に示す値となるように調整
して焼結体を冷却し、それぞれ試料1〜51に係る窒化
けい素焼結体を調製した。
Next, each molded body obtained was degreased for 2 hours in an atmosphere gas at 700 ° C.
After carrying out the densification sintering under the sintering conditions shown in to 4, the amount of electricity supplied to the heating device attached to the sintering furnace is controlled to perform the sintering until the temperature inside the sintering furnace drops to 1500 ° C. The sintered bodies were cooled by adjusting the cooling rates of the bodies to the values shown in Tables 2 to 4, respectively, to prepare silicon nitride sintered bodies of Samples 1 to 51, respectively.

【0128】こうして得た試料1〜51に係る各窒化け
い素焼結体について気孔率、熱伝導率(25℃)、室温
での三点曲げ強度の平均値を測定した。さらに、各焼結
体についてX線回折法によって粒界相に占める結晶相の
割合(面積比)を測定し、下記表2〜4に示す結果を得
た。
With respect to each of the silicon nitride sintered bodies according to Samples 1 to 51 thus obtained, the average value of porosity, thermal conductivity (25 ° C.) and three-point bending strength at room temperature was measured. Furthermore, the ratio (area ratio) of the crystal phase in the grain boundary phase was measured for each sintered body by the X-ray diffraction method, and the results shown in Tables 2 to 4 below were obtained.

【0129】[0129]

【表2】 [Table 2]

【0130】[0130]

【表3】 [Table 3]

【0131】[0131]

【表4】 [Table 4]

【0132】表2〜4に示す結果から明らかなように試
料1〜51に係る窒化けい素焼結体においては、原料組
成を適正に制御し、従来例と比較して緻密化焼結完了直
後における焼結体の冷却速度を従来より低く設定してい
るため、粒界相に結晶相を含み、結晶相の占める割合が
高い程、高熱伝導率を有する放熱性の高い高強度窒化け
い素焼結体が得られた。
As is clear from the results shown in Tables 2 to 4, in the silicon nitride sintered bodies according to Samples 1 to 51, the raw material composition was properly controlled, and immediately after the densification and sintering was completed as compared with the conventional example. Since the cooling rate of the sintered body is set lower than before, the higher the ratio of the crystal phase in the grain boundary phase and the higher the proportion of the crystal phase, the higher the heat dissipation and the high strength silicon nitride sintered body with high heat dissipation. was gotten.

【0133】これに対して酸素を1.3〜1.5重量
%,前記不純物陽イオン元素を合計で0.13〜0.1
6重量%含有し、α相型窒化けい素を93%含む平均粒
径0.60μmの窒化けい素原料粉末を用い、この窒化
けい素粉末に対してY2 3 (酸化イットリウム)粉末
を3〜6重量と、アルミナ粉末を1.3〜1.6重量%
添加した原料粉末を成形,脱脂後、1900℃で6時間
焼結し、炉冷(冷却速度:毎時400℃)して得た焼結
体の熱伝導率は25〜28W/m・Kと低く、従来の一
般的な製法によって製造された窒化けい素焼結体の熱伝
導率に近い値になった。
On the other hand, 1.3 to 1.5% by weight of oxygen and 0.13 to 0.1% by weight of the above impurity cation elements are included.
A silicon nitride raw material powder containing 6% by weight and containing 93% of α-phase type silicon nitride and having an average particle size of 0.60 μm was used, and 3% of Y 2 O 3 (yttrium oxide) powder was added to the silicon nitride powder. ~ 6 wt% and 1.3-1.6 wt% alumina powder
The added raw material powder is molded and degreased, then sintered at 1900 ° C. for 6 hours and cooled in a furnace (cooling rate: 400 ° C./hour). The thermal conductivity was close to that of the silicon nitride sintered body manufactured by the conventional general manufacturing method.

【0134】次に得られた試料1〜51に係る各窒化け
い素焼結体を研磨加工することにより、実施例11〜1
3と同様に、厚さ0.4mm,0.6mm,0.8mmの窒化
けい素基板をそれぞれ調製した。次に調製した各窒化け
い素基板の表面に、実施例11〜13と同様に活性金属
法を使用して銅回路板等を一体に接合することにより図
5に示すような実施例16に係る窒化けい素回路基板を
それぞれ調製した。
Then, each of the obtained silicon nitride sintered bodies according to Samples 1 to 51 was subjected to polishing to obtain Examples 11 to 1
In the same manner as in No. 3, silicon nitride substrates having thicknesses of 0.4 mm, 0.6 mm and 0.8 mm were prepared. Next, according to Example 16 as shown in FIG. 5, a copper circuit board or the like was integrally bonded to the surface of each silicon nitride substrate prepared using the active metal method as in Examples 11 to 13. Each silicon nitride circuit board was prepared.

【0135】また各窒化けい素基板の表面に、実施例1
4と同様にDBC法を使用して銅回路板等を直接接合す
ることにより、図8に示すような実施例16に係る窒化
けい素回路基板をそれぞれ調製した。
In addition, Example 1 was formed on the surface of each silicon nitride substrate.
As in Example 4, the DBC method was used to directly bond the copper circuit board and the like to prepare the silicon nitride circuit boards according to Example 16 as shown in FIG.

【0136】さらに各窒化けい素基板の表面に、実施例
15と同様にメタライズ法を使用して回路層を形成する
ことにより、図9に示すような実施例16に係る窒化け
い素回路基板をそれぞれ調製した。
Further, by forming a circuit layer on the surface of each silicon nitride substrate by using the metallizing method as in the case of Example 15, a silicon nitride circuit substrate according to Example 16 as shown in FIG. 9 is obtained. Each was prepared.

【0137】上記のように活性金属法,DBC法,メタ
ライズ法によって回路層を形成した実施例16に係る各
Si3 4 回路基板の最大たわみ量,抗折強度は実施例
11〜15と同等以上であり、また耐熱サイクル試験に
おいて1000サイクル経過後においてもSi3 4
板の割れや回路層の剥離は皆無であり、優れた耐熱サイ
クル特性が得られた。
The maximum deflection amount and bending strength of each Si 3 N 4 circuit board according to Example 16 in which the circuit layer was formed by the active metal method, the DBC method and the metallization method as described above are the same as those in Examples 11 to 15. As described above, in the heat resistance cycle test, there was no cracking of the Si 3 N 4 substrate or peeling of the circuit layer even after 1000 cycles, and excellent heat resistance cycle characteristics were obtained.

【0138】[0138]

【発明の効果】以上説明の通り、本発明に係る窒化けい
素回路基板によれば、窒化けい素焼結体が本来的に有す
る高強度高靭性特性に加えて特に熱伝導率を大幅に改善
した高熱伝導性窒化けい素基板表面に金属回路板を一体
に接合して形成されている。したがって、回路基板の靭
性値が高いため最大たわみ量および抗折強度を大きく確
保することができる。そのため、アッセンブリ工程にお
いて回路基板の締め付け割れが発生せず、回路基板を用
いた半導体装置を高い製造歩留りで量産することが可能
になる。
As described above, according to the silicon nitride circuit board of the present invention, in addition to the high strength and high toughness characteristic inherent to the silicon nitride sintered body, the thermal conductivity is greatly improved. It is formed by integrally joining a metal circuit board to the surface of a silicon nitride substrate having high thermal conductivity. Therefore, since the toughness value of the circuit board is high, it is possible to secure a large maximum deflection amount and a large bending strength. For this reason, the circuit board does not suffer from cracking in the assembly process, and semiconductor devices using the circuit board can be mass-produced with a high manufacturing yield.

【0139】また窒化けい素基板の靭性値が高いため、
熱サイクルによって基板に割れが発生することが少な
く、耐熱サイクル特性が著しく向上し、耐久性および信
頼性に優れた半導体装置を提供することができる。
Since the toughness value of the silicon nitride substrate is high,
It is possible to provide a semiconductor device in which cracks are less likely to occur in a substrate due to heat cycle, heat cycle characteristics are remarkably improved, and durability and reliability are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化けい素回路基板の一実施例を
示す断面図。
FIG. 1 is a cross-sectional view showing an embodiment of a silicon nitride circuit board according to the present invention.

【図2】本発明に係る窒化けい素回路基板の他の実施例
を示す断面図。
FIG. 2 is a sectional view showing another embodiment of the silicon nitride circuit board according to the present invention.

【図3】回路基板の放熱性評価試験要領を示す断面図。FIG. 3 is a cross-sectional view showing a heat dissipation evaluation test procedure of a circuit board.

【図4】放熱性評価試験におけるセラミックス基板厚さ
と半導体素子の温度上昇との関係を示すグラフ。
FIG. 4 is a graph showing a relationship between a ceramic substrate thickness and a temperature rise of a semiconductor element in a heat dissipation evaluation test.

【図5】本発明に係る窒化けい素回路基板の構成例を示
す断面図。
FIG. 5 is a cross-sectional view showing a configuration example of a silicon nitride circuit board according to the present invention.

【図6】基板厚さと最大たわみ量との関係を示すグラ
フ。
FIG. 6 is a graph showing the relationship between the substrate thickness and the maximum deflection amount.

【図7】基板厚さと抗折強度との関係を示すグラフ。FIG. 7 is a graph showing the relationship between substrate thickness and bending strength.

【図8】銅直接接合法によって回路層を形成した回路基
板の断面図。
FIG. 8 is a sectional view of a circuit board on which a circuit layer is formed by a copper direct bonding method.

【図9】メタライズ法によって回路層を形成した回路基
板の断面図。
FIG. 9 is a cross-sectional view of a circuit board on which a circuit layer is formed by a metallizing method.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c,1d 窒化けい素回路基板(S
3 4 回路基板) 2 窒化けい素(Si3 4 )基板 3 酸化層(SiO2 皮膜) 4 金属回路板(Cu回路板),回路層 5 金属回路板(裏銅板) 6 半導体素子(チップ) 7a,7b 活性金属層(金属接合層) 8 ヒートシンク 9 金属めっき層(Niめっき層) 10 高融点金属メタライズ層
1, 1a, 1b, 1c, 1d Silicon nitride circuit board (S
i 3 N 4 circuit board) 2 Silicon nitride (Si 3 N 4 ) substrate 3 Oxide layer (SiO 2 film) 4 Metal circuit board (Cu circuit board), circuit layer 5 Metal circuit board (back copper plate) 6 Semiconductor element ( Chip) 7a, 7b Active metal layer (metal bonding layer) 8 Heat sink 9 Metal plating layer (Ni plating layer) 10 Refractory metal metallization layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C04B 35/584 C04B 35/58 102C 102K 102T (72)発明者 小森田 裕 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 佐藤 孔俊 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location // C04B 35/584 C04B 35/58 102C 102K 102T (72) Inventor Yu Komorida Tsurumi, Yokohama, Kanagawa Prefecture 2-4, Suehiro-cho, Tokyo Incorporated Toshiba Keihin Office (72) Inventor Kotoshi Sato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock Company Toshiba Yokohama Office

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率が60W/m・K以上で三点曲
げ強度(常温)が650MPa以上である高熱伝導性窒
化けい素基板上に酸化層を介して金属回路板を接合して
なる窒化けい素回路基板において、上記高熱伝導性窒化
けい素基板の厚さをDS ,金属回路板の厚さをDM とし
たときに関係式DS ≦2DM を満たすことを特徴とする
窒化けい素回路基板。
1. A metal circuit board is bonded via an oxide layer on a high thermal conductivity silicon nitride substrate having a thermal conductivity of 60 W / m · K or more and a three-point bending strength (normal temperature) of 650 MPa or more. In the silicon nitride circuit substrate, the relational expression D S ≦ 2D M is satisfied, where D S is the thickness of the high thermal conductivity silicon nitride substrate and D M is the thickness of the metal circuit board. Silicon circuit board.
【請求項2】 高熱伝導性窒化けい素基板の厚さDS
よび金属回路板の厚さDM が関係式DM ≦DS ≦(5/
3)DM を満たすことを特徴とする請求項1記載の窒化
けい素回路基板。
2. The thickness D S of the high thermal conductivity silicon nitride substrate and the thickness D M of the metal circuit board are expressed by the relational expression D M ≦ D S ≦ (5 /
3) The silicon nitride circuit board according to claim 1, wherein D M is satisfied.
【請求項3】 熱伝導率が60W/m・K以上で三点曲
げ強度(常温)が650MPa以上である高熱伝導性窒
化けい素基板上にTi,Zr,HfおよびNbから選択
される少なくとも1種の活性金属を含有する金属接合層
を介して金属回路板を接合してなる窒化けい素回路基板
において、上記高熱伝導性窒化けい素基板の厚さを
S ,金属回路板の厚さをDM としたときに関係式DS
≦2DMを満たすことを特徴とする窒化けい素回路基
板。
3. At least one selected from Ti, Zr, Hf and Nb on a high thermal conductivity silicon nitride substrate having a thermal conductivity of 60 W / m · K or more and a three-point bending strength (normal temperature) of 650 MPa or more. In a silicon nitride circuit board obtained by bonding metal circuit boards through a metal bonding layer containing a kind of active metal, the thickness of the high thermal conductivity silicon nitride board is D S , and the thickness of the metal circuit board is When D M , the relational expression D S
A silicon nitride circuit board characterized by satisfying ≦ 2D M.
【請求項4】 高熱伝導性窒化けい素基板の厚さDS
よび金属回路板の厚さDM が関係式DM ≦DS ≦(5/
3)DM を満たすことを特徴とする請求項3記載の窒化
けい素回路基板。
4. The high thermal conductivity silicon nitride substrate thickness D S and the metal circuit board thickness D M are related by the relational expression D M ≦ D S ≦ (5 /
3) The silicon nitride circuit board according to claim 3, which satisfies D M.
【請求項5】 熱伝導率が60W/m・K以上である高
熱伝導性窒化けい素基板に回路層を一体に接合した回路
基板であり、回路基板を50mmの支持間隔で保持した状
態で中央部に荷重を付加したときに窒化けい素基板が破
断に至るまでの最大たわみ量が0.6mm以上であること
を特徴とする窒化けい素回路基板。
5. A circuit board in which a circuit layer is integrally bonded to a high-thermal-conductivity silicon nitride substrate having a thermal conductivity of 60 W / m · K or more, and the circuit board is centrally held at a support interval of 50 mm. A silicon nitride circuit board having a maximum deflection of 0.6 mm or more before the silicon nitride board is broken when a load is applied to the portion.
【請求項6】 熱伝導率が60W/m・K以上である高
熱伝導性窒化けい素基板に回路層を一体に接合した回路
基板であり、回路基板を50mmの支持間隔で保持した状
態で抗折試験を実施したときに抗折強度が500MPa
以上であることを特徴とする窒化けい素回路基板。
6. A circuit board in which a circuit layer is integrally bonded to a high thermal conductivity silicon nitride substrate having a thermal conductivity of 60 W / m · K or more, and the circuit board is held at a support interval of 50 mm so as to be resistant. Folding strength is 500 MPa when folding test is performed
A silicon nitride circuit board characterized by the above.
【請求項7】 高熱伝導性窒化けい素基板の厚さが0.
8mm以下であることを特徴とする請求項5または6記載
の窒化けい素回路基板。
7. The high thermal conductivity silicon nitride substrate has a thickness of 0.
7. The silicon nitride circuit board according to claim 5, which has a thickness of 8 mm or less.
【請求項8】 回路層が銅回路板であり、この銅回路板
がCu−O共晶化合物によって窒化けい素基板に直接接
合されていることを特徴とする請求項5記載の窒化けい
素回路基板。
8. The silicon nitride circuit according to claim 5, wherein the circuit layer is a copper circuit board, and the copper circuit board is directly bonded to the silicon nitride substrate by a Cu—O eutectic compound. substrate.
【請求項9】 回路層が銅回路板であり、Ti,Zr,
HfおよびNbから選択される少なくとも1種の活性金
属を含有する活性金属層を介して上記銅回路板が窒化け
い素基板に接合されていることを特徴とする請求項5記
載の窒化けい素回路基板。
9. The circuit layer is a copper circuit board, and Ti, Zr,
The silicon nitride circuit according to claim 5, wherein the copper circuit board is bonded to the silicon nitride substrate through an active metal layer containing at least one active metal selected from Hf and Nb. substrate.
【請求項10】 回路層はWあるいはMoにTi,Z
r,HfおよびNbから選択される少なくとも1種の活
性金属を含有する高融点金属メタライズ層から成ること
を特徴とする請求項5記載の窒化けい素回路基板。
10. The circuit layer is composed of W or Mo and Ti, Z.
6. The silicon nitride circuit board according to claim 5, comprising a refractory metal metallization layer containing at least one active metal selected from r, Hf and Nb.
【請求項11】 高熱伝導性窒化けい素基板は、希土類
元素を酸化物に換算して2.0〜17.5重量%、不純
物陽イオン元素としてのLi,Na,K,Fe,Ca,
Mg,Sr,Ba,Mn,Bを合計で0.3重量%以下
含有する窒化けい素焼結体から成ることを特徴とする請
求項1または3記載の窒化けい素回路基板。
11. The high-thermal-conductivity silicon nitride substrate is 2.0 to 17.5% by weight in terms of oxide of rare earth element, and Li, Na, K, Fe, Ca, as impurity cation elements.
4. The silicon nitride circuit board according to claim 1, which is made of a silicon nitride sintered body containing Mg, Sr, Ba, Mn, and B in a total amount of 0.3% by weight or less.
【請求項12】 高熱伝導性窒化けい素基板は、希土類
元素を酸化物に換算して2.0〜17.5重量%含有
し、窒化けい素結晶および粒界相から成るとともに粒界
相中における結晶化合物相の粒界相全体に対する割合が
20%以上である窒化けい素焼結体から成ることを特徴
とする請求項1または3記載の窒化けい素回路基板。
12. The high thermal conductivity silicon nitride substrate contains a rare earth element in an amount of 2.0 to 17.5 wt% in terms of oxide, and is composed of a silicon nitride crystal and a grain boundary phase and in the grain boundary phase. 4. The silicon nitride circuit board according to claim 1 or 3, comprising a silicon nitride sintered body in which the ratio of the crystalline compound phase to the entire grain boundary phase is 20% or more.
【請求項13】 高熱伝導性窒化けい素基板は、窒化け
い素結晶および粒界相から成るとともに粒界相中におけ
る結晶化合物相の粒界相全体に対する割合が50%以上
である窒化けい素焼結体から成ることを特徴とする請求
項1または3記載の窒化けい素回路基板。
13. A high-thermal-conductivity silicon nitride substrate is composed of silicon nitride crystals and a grain boundary phase, and the ratio of the crystal compound phase in the grain boundary phase to the whole grain boundary phase is 50% or more. The silicon nitride circuit board according to claim 1 or 3, wherein the silicon nitride circuit board comprises a body.
JP7344238A 1995-03-20 1995-12-28 Silicon nitride circuit board Expired - Lifetime JP2698780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344238A JP2698780B2 (en) 1995-03-20 1995-12-28 Silicon nitride circuit board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-61264 1995-03-20
JP6126495 1995-03-20
JP15820595 1995-06-23
JP7-158205 1995-06-23
JP7344238A JP2698780B2 (en) 1995-03-20 1995-12-28 Silicon nitride circuit board

Publications (2)

Publication Number Publication Date
JPH0969672A true JPH0969672A (en) 1997-03-11
JP2698780B2 JP2698780B2 (en) 1998-01-19

Family

ID=27297445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344238A Expired - Lifetime JP2698780B2 (en) 1995-03-20 1995-12-28 Silicon nitride circuit board

Country Status (1)

Country Link
JP (1) JP2698780B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054761A1 (en) * 1997-05-26 1998-12-03 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
JP2000034172A (en) * 1998-05-12 2000-02-02 Toshiba Corp Highly thermoconductive silicon nitride sintered compact and its production
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property
JP2002201075A (en) * 2000-10-27 2002-07-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
US6613443B2 (en) 2000-10-27 2003-09-02 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP2006069887A (en) * 2000-10-27 2006-03-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
JP2007254205A (en) * 2006-03-23 2007-10-04 Kyocera Corp Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body
JP2009120483A (en) * 2000-10-27 2009-06-04 Toshiba Corp Semiconductor module and electronics device using the same
JP2011067849A (en) * 2009-09-28 2011-04-07 Kyocera Corp Brazing filler metal, and heat radiation base body joined by using the same
JP2012522709A (en) * 2009-04-02 2012-09-27 キュラミーク エレクトロニクス ゲーエムベーハー Metal ceramic substrate
JP2021046329A (en) * 2019-09-17 2021-03-25 株式会社東芝 Structure and joint body
EP4253348A1 (en) * 2022-03-29 2023-10-04 Proterial, Ltd. Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261703B1 (en) 1997-05-26 2001-07-17 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
WO1998054761A1 (en) * 1997-05-26 1998-12-03 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property
JP2000034172A (en) * 1998-05-12 2000-02-02 Toshiba Corp Highly thermoconductive silicon nitride sintered compact and its production
JP4649027B2 (en) * 1999-09-28 2011-03-09 株式会社東芝 Ceramic circuit board
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
JP2002201075A (en) * 2000-10-27 2002-07-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
US6613443B2 (en) 2000-10-27 2003-09-02 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP2006069887A (en) * 2000-10-27 2006-03-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
JP2009120483A (en) * 2000-10-27 2009-06-04 Toshiba Corp Semiconductor module and electronics device using the same
JP2009280494A (en) * 2000-10-27 2009-12-03 Toshiba Corp Power module
JP2007254205A (en) * 2006-03-23 2007-10-04 Kyocera Corp Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body
JP2012522709A (en) * 2009-04-02 2012-09-27 キュラミーク エレクトロニクス ゲーエムベーハー Metal ceramic substrate
JP2011067849A (en) * 2009-09-28 2011-04-07 Kyocera Corp Brazing filler metal, and heat radiation base body joined by using the same
JP2021046329A (en) * 2019-09-17 2021-03-25 株式会社東芝 Structure and joint body
EP4253348A1 (en) * 2022-03-29 2023-10-04 Proterial, Ltd. Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate
JP2023147093A (en) * 2022-03-29 2023-10-12 株式会社プロテリアル Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate

Also Published As

Publication number Publication date
JP2698780B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
JP4649027B2 (en) Ceramic circuit board
US6232657B1 (en) Silicon nitride circuit board and semiconductor module
US5928768A (en) Silicon nitride circuit board
JP3115238B2 (en) Silicon nitride circuit board
JP3629783B2 (en) Circuit board
JP2698780B2 (en) Silicon nitride circuit board
JPH1093211A (en) Silicon nitride circuit board
JP5172738B2 (en) Semiconductor module and electronic device using the same
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP6124103B2 (en) Silicon nitride circuit board and manufacturing method thereof
JP3193305B2 (en) Composite circuit board
JP2772273B2 (en) Silicon nitride circuit board
JP2939444B2 (en) Multilayer silicon nitride circuit board
JP2772274B2 (en) Composite ceramic substrate
JP2006069887A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
JP2677748B2 (en) Ceramics copper circuit board
JP2967065B2 (en) Semiconductor module
JPH0964235A (en) Silicon nitride circuit board
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JP3180100B2 (en) Semiconductor module
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JPH0969594A (en) Silicon nitride heat sink for compression and compression structure parts using it
JPH06183864A (en) Metallized silicon nitride substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16

EXPY Cancellation because of completion of term