JP5172738B2 - Semiconductor module and electronic device using the same - Google Patents

Semiconductor module and electronic device using the same Download PDF

Info

Publication number
JP5172738B2
JP5172738B2 JP2009036843A JP2009036843A JP5172738B2 JP 5172738 B2 JP5172738 B2 JP 5172738B2 JP 2009036843 A JP2009036843 A JP 2009036843A JP 2009036843 A JP2009036843 A JP 2009036843A JP 5172738 B2 JP5172738 B2 JP 5172738B2
Authority
JP
Japan
Prior art keywords
silicon nitride
ceramic substrate
less
nitride ceramic
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009036843A
Other languages
Japanese (ja)
Other versions
JP2009120483A (en
Inventor
隆之 那波
秀樹 山口
通泰 小松
山口  晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009036843A priority Critical patent/JP5172738B2/en
Publication of JP2009120483A publication Critical patent/JP2009120483A/en
Application granted granted Critical
Publication of JP5172738B2 publication Critical patent/JP5172738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は半導体モジュールおよびそれを用いた電子機器に係り、特に窒化けい素セラミックス基板を用いて各種パワーモジュールや電子機器を構成した際にリーク電流の発生を効果的に抑制することができ、大電力化および大容量化したパワーモジュールにおいても絶縁性および動作の信頼性を大幅に向上させることが可能な半導体モジュールおよびそれを用いた電子機器に関する。   The present invention relates to a semiconductor module and an electronic device using the same, and in particular, when various power modules and electronic devices are configured using a silicon nitride ceramic substrate, the generation of leakage current can be effectively suppressed. The present invention relates to a semiconductor module capable of significantly improving insulation and operation reliability even in a power module with increased power and increased capacity, and an electronic apparatus using the semiconductor module.

窒化けい素を主成分とするセラミックス焼結体は、1000℃以上の高温度環境下でも優れた耐熱性を有し、かつ低熱膨張係数のため耐熱衝撃性も優れている等の諸特性を持つことから、従来の耐熱性超合金に代わる高温構造材料としてガスタービン用部品、エンジン用部品、製鋼用機械部品等の各種高強度耐熱部品への応用が試みられている。また、金属に対する耐食性が優れていることから溶融金属の耐溶材料としての応用も試みられ、さらに耐摩耗性も優れていることから、軸受等の摺動部材、切削工具への実用化も図られている。   Ceramic sintered bodies mainly composed of silicon nitride have excellent heat resistance even in a high temperature environment of 1000 ° C. or higher, and have various characteristics such as excellent thermal shock resistance due to a low thermal expansion coefficient. Therefore, application to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steelmaking machine parts has been attempted as a high-temperature structural material replacing conventional heat-resistant superalloys. In addition, because it has excellent corrosion resistance to metals, it has been tried to apply molten metal as a material that resists melting, and since it has excellent wear resistance, it can be put to practical use in sliding members such as bearings and cutting tools. ing.

従来より窒化けい素セラミックス焼結体の焼結組成としては窒化けい素−酸化イットリウム−酸化アルミニウム系、窒化けい素−酸化イットリウム−酸化アルミニウム−窒化アルミニウム系、窒化けい素−酸化イットリウム−酸化アルミニウム−チタニウム、マグネシウムまたはジルコニウムの酸化物系等が知られている。   Conventionally, the sintered composition of sintered silicon nitride ceramics is silicon nitride-yttrium oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride system, silicon nitride-yttrium oxide-aluminum oxide- Titanium, magnesium or zirconium oxides are known.

上記焼結組成における酸化イットリウム(Y)などの希土類元素の酸化物は、従来から焼結助剤として一般に使用されており、焼結性を高めて焼結体を緻密化し高強度化を図るために添加されている。 Oxides of rare earth elements such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintered composition have been conventionally used as sintering aids, increasing the sinterability and densifying the sintered body to increase its strength. It has been added to achieve this.

従来の窒化けい素焼結体は、窒化けい素粉末に上記のような焼結助剤を添加物として加えた原料混合体を80〜100MPaの加圧力でプレス成形したり、押出成形法やドクターブレード法を用いて成形し、得られた成形体を1600〜1900℃程度の高温度の焼成炉で所定時間焼成した後に、炉を自然冷却する製法で量産されている。   A conventional silicon nitride sintered body is obtained by press-molding a raw material mixture obtained by adding the above-mentioned sintering aid as an additive to silicon nitride powder with an applied pressure of 80 to 100 MPa, an extrusion molding method or a doctor blade. The molded body obtained by molding is mass-produced by a manufacturing method in which the resulting molded body is fired for a predetermined time in a high-temperature firing furnace of about 1600 to 1900 ° C. and then the furnace is naturally cooled.

特開平9−69672号公報JP-A-9-69672 特開平9−30866号公報Japanese Patent Laid-Open No. 9-30866 特開平9−183666号公報JP-A-9-183666 特開2000−128643号公報JP 2000-128643 A

しかしながら、上記従来の製造方法によって製造された窒化けい素焼結体をセラミックス基板として使用し、セラミックス基板表面に金属回路板を接合するとともに半導体素子を搭載することにより、各種パワーモジュールを形成した場合、セラミックス基板の絶縁性が低く、誘電損失が大きくなるために信頼性が高いパワーモジュールを得ることが困難であった。この傾向は、近年の半導体素子の高出力化および高集積化が進展するに伴って、さらに顕著になっていた。   However, when the silicon nitride sintered body manufactured by the above-described conventional manufacturing method is used as a ceramic substrate, and various power modules are formed by bonding a metal circuit board and mounting a semiconductor element on the ceramic substrate surface, It has been difficult to obtain a highly reliable power module because the ceramic substrate has low insulation and large dielectric loss. This tendency has become more prominent with the recent progress of higher output and higher integration of semiconductor devices.

具体的には、上記窒化けい素セラミックス基板を用いて大電力用および大容量用の各種パワーモジュールを形成した場合に、セラミックス基板の表裏間の絶縁性が低下してリーク電流が発生し易くなる。そして、上記リーク電流値が所定の値を超えると、金属回路板を流れる電流がセラミックス基板を通り、他の金属回路にリーク(漏洩)してしまう。そのため、電気的には接続されていないにも拘わらず、他の金属回路板に漏れ電流(リーク電流)が流れることになり、半導体素子の誤作動を引き起こしたり、各種パワーモジュールの構成部品を傷損させたりする悪影響が発生する問題点があった。   Specifically, when various power modules for high power and large capacity are formed using the above silicon nitride ceramic substrate, the insulation between the front and back surfaces of the ceramic substrate is lowered and leak current is likely to occur. . When the leakage current value exceeds a predetermined value, the current flowing through the metal circuit board passes through the ceramic substrate and leaks (leaks) to other metal circuits. Therefore, although it is not electrically connected, leakage current (leakage current) flows to other metal circuit boards, which may cause malfunction of semiconductor elements or damage components of various power modules. There has been a problem in that an adverse effect occurs.

また、上記従来方法によって製造された窒化けい素焼結体では靭性値などの機械的強度は優れているものの、熱伝導特性の点では、他の窒化アルミニウム(AlN)焼結体、酸化ベリリウム(BeO)焼結体、炭化けい素(SiC)焼結体などと比較して不充分であったため、特に放熱性を要求される半導体用セラミックス基板などの電子用材料としては実用化されておらず、用途範囲が狭い難点があった。   In addition, although the silicon nitride sintered body manufactured by the above-described conventional method has excellent mechanical strength such as toughness value, in terms of thermal conductivity, other aluminum nitride (AlN) sintered bodies, beryllium oxide (BeO) ) Since it was insufficient compared with sintered bodies, silicon carbide (SiC) sintered bodies, etc., it has not been put into practical use as an electronic material such as a ceramic substrate for semiconductors that requires heat dissipation, There was a difficulty with a narrow application range.

一方、上記窒化アルミニウム焼結体は他のセラミックス焼結体と比較して高い熱伝導率と低熱膨張係数とを有する特徴を有するため、高速化、高出力化、多機能化、大型化が進展する半導体回路基板材料やパッケージ材料として普及しているが、機械的強度の点で充分に満足できるものは得られていない。そこで、高強度を有するとともに高い絶縁性と高い熱伝導率をも併せ持ったセラミックス焼結体の開発が要請されている。   On the other hand, the above-mentioned aluminum nitride sintered body has characteristics of higher thermal conductivity and lower thermal expansion coefficient than other ceramic sintered bodies, so that high speed, high output, multi-functionality, and large size are progressing. However, a semiconductor circuit board material and a packaging material that are sufficiently satisfactory in terms of mechanical strength have not been obtained. Therefore, there is a demand for the development of a ceramic sintered body having high strength and having both high insulation and high thermal conductivity.

上記要請に対応するため、本願発明者は、焼結体の組成、組織等を改善することにより、機械的強度および熱伝導率が共に優れた窒化けい素焼結体を開発した。しかしながら、従来の窒化けい素焼結体においては、結晶粒界相に存在する気孔のサイズが直径1μm程度に大きくなり易いという欠点があった。そして、電圧印加時に、この気孔部分を介して電流リークが発生し易いという問題点があった。したがって、このような焼結体においては、絶縁性が低下するため半導体用基板としては未だ充分とは言えないという課題があった。   In order to meet the above requirements, the inventor of the present application has developed a silicon nitride sintered body excellent in both mechanical strength and thermal conductivity by improving the composition and structure of the sintered body. However, the conventional silicon nitride sintered body has a drawback that the size of pores existing in the grain boundary phase tends to be as large as about 1 μm in diameter. In addition, there is a problem that current leakage tends to occur through the pores when a voltage is applied. Accordingly, such a sintered body has a problem that it cannot be said that it is still sufficient as a substrate for a semiconductor because insulation properties are lowered.

すなわち、上記従来の製造方法によって製造された窒化けい素焼結体をセラミックス基板として使用し、セラミックス基板表面に金属回路板を接合するとともに半導体素子を搭載することにより、各種パワーモジュールを形成した場合、セラミックス基板の絶縁性が低く、誘電損失が大きくなるために信頼性が高いパワーモジュールを得ることが困難であった。この傾向は、近年の半導体素子の高出力化および高集積化が進展するに伴って、さらに顕著になっていた。   That is, when the silicon nitride sintered body manufactured by the above-described conventional manufacturing method is used as a ceramic substrate, and various power modules are formed by bonding a metal circuit board and mounting a semiconductor element on the ceramic substrate surface, It has been difficult to obtain a highly reliable power module because the ceramic substrate has low insulation and large dielectric loss. This tendency has become more prominent with the recent progress of higher output and higher integration of semiconductor devices.

具体的には、上記窒化けい素セラミックス基板を用いて大電力用および大容量用の各種パワーモジュールを形成した場合に、セラミックス基板の表裏間の絶縁性が低下してリーク電流が発生し易くなる。そして、上記リーク電流値が所定の値を超えると、金属回路板を流れる電流がセラミックス基板を通り、他の金属回路にリーク(漏洩)してしまう。そのため、電気的には接続されていないにも拘わらず、他の金属回路板に漏れ電流(リーク電流)が流れることになり、半導体素子の誤作動を引き起こしたり、各種パワーモジュールの構成部品を傷損させたりする悪影響が発生する問題点があった。   Specifically, when various power modules for high power and large capacity are formed using the above silicon nitride ceramic substrate, the insulation between the front and back surfaces of the ceramic substrate is lowered and leak current is likely to occur. . When the leakage current value exceeds a predetermined value, the current flowing through the metal circuit board passes through the ceramic substrate and leaks (leaks) to other metal circuits. Therefore, although it is not electrically connected, leakage current (leakage current) flows to other metal circuit boards, which may cause malfunction of semiconductor elements or damage components of various power modules. There has been a problem in that an adverse effect occurs.

本発明は上記のような課題要請に対処するためになされたものであり、窒化けい素焼結体が本来備える高強度特性に加えて、特に絶縁性が高くリーク電流の発生を効果的に抑制でき、また熱伝導率が高く放熱性に優れた窒化けい素セラミックス基板を用いた半導体モジュールおよびそれを用いた電子機器を提供することを目的とする。   The present invention has been made in order to cope with the above-described problems, and in addition to the high strength characteristics inherent in the silicon nitride sintered body, it has particularly high insulation and can effectively suppress the occurrence of leakage current. Another object of the present invention is to provide a semiconductor module using a silicon nitride ceramic substrate having high thermal conductivity and excellent heat dissipation, and an electronic device using the same.

本発明者は上記目的を達成するため、従来の窒化けい素セラミックス基板を使用したモジュールにおいてリーク電流が発生する要因を究明し、以下のような知見を得た。   In order to achieve the above object, the present inventor has investigated the cause of leakage current in a module using a conventional silicon nitride ceramic substrate, and has obtained the following knowledge.

すなわち、従来の窒化けい素セラミックス基板の表面には、基板を構成する窒化けい素焼結体の焼結性などが悪いため、幅が1μm以上のマイクロクラックや幅が1μm未満のサブミクロンクラックなどの割れが多数形成され易く、この割れが基板の厚さ方向に進展している場合には、その割れの長さに相当する分だけセラミックス基板の厚さが減少し、絶縁体としてのセラミックス基板の実質的な厚さが減少するために絶縁性が低下し、モジュールを形成した場合にリーク電流が発生し易くなる。なお上記割れは、セラミックス焼結体を所定厚さに研磨加工する際にも発生し易い。   That is, since the surface of a conventional silicon nitride ceramic substrate has poor sinterability of the silicon nitride sintered body constituting the substrate, a microcrack having a width of 1 μm or more, a submicron crack having a width of less than 1 μm, and the like. When a large number of cracks are easily formed and these cracks progress in the thickness direction of the substrate, the thickness of the ceramic substrate is reduced by an amount corresponding to the length of the crack, and the ceramic substrate as an insulator is reduced. Since the substantial thickness is reduced, the insulation is lowered, and when a module is formed, a leak current is likely to occur. Note that the above-described cracks are likely to occur when the ceramic sintered body is polished to a predetermined thickness.

したがって上記リーク電流の発生を抑制するためには、基板の研磨加工による厚さの調整を実施しない成形法を考慮することも重要であるが、特に原料混合体を加圧成形して成形体とする場合の成形圧力を120MPa以上とすることにより、緻密でクラックの発生が少ない焼結体が得られ、リーク電流の発生を効果的に低減できるという知見を得た。   Therefore, in order to suppress the occurrence of the leakage current, it is important to consider a molding method in which the thickness is not adjusted by polishing the substrate. It was found that by setting the molding pressure to 120 MPa or higher, a dense sintered body with less cracking can be obtained, and the generation of leakage current can be effectively reduced.

また窒化けい素結晶粒子は、本来絶縁物であるために電流は流れないが、現実の窒化けい素セラミックス基板においては焼結助剤成分の複合酸化物から成るガラス相が粒界相として形成されており、この粒界相に形成されたガラス相が上記リーク電流現象を引き起こすひとつの原因となることが判明した。   In addition, since silicon nitride crystal grains are inherently insulating, no current flows, but in an actual silicon nitride ceramic substrate, a glass phase composed of a composite oxide of a sintering aid component is formed as a grain boundary phase. It has been found that the glass phase formed in the grain boundary phase is one cause of the leakage current phenomenon.

さらに上記ガラス相は熱抵抗が大きいために窒化けい素セラミックス基板の熱伝導率を低下させ易く、またガラス相が多いとクラックが発生し易いことも判明した。なお、上記粒界相は窒化けい素セラミックス基板の強度をある程度まで高く維持するために必要である。しかしながら粒界相が存在すると前述のようにリーク電流を発生し易い組織となってしまう。そこで、本願発明ではリーク電流が発生しにくく、熱伝導率が高い粒界相を形成している。   Furthermore, since the glass phase has a large thermal resistance, it has been found that the thermal conductivity of the silicon nitride ceramic substrate is likely to be lowered, and that if the glass phase is large, cracks are likely to occur. The grain boundary phase is necessary to maintain the strength of the silicon nitride ceramic substrate to a certain extent. However, the presence of a grain boundary phase results in a structure that easily generates a leakage current as described above. Therefore, in the present invention, a leakage current is hardly generated and a grain boundary phase having a high thermal conductivity is formed.

具体的には、少なくとも一部の粒界相を結晶化せしめることにより、熱抵抗が高いガラス相の比率を低減して窒化けい素セラミックス基板の熱伝導率を50W/m・K以上に高めると同時にリーク電流の発生を効果的に防止している。   Specifically, by crystallizing at least a part of the grain boundary phase, the ratio of the glass phase having high thermal resistance is reduced and the thermal conductivity of the silicon nitride ceramic substrate is increased to 50 W / m · K or more. At the same time, leakage current is effectively prevented.

また、Hf酸化物を所定量添加することにより、上記ガラス相の発生を抑制することが可能であり、粒界相の結晶化が進行し易く、基板の高熱伝導化とリーク電流の抑制との両面から有効であることも判明した。   Further, by adding a predetermined amount of Hf oxide, it is possible to suppress the generation of the glass phase, the crystallization of the grain boundary phase is likely to proceed, and the high thermal conductivity of the substrate and the suppression of the leakage current are achieved. It was also found effective from both sides.

さらに、炭素は導電性を有しているため、焼結後の窒化けい素セラミックス基板に残留する炭素がリーク電流の発生原因のひとつとなっていることも判明した。この対策として原料混合体を成形・脱脂した後における成形体の残留炭素量を所定値以下に規定することによって、窒化けい素セラミックス基板のリーク電流値を効果的に低減できることも判明した。   Furthermore, since carbon has conductivity, it has also been found that carbon remaining on the sintered silicon nitride ceramic substrate is one of the causes of leakage current. As a countermeasure, it has also been found that the leakage current value of the silicon nitride ceramic substrate can be effectively reduced by regulating the residual carbon content of the molded body after molding and degreasing the raw material mixture to a predetermined value or less.

また、従来の窒化けい素焼結体を製造する際に、一般的に使用されていた窒化けい素粉末の種類、焼結助剤や添加物の種類および添加量、焼結条件等を種々変えて、それらの要素が最終製品としての焼結体の特性に及ぼす影響を実験により確認した。   Also, when manufacturing conventional silicon nitride sintered bodies, various types of silicon nitride powder, types and addition amounts of sintering aids and additives, sintering conditions, etc., which were generally used were changed. The effects of these elements on the properties of the sintered product as the final product were confirmed by experiments.

その結果、微細で高純度を有する窒化けい素粉末に希土類元素を所定量ずつ添加した原料混合体を成形脱脂し、得られた成形体を所定温度で一定時間加熱保持して緻密化焼結を実施した後、所定の冷却速度で徐冷したときに熱伝導率が大きく向上し、かつ高強度を有する窒化けい素焼結体が得られることが判明した。   As a result, a raw material mixture obtained by adding a predetermined amount of rare earth elements to fine silicon nitride powder having high purity is molded and degreased, and the resulting molded body is heated and held at a predetermined temperature for a certain period of time to perform densification sintering. After the implementation, it was found that a silicon nitride sintered body having a high strength and a high strength can be obtained when it is gradually cooled at a predetermined cooling rate.

また酸素や不純物陽イオン元素含有量を低減した高純度の窒化けい素原料粉末を使用し、窒化けい素成形体の厚さを小さく設定して焼結することにより、粒界相におけるガラス相(非晶質相)の生成が効果的に防止でき、希土類元素酸化物のみを原料粉末に添加した場合においても50W/m・K以上の高熱伝導率を有する窒化けい素焼結体が得られるという知見を得た。   In addition, by using high-purity silicon nitride raw material powder with reduced oxygen and impurity cation element content, and setting the thickness of the silicon nitride molded body to a small thickness, sintering, the glass phase in the grain boundary phase ( Amorphous phase) can be effectively prevented, and a silicon nitride sintered body having a high thermal conductivity of 50 W / m · K or more can be obtained even when only a rare earth element oxide is added to the raw material powder. Got.

また、従来、焼結操作終了後に焼成炉の加熱用電源をOFFとして焼結体を炉冷していた場合には、冷却速度が毎時400〜800℃と急速であったが、本発明者の実験によれば、特に冷却速度を毎時100℃以下に緩速に制御することにより、窒化けい素焼結体組織の粒界相が非結晶質状態から結晶相を含む相に変化し、高強度特性と高伝熱特性とが同時に達成されることが判明した。   Further, conventionally, when the sintered body was cooled by turning off the heating power source of the firing furnace after the sintering operation was completed, the cooling rate was 400 to 800 ° C. per hour, but the present inventors According to the experiment, the grain boundary phase of the silicon nitride sintered body structure changed from an amorphous state to a phase containing a crystalline phase by controlling the cooling rate to 100 ° C or less per hour, and the high strength characteristics And high heat transfer properties were achieved at the same time.

しかしながら、本発明者はさらに改良研究を進めた結果、希土類元素に加えて、さらにMgを酸化物に換算して0.3〜3.0重量%添加した場合に、焼結性が改善されるため焼結体の高強度化が可能であることを見い出し、本発明を完成したものである。ちなみに原料成形体を1500〜1900℃の温度範囲で焼結してセラミックス基板とした場合においても、1.5kV−100Hzの交流電圧を印加した際のリーク電流値が500nA以下であり、あるいは、1MHzの交流電圧を印加した際の誘電損失が0.0001以下となるような窒化けい素セラミックス基板が得られる。また、この窒化けい素セラミックス基板は500MPa以上の曲げ強度と50W/m・K以上の高熱伝導率を達成することができる。   However, as a result of further research on improvement, the present inventor has improved sinterability when adding 0.3 to 3.0% by weight of Mg in terms of oxide in addition to rare earth elements. Therefore, the present inventors have found that the strength of the sintered body can be increased and completed the present invention. Incidentally, even when the raw material molded body is sintered in a temperature range of 1500 to 1900 ° C. to make a ceramic substrate, the leakage current value when an AC voltage of 1.5 kV-100 Hz is applied is 500 nA or less, or 1 MHz. A silicon nitride ceramic substrate having a dielectric loss of 0.0001 or less when the AC voltage is applied can be obtained. In addition, this silicon nitride ceramic substrate can achieve a bending strength of 500 MPa or more and a high thermal conductivity of 50 W / m · K or more.

また、微細な窒化けい素原料粉末に希土類酸化物、必要に応じてマグネシア(MgO)、Hfの化合物,Ti,Zr,W,Mo,Ta,Nb,V,Crの化合物を所定量ずつ添加した原料混合体を成形脱脂し、得られた成形体を焼結する途中で成形体を所定の加熱、雰囲気条件で保持して脱酸素処理(酸素濃度の低減化)を施した後に本焼結を実施し、前記焼結温度から、上記希土類元素により焼結時に形成された液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷した場合に、高強度、高熱伝導率に加えて、特に電圧印加時に発生するリーク電流を抑制し得る高絶縁性を有する窒化けい素セラミックス基板が初めて得られ、特性が良好で安定した半導体モジュールや電子機器が得られることが判明した。   In addition, rare earth oxide, magnesia (MgO), Hf compound, Ti, Zr, W, Mo, Ta, Nb, V, Cr compound were added in predetermined amounts to fine silicon nitride raw material powder as needed. After degreasing the raw material mixture and sintering the obtained molded body, the molded body is held under predetermined heating and atmospheric conditions and subjected to deoxygenation treatment (reduction of oxygen concentration), followed by main sintering. When the sintered body is cooled slowly at a cooling rate of 100 ° C./hour from the sintering temperature to the temperature at which the liquid phase formed during sintering by the rare earth element solidifies, high strength, In addition to high thermal conductivity, it is possible to obtain a silicon nitride ceramic substrate having high insulation that can suppress leakage current generated particularly when voltage is applied for the first time, and to obtain a stable and stable semiconductor module or electronic device. found.

本発明は上記知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

すなわち、本発明に係る半導体モジュールは、気孔率が容量比で2.5%以下であり、粒界相中の最大気孔径が0.3μm以下であり、厚さが1.5mm以下である窒化けい素焼結体から成り、温度25℃,湿度70%の条件下で上記窒化けい素焼結体の表裏間に1.5Kv−100Hzの交流電圧を印加したときの電流リーク値が1000nA以下であり、熱伝導率が50W/m・K以上、3点曲げ強度が500MPa以上である窒化けい素セラミックス基板と、この窒化けい素セラミックス基板に接合された金属回路板と、この金属回路板上に搭載された半導体素子とを備え、上記窒化けい素セラミックス基板は、HfおよびMgの少なくとも一方を酸化物に換算して0.3〜3.0質量%含有する一方、不純物陽イオン元素としてのAl,Li,Na,K,Fe,Ba,Mn,Bを合計で0.5質量%以下含有すると共に、上記窒化けい素セラミックス基板の全酸素量が3.5質量%以下であることを特徴とする。 That is, in the semiconductor module according to the present invention, the porosity is 2.5% or less by volume ratio, the maximum pore diameter in the grain boundary phase is 0.3 μm or less, and the thickness is 1.5 mm or less. A current leakage value when an AC voltage of 1.5 Kv-100 Hz is applied between the front and back surfaces of the silicon nitride sintered body under the conditions of a temperature of 25 ° C. and a humidity of 70%. A silicon nitride ceramic substrate having a thermal conductivity of 50 W / m · K or more and a three-point bending strength of 500 MPa or more, a metal circuit board bonded to the silicon nitride ceramic substrate, and mounted on the metal circuit board painting Bei a semiconductor device, the silicon nitride ceramic substrate, while containing 0.3 to 3.0 mass% in terms of at least one oxide of Hf and Mg, a as impurity cationic elements , Li, Na, K, Fe , Ba, Mn, along with containing 0.5 wt% or less of B in total, and wherein the total oxygen content of the silicon nitride ceramic substrate is less than 3.5 wt% To do.

また、窒化けい素セラミックス基板の破壊靭性値が6.5MPa・m1/2以上であることが好ましい。 The fracture toughness value of the silicon nitride ceramic substrate is preferably 6.5 MPa · m 1/2 or more.

さらに、前記窒化けい素セラミックス基板は、窒化けい素結晶および粒界相から成るとともに粒界相中における結晶化合物相の粒界相全体に対する割合が20%以上であることが好ましい。また前記窒化けい素セラミックス基板は、希土類元素を酸化物に換算して2.0〜17.5質量%含有することが好ましい。   Further, the silicon nitride ceramic substrate is preferably composed of a silicon nitride crystal and a grain boundary phase, and the ratio of the crystal compound phase in the grain boundary phase to the whole grain boundary phase is preferably 20% or more. The silicon nitride ceramic substrate preferably contains a rare earth element in an amount of 2.0 to 17.5% by mass in terms of an oxide.

また、窒化けい素焼結体の厚さが1.5mm以下であることが好ましい。さらに、上記高熱伝導性窒化けい素焼結体の熱伝導率が90W/m・k以上であるように構成することも可能である。   Moreover, it is preferable that the thickness of the silicon nitride sintered body is 1.5 mm or less. Furthermore, the high thermal conductivity silicon nitride sintered body can be configured to have a thermal conductivity of 90 W / m · k or more.

さらに、前記窒化けい素セラミックス基板は、MgをMgOに換算して0.3〜3.0質量%含有することが好ましい。   Further, the silicon nitride ceramic substrate preferably contains 0.3 to 3.0% by mass of Mg in terms of MgO.

さらに上記窒化けい素焼結体が、HfおよびMgの少なくとも一方を酸化物に換算して0.3〜3.0質量%含有するとともに、不純物陽イオン元素としてのAl,Li,Na,K,Fe,Ba,Mn,Bを合計で0.5質量%以下含有することが好ましい。   Furthermore, the silicon nitride sintered body contains at least one of Hf and Mg in an amount of 0.3 to 3.0% by mass in terms of oxide, and Al, Li, Na, K, Fe as impurity cation elements. , Ba, Mn, and B are preferably contained in a total amount of 0.5% by mass or less.

特に、前記窒化けい素セラミックス基板における残留炭素含有量が500ppm以下であることが必要である。なお、本発明で使用する窒化けい素セラミックス基板における残留炭素含有量(または残留炭素量)とは、該セラミックス基板中に残留する炭素単体の含有量を示すものであり、金属炭化物の含有量を含むものではない。   In particular, the residual carbon content in the silicon nitride ceramic substrate needs to be 500 ppm or less. The residual carbon content (or residual carbon content) in the silicon nitride ceramic substrate used in the present invention indicates the content of simple carbon remaining in the ceramic substrate. It is not included.

また、上記セラミックス基板において、さらに、気孔率が容量比で2.5%以下であり、全酸素量が3.5質量%以下であることが好ましい。またTi,Zr,W,Mo,Ta,Nb,V,Crからなる群より選択される少なくとも1種を酸化物に換算して2質量%以下含有することが好ましい。   Further, in the ceramic substrate, it is preferable that the porosity is 2.5% or less by volume ratio and the total oxygen amount is 3.5% by mass or less. Further, it is preferable that at least one selected from the group consisting of Ti, Zr, W, Mo, Ta, Nb, V, and Cr is contained in an amount of 2% by mass or less in terms of oxide.

さらに、本発明に係る半導体モジュールは上記のように調製した窒化けい素セラミックス基板と、この窒化けい素セラミックス基板に接合された金属回路板と、この金属回路板上に搭載された半導体素子と、を備えることを特徴とする。   Furthermore, the semiconductor module according to the present invention is a silicon nitride ceramic substrate prepared as described above, a metal circuit board bonded to the silicon nitride ceramic substrate, a semiconductor element mounted on the metal circuit board, It is characterized by providing.

また本発明で使用する窒化けい素セラミックス基板の製造方法は、窒化けい素粉末に、希土類元素を酸化物に換算して2〜17.5質量%添加した原料混合体を成形して成形体を調整し、得られた成形体を脱脂後、焼結する途中で温度1300〜1600℃で所定時間保持した後に、温度1700〜1900℃で焼結し、上記焼結温度から、上記希土類元素により焼結時に形成された液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷することを特徴とする。   Further, the method for producing a silicon nitride ceramic substrate used in the present invention comprises forming a raw material mixture obtained by adding 2 to 17.5% by mass of a rare earth element in terms of oxide to silicon nitride powder. After degreasing and then sintering the obtained molded body, it was held at a temperature of 1300-1600 ° C. for a predetermined time during sintering, then sintered at a temperature of 1700-1900 ° C. The cooling rate of the sintered body that reaches the temperature at which the liquid phase formed at the time of solidification solidifies is gradually reduced to 100 ° C. or less per hour.

また、窒化けい素粉末が、酸素を1.5質量%以下、不純物陽イオン元素としてのAl,Li,Na,K,Fe,Ba,Mn,Bを合計で0.5質量%以下、α相型窒化けい素を75〜97質量%以上含有し、平均粒径が1.0μm以下であることが好ましい。   Further, the silicon nitride powder has oxygen of 1.5% by mass or less, Al, Li, Na, K, Fe, Ba, Mn, and B as impurity cation elements in total, 0.5% by mass or less, α phase It is preferable that 75-97 mass% or more of type silicon nitride is contained and the average particle size is 1.0 μm or less.

また上記製造方法において、窒化けい素粉末に、HfおよびMgの少なくとも一方を酸化物に換算して0.3〜3.0質量%添加することが好ましい。また、窒化けい素粉末に、Ti,Zr,W,Mo,Ta,Nb,V,Crから成る群より選択される少なくとも1種を酸化物に換算して2重量%以下添加することが好ましい。   Moreover, in the said manufacturing method, it is preferable to add 0.3-3.0 mass% in conversion to an oxide at least one of Hf and Mg to a silicon nitride powder. Further, it is preferable to add at least 2% by weight or less selected from the group consisting of Ti, Zr, W, Mo, Ta, Nb, V and Cr to silicon nitride powder in terms of oxide.

また、前記原料混合体を120MPa以上の成形圧力で成形して成形体を調製することが好ましい。さらに前記成形圧力が120〜200MPaの範囲であることが好ましい。特に焼結後における前記焼結体の残留炭素量が500ppm以下であることが必要である。   Moreover, it is preferable to prepare the molded body by molding the raw material mixture at a molding pressure of 120 MPa or more. Further, the molding pressure is preferably in the range of 120 to 200 MPa. In particular, the residual carbon content of the sintered body after sintering needs to be 500 ppm or less.

上記製造方法によれば、温度25℃で湿度が70%の条件下で1.5kV−100Hzの交流電圧を印加した際のリーク電流値が1000nA以下であり、好適には全酸素量が3.5質量%以下であり、窒化けい素結晶組織中に希土類元素等を含む粒界相が形成され、その粒界相中の最大気孔径が0.3μm以下であり、気孔率が2.5%以下、熱伝導率が50W/m・K以上、三点曲げ強度が室温で500MPa以上であり、破壊靭性値が6.5MPa・m1/2以上の機械的特性および熱伝導特性が共に優れた窒化けい素セラミックス基板が得られる。 According to the above manufacturing method, the leakage current value when an AC voltage of 1.5 kV-100 Hz is applied under the conditions of a temperature of 25 ° C. and a humidity of 70% is 1000 nA or less, and preferably the total oxygen amount is 3. The grain boundary phase containing rare earth elements and the like is formed in the silicon nitride crystal structure, the maximum pore diameter in the grain boundary phase is 0.3 μm or less, and the porosity is 2.5%. The thermal conductivity was 50 W / m · K or more, the three-point bending strength was 500 MPa or more at room temperature, and the fracture toughness value was 6.5 MPa · m 1/2 or more. A silicon nitride ceramic substrate is obtained.

上記リーク電流値は以下のように計測される。すなわち、窒化けい素セラミックス基板の表裏面間にそれぞれ金属電極を接合し、この電極間に1.5kV−100Hzの交流電圧を印加した際に金属電極間に流れるリーク電流の電流値を、カーブトレーサ等を用いて計測することができる。   The leak current value is measured as follows. That is, when a metal electrode is bonded between the front and back surfaces of the silicon nitride ceramic substrate, and an AC voltage of 1.5 kV-100 Hz is applied between the electrodes, the current value of the leakage current flowing between the metal electrodes is expressed by a curve tracer. Etc. can be measured.

上記リーク電流値が1000nAを超えると、基板自体の絶縁性が不十分であり、特に高出力化したり高集積・高容量化したパワーモジュール用のセラミックス基板材料としては不適になる。好ましくは500nA以下である。   If the leakage current value exceeds 1000 nA, the insulating property of the substrate itself is insufficient, and it becomes unsuitable as a ceramic substrate material for a power module that has a particularly high output or high integration / capacity. Preferably it is 500 nA or less.

なお、このリーク電流値を特定するにあたり、本発明では測定条件を温度25℃、湿度70%に統一した。リーク電流値は温度や湿度によって多少変動する値であることから測定条件を特定した。また、本発明ではリーク電流値の測定条件を特定しただけであるから、本発明の窒化けい素セラミックス基板をこの条件以外の条件下でも使用できることは言うまでもない。   In specifying the leakage current value, in the present invention, the measurement conditions are unified at a temperature of 25 ° C. and a humidity of 70%. The measurement conditions were specified because the leak current value fluctuates somewhat depending on temperature and humidity. In the present invention, only the measurement conditions for the leakage current value are specified, so it goes without saying that the silicon nitride ceramic substrate of the present invention can be used under other conditions.

前記製造方法において使用され、セラミックス基板を構成する焼結体の主成分となる窒化けい素粉末としては、焼結性、強度および熱伝導率を考慮して、酸素含有量が1.5質量%以下、好ましくは0.5〜1.2質量%、Al,Li,Na,K,Fe,Ba,Mn,Bなどの不純物陽イオン元素含有量が合計で0.5質量%以下、好ましくは0.3質量%以下に抑制されたα相型窒化けい素を75〜97質量%、好ましくは80〜95質量%含有し、平均粒径が1.0μm以下、好ましくは0.4〜0.8μm程度の微細な窒化けい素粉末を使用することが好ましい。   The silicon nitride powder that is used in the manufacturing method and is a main component of the sintered body constituting the ceramic substrate has an oxygen content of 1.5% by mass in consideration of sinterability, strength, and thermal conductivity. In the following, it is preferably 0.5 to 1.2% by mass, and the total content of impurity cation elements such as Al, Li, Na, K, Fe, Ba, Mn, and B is 0.5% by mass or less, preferably 0 .Alpha.-phase type silicon nitride suppressed to 3% by mass or less is contained in an amount of 75 to 97% by mass, preferably 80 to 95% by mass, and the average particle size is 1.0 μm or less, preferably 0.4 to 0.8 μm. It is preferable to use a silicon nitride powder as fine as possible.

なお、窒化けい素原料粉末としてはα相型のものとβ相型のものとが知られているが、α相型の窒化けい素原料粉末では焼結体とした場合に強度が不足し易い傾向がある一方、β相型の窒化けい素原料粉末では高温度焼成が必要であるが、アスペクト比が高く繊維状の窒化けい素が複雑に入り組んだ高強度の焼結体が得られる。したがって、本発明においてはα相型原料粉末を高温度で焼成して窒化けい素焼結体としては、β相型の焼結体とすることが好適である。   As the silicon nitride raw material powder, α-phase type and β-phase type powders are known, but the α-phase type silicon nitride raw material powder tends to have insufficient strength when formed into a sintered body. On the other hand, the β-phase type silicon nitride raw material powder requires high-temperature firing, but a high-strength sintered body having a high aspect ratio and complicated fibrous silicon nitride can be obtained. Therefore, in the present invention, it is preferable that the α phase type raw material powder is fired at a high temperature to form a β phase type sintered body as the silicon nitride sintered body.

本発明において、α相型窒化けい素粉末の配合量を75〜97質量%の範囲に限定した理由は、75質量%以上の範囲で焼結体の曲げ強度、熱伝導率および絶縁性が格段に向上し、窒化けい素の優れた特性が顕著となるためである。一方、焼結性を考慮すると、97質量%までの範囲とする。好ましくは80〜95質量%の範囲とすることが好ましい。   In the present invention, the reason why the blending amount of the α-phase type silicon nitride powder is limited to the range of 75 to 97% by mass is that the bending strength, thermal conductivity and insulation of the sintered body are markedly within the range of 75% by mass or more. This is because the excellent characteristics of silicon nitride become remarkable. On the other hand, considering the sinterability, the range is up to 97% by mass. Preferably it is set as the range of 80-95 mass%.

窒化けい素の出発原料粉末としては、焼結性、曲げ強度、熱伝導率、絶縁性を考慮して、酸素含有率が1.5質量%以下,好ましくは0.5〜1.2質量%であり、α相型窒化けい素を90質量%以上含有し,平均粒径が1.0μm以下、好ましくは0.4〜0.8μm程度の微細な窒化けい素粉末を使用することが好ましい。   The silicon nitride starting material powder has an oxygen content of 1.5% by mass or less, preferably 0.5 to 1.2% by mass in consideration of sinterability, bending strength, thermal conductivity, and insulation. It is preferable to use fine silicon nitride powder containing 90% by mass or more of α-phase type silicon nitride and having an average particle size of 1.0 μm or less, preferably about 0.4 to 0.8 μm.

平均粒径が1.0μm以下の微細な原料粉末を使用することにより、少量の焼結助剤であっても気孔率が2.5%以下の緻密な焼結体を形成することが可能であり、また焼結助剤が熱伝導特性を阻害するおそれも減少する。   By using fine raw material powder with an average particle size of 1.0 μm or less, it is possible to form a dense sintered body with a porosity of 2.5% or less even with a small amount of sintering aid. In addition, the possibility that the sintering aid may impair the heat conduction characteristics is reduced.

また本発明で使用する窒化けい素セラミックス基板に含有される全酸素量は3.5質量%以下が好ましい。この基板の全酸素量が3.5質量%を超えると結晶粒界相中の最大気孔径が大きくなると共に、特に電流リーク値が大きくなり焼結体の絶縁性が低下する。好ましくは2.5質量%以下とする。   The total amount of oxygen contained in the silicon nitride ceramic substrate used in the present invention is preferably 3.5% by mass or less. When the total oxygen content of the substrate exceeds 3.5% by mass, the maximum pore diameter in the grain boundary phase increases and, in particular, the current leakage value increases and the insulation of the sintered body decreases. Preferably it is 2.5 mass% or less.

さらに本発明で使用する窒化けい素セラミックス基板の粒界相中の最大気孔径は0.3μm以下に規定される。この最大気孔径が0.3μmを超えると、特に電流リーク値が大きくなり焼結体の絶縁性が低下する。好ましくは0.2μm以下とする。   Furthermore, the maximum pore diameter in the grain boundary phase of the silicon nitride ceramic substrate used in the present invention is defined to be 0.3 μm or less. When the maximum pore diameter exceeds 0.3 μm, the current leakage value is particularly increased and the insulating properties of the sintered body are deteriorated. Preferably, it is 0.2 μm or less.

またAl,Li,Na,K,Fe,Ba,Mn,Bの不純物陽イオン元素は、焼結体の熱伝導性を阻害する物質となるため、50W/m・K以上の熱伝導率を確保するためには、上記不純物陽イオン元素の含有量は合計で0.5質量%以下とすることにより達成可能である。特に同様の理由により、上記不純物陽イオン元素の含有量は合計で0.3質量%以下とすることが、さらに好ましい。ここで通常の窒化けい素焼結体を得るために使用される窒化けい素粉末には、特にFe,Alが比較的に多く含有されているため、Fe,Alの合計量が上記不純物陽イオン元素の合計含有量の目安となる。   Moreover, since the impurity cation elements of Al, Li, Na, K, Fe, Ba, Mn, and B are substances that inhibit the thermal conductivity of the sintered body, a thermal conductivity of 50 W / m · K or more is ensured. In order to achieve this, the content of the impurity cation elements can be achieved by making the total content 0.5% by mass or less. In particular, for the same reason, it is more preferable that the content of the impurity cation elements is 0.3% by mass or less in total. Here, since the silicon nitride powder used to obtain a normal silicon nitride sintered body contains a relatively large amount of Fe and Al in particular, the total amount of Fe and Al is the above-mentioned impurity cation element. It becomes a standard of the total content of.

さらに、β相型と比較して焼結性に優れたα相型窒化けい素を90質量%以上含有する窒化けい素原料粉末を使用することにより、高密度の焼結体を製造することができる。   Furthermore, a high-density sintered body can be produced by using a silicon nitride raw material powder containing 90% by mass or more of an α-phase type silicon nitride excellent in sinterability compared with a β-phase type. it can.

また窒化けい素原料粉末に焼結助剤として添加する希土類元素としては、Y,Ho,Er,Yb,La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなどの酸化物もしくは焼結操作により、これらの酸化物となる物質が単独で、または2種以上の酸化物を組み合せたものを含んでもよい。これらの焼結助剤は、窒化けい素原料粉末と反応して液相を生成し、焼結促進剤として機能する。   The rare earth elements added as sintering aids to the silicon nitride raw material powder include oxides such as Y, Ho, Er, Yb, La, Sc, Pr, Ce, Nd, Dy, Sm, and Gd, or sintering operations. Thus, these oxide substances may be used alone or in combination of two or more oxides. These sintering aids react with the silicon nitride raw material powder to form a liquid phase and function as a sintering accelerator.

上記焼結助剤の添加量は、酸化物換算で原料粉末に対して2.0〜17.5質量%の範囲とする。この添加量が2.0質量%未満の場合は、焼結体の緻密化あるいは高熱伝導化が不十分であり、特に希土類元素がランタノイド系元素のように原子量が大きい元素の場合には、比較的低強度で比較的に低熱伝導率の焼結体が形成される。一方、添加量が17.5質量%を超える過量となると、過量の粒界相が生成し、熱伝導率の低下や強度が低下し始めるので上記範囲とする。特に同様の理由により3〜15質量%とすることが望ましい。   The amount of the sintering aid added is in the range of 2.0 to 17.5 mass% with respect to the raw material powder in terms of oxide. When this addition amount is less than 2.0% by mass, densification or high thermal conductivity of the sintered body is insufficient, particularly when the rare earth element is an element having a large atomic weight such as a lanthanoid element. Thus, a sintered body having a relatively low strength and a relatively low thermal conductivity is formed. On the other hand, when the added amount exceeds 17.5% by mass, an excessive amount of grain boundary phase is generated, and the thermal conductivity decreases and the strength begins to decrease. In particular, it is desirable to set it as 3-15 mass% for the same reason.

また本発明において選択的な添加成分として使用するマグネシウム(Mg)の酸化物(MgO)は、上記希土類元素の焼結促進剤の機能を促進し低温での緻密化を可能にすると共に、結晶組織において粒成長を制御する機能を果し、Si焼結体の機械的強度を向上させるものである。このMgOの添加量が酸化物換算で0.3質量%未満の場合においては添加効果が不十分である一方、3.0質量%を超える過量となる場合には熱伝導率の低下が起こるため、添加量は0.3〜3.0質量%の範囲とする。特に0.5〜2質量%とすることが望ましい。 In addition, magnesium (Mg) oxide (MgO) used as a selective additive component in the present invention promotes the function of the rare earth element sintering accelerator, enables densification at low temperature, and has a crystal structure. This serves to control the grain growth in and improves the mechanical strength of the Si 3 N 4 sintered body. When the amount of MgO added is less than 0.3% by mass in terms of oxide, the effect of addition is insufficient, whereas when the amount exceeds 3.0% by mass, the thermal conductivity decreases. The addition amount is in the range of 0.3 to 3.0% by mass. In particular, the content is desirably 0.5 to 2% by mass.

また、上記MgOと同様の効果を示す成分として、Hf化合物もある。Hf化合物としては、酸化物、炭化物、窒化物、珪化物、硼化物として添加され、MgOと併せて複合添加することにより、さらに焼結を促進し、かつガラス相をより効果的に低減できる。添加量については0.3〜3質量%、好ましくは1.0〜2.5質量%である。MgOとHf化合物は同様の効果を示すものであるから、MgOとHf化合物を両方添加することにより相乗的な効果を得ることも可能である。   In addition, there is an Hf compound as a component that exhibits the same effect as the above MgO. Hf compounds are added as oxides, carbides, nitrides, silicides, and borides. When combined with MgO, sintering is further promoted and the glass phase can be more effectively reduced. About addition amount, it is 0.3-3 mass%, Preferably it is 1.0-2.5 mass%. Since MgO and Hf compounds show similar effects, it is also possible to obtain a synergistic effect by adding both MgO and Hf compounds.

また本発明において他の選択的な添加成分として、Ti,Zr,V,Nb,Ta,Cr,Mo,Wを、酸化物,炭化物、窒化物、けい化物、硼化物として添加してもよい。これらの化合物は、上記希土類元素の焼結促進剤としての機能を促進すると共に、結晶組織において分散強化の機能を果しSi焼結体の機械的強度を向上させるものであり、特に、Ti,Moの化合物が好ましい。これらの化合物の添加量が酸化物換算で0.1質量%未満の場合においては添加効果が不十分である一方、2質量%を超える過量となる場合には熱伝導率および機械的強度や電気絶縁破壊強度の低下が起こるため、添加量は0.1〜2質量%の範囲とする。特に0.2〜1.0質量%とすることが望ましい。 In the present invention, Ti, Zr, V, Nb, Ta, Cr, Mo, and W may be added as oxides, carbides, nitrides, silicides, and borides as other optional additive components. These compounds promote the function of the rare earth element as a sintering accelerator, and also serve to enhance the mechanical strength of the Si 3 N 4 sintered body by performing a dispersion strengthening function in the crystal structure. A compound of Ti and Mo is preferred. When the amount of these compounds added is less than 0.1% by mass in terms of oxide, the effect of addition is insufficient, whereas when the amount exceeds 2% by mass, the thermal conductivity, mechanical strength, Since the dielectric breakdown strength is lowered, the addition amount is in the range of 0.1 to 2% by mass. In particular, the content is desirably 0.2 to 1.0% by mass.

また上記Ti,Mo等の化合物は窒化けい素セラミックス基板を黒色系に着色し不透明性を付与する遮光剤としても機能する。そのため、特に光によって誤動作を生じ易い集積回路等を搭載するセラミックス回路基板を上記焼結体から製造する場合には、上記Ti等の化合物を適正に添加し、遮光性に優れた窒化けい素セラミックス基板とすることが望ましい。   The compounds such as Ti and Mo also function as a light-shielding agent that colors the silicon nitride ceramic substrate black and imparts opacity. Therefore, especially when manufacturing a ceramic circuit board mounted with an integrated circuit or the like that is likely to malfunction due to light from the sintered body, silicon nitride ceramics excellent in light shielding properties by appropriately adding a compound such as Ti It is desirable to use a substrate.

また焼結体の気孔率はリーク電流の発生量、熱伝導率および強度に大きく影響するため2.5%以下となるように製造する。気孔率が2.5%を超えると、リーク電流が急増するとともに熱伝導の妨げとなり、焼結体の絶縁性および熱伝導率が低下するとともに、焼結体の強度低下が起こる。   The porosity of the sintered body is 2.5% or less because it greatly affects the amount of leakage current, the thermal conductivity, and the strength. When the porosity exceeds 2.5%, the leakage current increases rapidly and the heat conduction is hindered, the insulation and thermal conductivity of the sintered body are lowered, and the strength of the sintered body is lowered.

また、窒化けい素セラミックス基板は組織的に窒化けい素結晶と粒界相とから構成されるが、粒界相中の結晶化合物相の割合は焼結体のリーク電流の発生量や熱伝導率に大きく影響し、本発明に係る基板を構成する焼結体においては粒界相の20%以上とすることが好ましく、より好ましくは50%以上が結晶相で占めることが望ましい。結晶相が20%未満では熱伝導率が50W/m・K以上となるような放熱特性に優れ、リーク電流が少なく、かつ機械的強度に優れた焼結体が得られないからである。特に、窒化けい素焼結体の窒化けい素結晶粒子自体は絶縁物であることから、粒界相の状態が窒化けい素焼結体のリーク電流値に大きく影響する。   In addition, silicon nitride ceramic substrates are systematically composed of silicon nitride crystals and grain boundary phases, and the proportion of crystalline compound phases in the grain boundary phases is the amount of leakage current generated in the sintered body and the thermal conductivity. In the sintered body constituting the substrate according to the present invention, the grain boundary phase is preferably 20% or more, and more preferably 50% or more is occupied by the crystal phase. This is because if the crystal phase is less than 20%, it is not possible to obtain a sintered body having excellent heat dissipation characteristics such that the thermal conductivity is 50 W / m · K or more, little leakage current, and excellent mechanical strength. In particular, since the silicon nitride crystal grains themselves of the silicon nitride sintered body are an insulator, the state of the grain boundary phase greatly affects the leakage current value of the silicon nitride sintered body.

さらに上記のように窒化けい素焼結体の気孔率を2.5%以下にし、また窒化けい素結晶組織に形成される粒界相中の最大気孔径が0.3μm以下であり、熱伝導率が50W/m・K以上であり、全酸素量が3.5質量%以下で電流リーク値が1000nA以下となるような窒化けい素焼結体を得るためには、前記原料で調製した窒化けい素成形体を脱脂後、焼結する途中で温度1300〜1600℃にて0.5〜3時間保持した後に、温度1700〜1900℃で2〜10時間程度、常圧焼結または加圧焼結し、かつ焼結操作完了直後における焼結体の冷却速度を毎時100℃以下にして徐冷することが重要である。加圧焼結法としては、雰囲気加圧焼結、ホットプレス、HIP処理など各種の加圧焼結法が用いられる。   Further, as described above, the porosity of the silicon nitride sintered body is 2.5% or less, and the maximum pore diameter in the grain boundary phase formed in the silicon nitride crystal structure is 0.3 μm or less, and the thermal conductivity In order to obtain a silicon nitride sintered body having a total oxygen content of 3.5% by mass or less and a current leak value of 1000 nA or less, the silicon nitride prepared from the above raw materials is 50 W / m · K or more. After degreasing the molded body, the sintered body is held at a temperature of 1300 to 1600 ° C. for 0.5 to 3 hours during sintering, and then subjected to atmospheric pressure sintering or pressure sintering at a temperature of 1700 to 1900 ° C. for about 2 to 10 hours. In addition, it is important that the cooling rate of the sintered body immediately after completion of the sintering operation is gradually cooled to 100 ° C. or less per hour. As the pressure sintering method, various pressure sintering methods such as atmospheric pressure sintering, hot pressing, and HIP treatment are used.

特に、焼結工程の途中において1300〜1600℃の温度で0.5〜3時間保持することにより生成する液相(結晶粒界相)中の酸素濃度を減少させ液相を高融点化し、液相の溶融時に生じる泡状の気孔の発生を抑制し、かつ最大気孔径を極微小化し、焼結体の電流リーク値を改善することが可能になる。この焼結途中における保持操作は、特に温度が1350〜1450℃の真空雰囲気で処理した場合に顕著な効果を発揮するが、温度が1500〜1600℃の窒素雰囲気中の処理でも同程度の効果が発揮される。   In particular, during the sintering process, the oxygen concentration in the liquid phase (grain boundary phase) generated by holding at a temperature of 1300 to 1600 ° C. for 0.5 to 3 hours is reduced to increase the melting point of the liquid phase. It is possible to suppress the generation of bubble-like pores that occur when the phases are melted and to minimize the maximum pore diameter, thereby improving the current leakage value of the sintered body. This holding operation in the middle of sintering exhibits a remarkable effect particularly when the treatment is performed in a vacuum atmosphere at a temperature of 1350 to 1450 ° C., but the same effect can be obtained even in a treatment in a nitrogen atmosphere at a temperature of 1500 to 1600 ° C. Demonstrated.

また、焼結後に液相が凝固する温度までに至る焼結体の冷却速度を毎時100℃以下にして徐冷した場合に、液相中の酸素濃度の低減化がさらに促進されるので、電流リークを抑制し絶縁性を改善した焼結体が得られる。   Further, when the cooling rate of the sintered body that reaches the temperature at which the liquid phase solidifies after sintering is 100 ° C./hour or less, and the oxygen concentration in the liquid phase is further reduced, A sintered body with improved leakage and reduced insulation can be obtained.

焼結温度を1700℃未満とした場合には、焼結体の緻密化が不十分で気孔率が2.5vol%以上になり絶縁性、機械的強度および熱伝導性が共に低下してしまう。一方焼結温度が1900℃を超えると窒化けい素成分自体が蒸発分解し易くなる。特に加圧焼結ではなく、常圧焼結を実施した場合には、1800℃付近より窒化けい素の分解蒸発が始まる。   When the sintering temperature is less than 1700 ° C., the sintered body is not sufficiently densified and the porosity becomes 2.5 vol% or more, and the insulation, mechanical strength, and thermal conductivity are all reduced. On the other hand, if the sintering temperature exceeds 1900 ° C., the silicon nitride component itself tends to evaporate and decompose. In particular, when pressureless sintering is performed instead of pressure sintering, decomposition and evaporation of silicon nitride starts from around 1800 ° C.

上記焼結操作完了直後における焼結体の冷却速度は粒界相を結晶化させるためにも重要な制御因子であり、冷却速度が毎時100℃を超えるような急速冷却を実施した場合には、焼結体組織の粒界相が非結晶質(ガラス相)となり、焼結体に生成した液相が結晶相として粒界相に占める割合が20%未満となり、リーク電流が増加する一方、特に熱伝導率のさらなる向上が見られない。   The cooling rate of the sintered body immediately after the completion of the sintering operation is an important control factor for crystallizing the grain boundary phase, and when performing rapid cooling such that the cooling rate exceeds 100 ° C. per hour, While the grain boundary phase of the sintered body structure is amorphous (glass phase), the liquid phase generated in the sintered body accounts for less than 20% of the grain boundary phase as a crystal phase, and the leakage current increases. There is no further improvement in thermal conductivity.

上記冷却速度を厳密に調整すべき温度範囲は、所定の焼結温度(1700〜1900℃)から、前記の焼結助剤の反応によって生成する液相が凝固するまでの温度範囲で十分である。ちなみに前記のような焼結助剤を使用した場合の液相凝固点は概略1600〜1500℃程度である。そして少なくとも焼結温度から上記液相凝固温度に至るまでの焼結体の冷却速度を毎時100℃以下、好ましくは50℃以下、さらに好ましくは25℃以下に制御することにより、焼結体の全酸素量が3.5質量%以下となり、また最大気孔径が0.3μm以下となり、気孔率も2.5%以下となり、また粒界相の20%以上、特に好ましくは50%以上が結晶相になり、熱伝導率および機械的強度が共に優れ、リーク電流が少ない窒化けい素焼結体が得られる。   The temperature range in which the cooling rate should be strictly adjusted is sufficient from the predetermined sintering temperature (1700 to 1900 ° C.) to the solidification of the liquid phase generated by the reaction of the sintering aid. . Incidentally, the liquid phase freezing point in the case of using the above sintering aid is about 1600 to 1500 ° C. And by controlling the cooling rate of the sintered body at least from the sintering temperature to the liquid phase solidification temperature to 100 ° C./hour, preferably 50 ° C. or less, more preferably 25 ° C. or less, The amount of oxygen is 3.5% by mass or less, the maximum pore diameter is 0.3 μm or less, the porosity is 2.5% or less, and 20% or more, particularly preferably 50% or more of the grain boundary phase is the crystalline phase. Thus, a silicon nitride sintered body having both excellent thermal conductivity and mechanical strength and low leakage current can be obtained.

なお、上記焼結体の冷却速度は遅い方が粒界相の結晶化に効果があるが、あまり遅すぎると製造時間が長くなるため製造性の観点から冷却速度の下限は毎時10℃以上が好ましい。   In addition, although the one where the cooling rate of the said sintered compact is slow is effective in crystallization of a grain boundary phase, when too slow, since manufacturing time becomes long, the minimum of a cooling rate is 10 degreeC or more per hour from a viewpoint of manufacturability. preferable.

なお、本発明で規定する「焼結体の全酸素量」とは、窒化けい素焼結体を構成している酸素の全量を質量%で示したものである。したがって、酸素が窒化けい素焼結体中に金属酸化物や酸窒化物等として存在している場合は、その金属酸化物(および酸窒化物)量ではなく、その金属酸化物(および酸窒化物)中の酸素量に着目したものである。   The “total oxygen content of the sintered body” defined in the present invention indicates the total amount of oxygen constituting the silicon nitride sintered body in mass%. Therefore, when oxygen is present in the silicon nitride sintered body as a metal oxide, oxynitride, or the like, not the amount of the metal oxide (and oxynitride) but the metal oxide (and oxynitride) ) Is focused on the amount of oxygen in it.

本発明で使用する窒化けい素セラミックス基板は、例えば以下のようなプロセスを経て製造される。すなわち前記所定の微細粒径を有し、また不純物含有量が少ない微細な窒化けい素粉末に対して所定量の焼結助剤、有機バインダ等の必要な添加剤および必要に応じてTi等の化合物を加えて原料混合体を調整し、次に得られた原料混合体を成形して所定形状の成形体を得る。原料混合体の成形法としては、汎用の金型プレス法、ドクターブレード法のようなシート成形法などが適用できる。   The silicon nitride ceramic substrate used in the present invention is manufactured through the following processes, for example. That is, for a fine silicon nitride powder having a predetermined fine particle size and a small impurity content, a predetermined amount of a sintering aid, a necessary additive such as an organic binder, and Ti as required A raw material mixture is prepared by adding a compound, and the obtained raw material mixture is then molded to obtain a molded body having a predetermined shape. As a forming method of the raw material mixture, a general-purpose mold pressing method, a sheet forming method such as a doctor blade method, and the like can be applied.

上記金型プレス法で成形体を形成する場合において、特に焼結後においてリーク電流が発生し難い粒界相を形成するためには、原料混合体の成形圧力を120MPa以上に設定することが好ましい。この成形圧力が120MPa未満である場合には、主として粒界相を構成する成分となる希土類元素化合物が凝集した箇所が形成され易い上に、十分に緻密な成形体となり得ず、クラックの発生が多いセラミックス基板しか得られない。上記粒界相が凝集した箇所は電流が流れ易いため、リーク電流値を増加させてしまう。また圧密化が不十分な成形体を焼結しても、割れが発生し易く、基板の割れに起因するリーク電流が増加してしまう。一方、成形圧力を、200MPaを超えるように過大にした場合、成形型の耐久性が低下してしまう。   In the case of forming a molded body by the above-described mold pressing method, it is preferable to set the molding pressure of the raw material mixture to 120 MPa or more, particularly in order to form a grain boundary phase in which leakage current hardly occurs after sintering. . When this molding pressure is less than 120 MPa, a portion where the rare earth element compound, which is a component that mainly constitutes the grain boundary phase, is easily aggregated, and a sufficiently dense molded body cannot be formed, and cracks are generated. Only a large number of ceramic substrates can be obtained. Since the current easily flows in the portion where the grain boundary phases are aggregated, the leakage current value is increased. Further, even if a compact that is insufficiently consolidated is sintered, cracks are likely to occur, resulting in an increase in leakage current due to cracks in the substrate. On the other hand, when the molding pressure is excessively set to exceed 200 MPa, the durability of the molding die is lowered.

また、過度に成形圧力が高いと成形体が必要以上に硬くなり、成形体内部に生成した気泡(気孔)を製造工程中に外部に排出し難くなる。そのため、上記成形圧力は120〜200MPaの範囲が好ましい。   In addition, when the molding pressure is excessively high, the molded body becomes harder than necessary, and bubbles (pores) generated inside the molded body are difficult to be discharged outside during the manufacturing process. Therefore, the molding pressure is preferably in the range of 120 to 200 MPa.

一方、所定厚さの窒化けい素セラミックス基板を製造するに際して、焼結体を研磨加工して厚さを調整する場合には、研磨加工時に作用する衝撃力によって基板表面にクラックが発生し易い。そこで窒化けい素セラミックス基板の厚さが1.5mm以下になるように成形の段階で薄い成形体を形成し、焼結後における研磨加工を実施しない方法も、クラックの発生を防止する観点から有効である。また成形体を薄く形成することにより、焼結工程の途中において実施する保持操作によって酸素濃度をより効率的に低減し、気孔径を縮小化できる。   On the other hand, when a silicon nitride ceramic substrate having a predetermined thickness is manufactured, when the thickness is adjusted by polishing the sintered body, cracks are likely to occur on the substrate surface due to an impact force acting during the polishing process. Therefore, a method in which a thin molded body is formed at the molding stage so that the thickness of the silicon nitride ceramic substrate is 1.5 mm or less and polishing is not performed after sintering is also effective from the viewpoint of preventing the occurrence of cracks. It is. Further, by forming the molded body thin, the oxygen concentration can be more efficiently reduced and the pore diameter can be reduced by a holding operation performed in the middle of the sintering process.

具体的には、押出形成法やドクターブレード法を使用して薄いシート状成形体を調製し、このシート状成形体を脱脂焼結するだけで所定厚さの窒化けい素焼結体を形成してもよい。なお、この場合においても、シート状焼結体に付着した敷粉等を除去するために軽度のホーニング加工を実施してもよい。但し、クラックを発生するような衝撃力の高い研磨方法は採用しない方がよい。また、軽度のホーニング加工としては砥粒噴射圧力が0.5MPa以下の条件が挙げられる。   Specifically, a thin sheet-like molded body is prepared using an extrusion forming method or a doctor blade method, and a silicon nitride sintered body having a predetermined thickness is formed by simply degreasing and sintering the sheet-like molded body. Also good. Even in this case, a slight honing process may be performed in order to remove bed powder and the like adhering to the sheet-like sintered body. However, it is better not to employ a polishing method having a high impact force that generates cracks. Moreover, as a mild honing process, the conditions that the abrasive grain injection pressure is 0.5 MPa or less can be mentioned.

上記成形操作に引き続いて、成形体を非酸化性雰囲気中で温度600〜800℃、または空気中で温度400〜500℃で1〜2時間加熱して、予め添加していた有機バインダ成分を十分に除去し、脱脂する。   Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours to sufficiently remove the organic binder component added in advance. Remove and degrease.

ここで、リーク電流が発生しにくい粒界相を形成するためには、成形体を形成する際に使用した有機バインダに起因する炭素の残存量が500ppm以下となるように、脱脂処理において炭素成分を十分に除去することが効果的である。   Here, in order to form a grain boundary phase in which leakage current is unlikely to occur, the carbon component in the degreasing treatment is set so that the residual amount of carbon resulting from the organic binder used when forming the molded body is 500 ppm or less. It is effective to sufficiently remove.

一般に炭素は導電性を有しており、焼結後のセラミックス焼結体における残留炭素量が500ppmを超えるとリーク電流値が大きくなり易い。そのため、炭素成分は最初から含有させないことが理想ではあるが、現実には、原料混合体にある程度の有機物(有機バインダ)を配合しないと成形体の保形性や取扱い性が低下してしまう。そのため、その残留炭素量を低減するために上記脱脂工程が設けられている。   In general, carbon has conductivity, and if the amount of residual carbon in the sintered ceramic body after sintering exceeds 500 ppm, the leakage current value tends to increase. For this reason, it is ideal that the carbon component is not contained from the beginning. However, in reality, if a certain amount of organic matter (organic binder) is not blended in the raw material mixture, the shape retention and handling properties of the molded body are deteriorated. Therefore, the degreasing step is provided in order to reduce the amount of residual carbon.

しかしながら、成形体に特別な処理を施さない限り、完全に炭素成分を排除することは困難であり、さらに残留炭素は焼結時に窒化けい素や焼結助剤などの添加物と化合して安定な炭化物を形成してしまうことからも完全に排除することは困難である。しかしながら、焼結後のセラミックス基板における残留炭素量が500ppm以下となるように十分に脱脂処理することにより、前記リーク電流の発生を効果的に防止することができる。   However, it is difficult to completely eliminate the carbon component unless the molded body is specially treated, and the residual carbon is stable when combined with additives such as silicon nitride and sintering aids during sintering. It is difficult to completely eliminate such carbides. However, the generation of the leakage current can be effectively prevented by sufficiently degreasing the residual carbon amount in the sintered ceramic substrate to 500 ppm or less.

特に基板厚さが1mm以下、さらには0.7mm以下と薄い基板においては、残留炭素量が多いとリーク電流値に悪影響を与え易いので残留炭素量の制御を行うことが好ましい。   In particular, in a thin substrate having a substrate thickness of 1 mm or less, further 0.7 mm or less, it is preferable to control the residual carbon amount because a large amount of residual carbon tends to adversely affect the leakage current value.

次に脱脂処理された成形体を焼結する途中で焼成炉内を減圧し、温度1300〜1600℃で0.5〜3時間保持した後に、窒素ガス、水素ガスやアルゴンガスなどの不活性ガス雰囲気中で1700〜1900℃の温度で所定時間、常圧焼結または雰囲気加圧焼結を行う。   Next, the sintering furnace is depressurized during sintering of the degreased molded body and held at a temperature of 1300 to 1600 ° C. for 0.5 to 3 hours, and then an inert gas such as nitrogen gas, hydrogen gas or argon gas. Atmospheric pressure sintering or atmospheric pressure sintering is performed for a predetermined time at a temperature of 1700 to 1900 ° C. in an atmosphere.

上記製法によって製造された窒化けい素焼結体は全酸素量が3.5質量%以下で気孔率が2.5%以下、最大気孔径が0.3μm以下、50W/m・K(25℃)以上の熱伝導率を有し、また三点曲げ強度が常温で500MPa以上と機械的特性にも優れている。   The silicon nitride sintered body produced by the above method has a total oxygen content of 3.5% by mass or less, a porosity of 2.5% or less, a maximum pore size of 0.3 μm or less, and 50 W / m · K (25 ° C.). It has the above thermal conductivity and has excellent mechanical properties with a three-point bending strength of 500 MPa or more at room temperature.

また、熱伝導率が90W/m・K以上である高熱伝導性窒化けい素焼結体を得ることもできる。 In addition, a highly thermally conductive silicon nitride sintered body having a thermal conductivity of 90 W / m · K or more can be obtained.

また、上記のような成形方法によれば、成形体の段階から緻密であり、クラックの発生が少ない窒化けい素セラミックス基板が得られる。このように成形性や焼結性を改善した窒化けい素焼結体から成る基板表面には幅が1μm以上のマイクロクラックは全く発生せず、幅が1μm未満のサブミクロンクラックの発生量も大幅に低減できる。具体的には、単位面積10μm×10μmとしたときの基板表面組織に発生するサブミクロンクラック数は2個以下となる。   Moreover, according to the above forming method, a silicon nitride ceramic substrate that is dense from the stage of the formed body and has few cracks can be obtained. Thus, no microcracks with a width of 1 μm or more are generated at all on the substrate surface made of a silicon nitride sintered body having improved formability and sinterability, and the generation amount of submicron cracks with a width of less than 1 μm is greatly increased. Can be reduced. Specifically, the number of submicron cracks generated in the substrate surface structure when the unit area is 10 μm × 10 μm is 2 or less.

本発明に係る半導体モジュールによれば、焼結工程の途中で所定の保持操作を実施した後に本焼結を実施して窒化けい素セラミックス基板が形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、リーク電流の発生が少ない絶縁性が高い窒化けい素セラミックス基板が得られ、特性が安定した半導体モジュールが得られる。   According to the semiconductor module of the present invention, since the silicon nitride ceramic substrate is formed by performing the main sintering after performing the predetermined holding operation in the middle of the sintering process, the oxygen concentration of the sintered body is The generation of pores is suppressed, the maximum pore diameter can be minimized, and a highly insulating silicon nitride ceramic substrate with little leakage current is obtained, and a semiconductor module with stable characteristics is obtained. can get.

また、原料混合体を120MPa以上の成形圧力で成形して成形体を調製することにより、基板に発生するクラックを大幅に低減することが可能であり、リーク電流の発生が少ない絶縁性が高い窒化けい素セラミックス基板が得られる。   Also, by forming the raw material mixture at a molding pressure of 120 MPa or more to prepare a molded body, it is possible to greatly reduce the cracks generated in the substrate, and the nitriding with high insulation with less generation of leakage current A silicon ceramic substrate is obtained.

そのため、この窒化けい素セラミックス基板を使用してパワーモジュールを調製した場合には、高出力化および高容量化しても絶縁性および動作信頼性が高いパワーモジュールを形成することができる。   Therefore, when a power module is prepared using this silicon nitride ceramic substrate, a power module having high insulation and operational reliability can be formed even if the output and capacity are increased.

上記窒化けい素セラミックス基板をパワーモジュールや回路基板に使用する場合は、セラミックス基板上に金属回路板を一体に接合して設けることになる。金属回路板としては、銅、アルミニウムまたはその合金(銅合金、Al合金)などの、電気伝導性が高い金属または合金を用いることが好ましい。金属回路板を設ける方法についても、直接接合法や活性金属法など様々な方法が適用可能である。   When the silicon nitride ceramic substrate is used for a power module or a circuit board, a metal circuit board is integrally bonded to the ceramic substrate. As the metal circuit board, it is preferable to use a metal or alloy having high electrical conductivity, such as copper, aluminum, or an alloy thereof (copper alloy, Al alloy). Various methods such as a direct bonding method and an active metal method can be applied to the method of providing the metal circuit board.

以上説明の通り、本発明に係る半導体モジュールおよびそれを用いた電子機器によれば、焼結工程の途中で所定の保持操作を実施した後に本焼結を実施して窒化けい素セラミックス基板が形成されているため、焼結体の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、リーク電流の発生が少ない絶縁性が高い半導体モジュールや電子機器が得られる。そのため、上記窒化けい素焼セラミックス基板をセラミックス回路基板として使用してパワーモジュールを調製した場合には、高出力化および高容量化しても絶縁性および動作信頼性が高いパワーモジュールを形成することができる。   As described above, according to the semiconductor module and the electronic device using the semiconductor module according to the present invention, after carrying out a predetermined holding operation during the sintering process, the main sintering is performed to form a silicon nitride ceramic substrate. Therefore, the oxygen concentration in the sintered body is reduced, the generation of pores is suppressed, the maximum pore diameter can be made extremely small, and the generation of semiconductor modules and electronic devices with high insulation properties with little leakage current generation Equipment is obtained. Therefore, when a power module is prepared using the above silicon nitride baked ceramic substrate as a ceramic circuit substrate, a power module with high insulation and high operation reliability can be formed even when the output is increased and the capacity is increased. .

本発明で使用する窒化けい素セラミックス基板を用いた窒化けい素セラミックス回路基板の構成を示す平面図。The top view which shows the structure of the silicon nitride ceramic circuit board using the silicon nitride ceramic substrate used by this invention. 図1に示す窒化けい素セラミックス回路基板の断面図。FIG. 2 is a cross-sectional view of the silicon nitride ceramic circuit board shown in FIG. 1. 図1に示す窒化けい素セラミックス回路基板の底面図。The bottom view of the silicon nitride ceramic circuit board shown in FIG.

次に本発明の実施形態を以下に示す実施例を参照して具体的に説明する。   Next, the embodiments of the present invention will be specifically described with reference to the following examples.

[実施例1〜4]
実施例1〜3として酸素量1.1質量%、不純物陽イオン元素としてAI,Li,Na,K、Fe、Ba,Mn,Bを合計で0.10質量%含有し、α相型窒化けい素97%を含む平均粒径0.55μmのSi(窒化けい素)原料粉末86質量%に、焼結助剤として平均粒径0.9μmのY(酸化イットリウム)粉末10質量%と、平均粒径0.5μmのMgO(酸化マグネシウム)粉末2質量%、平均粒径1.0μmのHfO2(酸化ハフニウム)粉末2質量%を添加し、エチルアルコール中で粉砕媒体として窒化けい素製ボールを用いて96時間湿式混合したのち乾燥して原料混合体を調製した。
[Examples 1 to 4]
Examples 1 to 3 contain 1.1 mass% of oxygen, 0.10 mass% of AI, Li, Na, K, Fe, Ba, Mn, and B as impurity cation elements in total, and an α-phase type silicon nitride 86 mass% of Si 3 N 4 (silicon nitride) raw material powder having an average particle diameter of 0.55 μm containing 97% elemental element and Y 2 O 3 (yttrium oxide) powder 10 having an average particle diameter of 0.9 μm as a sintering aid 2% by mass of MgO (magnesium oxide) powder having an average particle size of 0.5 μm and 2% by mass of HfO 2 (hafnium oxide) powder having an average particle size of 1.0 μm are added, and silicon nitride is used as a grinding medium in ethyl alcohol. A raw material mixture was prepared by wet mixing for 96 hours using a raw ball and then drying.

次に得られた原料粉末混合体に有機バインダを所定量添加し調合造粒粉としたのち、130MPaの成形圧力でプレス成形し、成形体を多数製作した。次に得られた成形体を450℃の空気気流中において4時間脱脂したのち、常温から加熱し10−2Pa以下の真空雰囲気中にて温度1400℃で2時間にわたる途中保持操作を実施した後、0.7MPaの窒素ガス雰囲気中にて温度1825℃で6時間焼結した後に、1500℃まで温度降下するまでの冷却速度をそれぞれ100℃/hr(実施例1)、50℃/hr(実施例2)、25℃/hr(実施例3)となるように調整して焼結体を徐冷し、それぞれ実施例1〜3用の窒化けい素セラミックス基板を調製した。なお、各基板のサイズは立て50mm×横40mm×厚さ0.9mmに統一した。 Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture to prepare a blended granulated powder, and then press molding was performed at a molding pressure of 130 MPa to produce a large number of compacts. Next, after degreasing the obtained molded body in an air stream at 450 ° C. for 4 hours, heating from room temperature and carrying out a holding operation for half an hour at a temperature of 1400 ° C. in a vacuum atmosphere of 10 −2 Pa or less. After cooling at a temperature of 1825 ° C. for 6 hours in a nitrogen gas atmosphere of 0.7 MPa, the cooling rates until the temperature drops to 1500 ° C. are 100 ° C./hr (Example 1) and 50 ° C./hr (implementation), respectively. Example 2), adjusted to 25 ° C./hr (Example 3), and gradually cooled the sintered body to prepare silicon nitride ceramic substrates for Examples 1 to 3, respectively. In addition, the size of each board | substrate was unified into stand 50mm x width 40mm x thickness 0.9mm.

また、実施例4として、焼結途中での保持操作を1×104Paの窒素ガス雰囲気中にて温度1600℃で2時間保持して実施した点以外は実施例1と同一条件で処理することにより実施例4用の窒化けい素セラミックス基板を調製した。   Further, as Example 4, the holding operation in the middle of sintering was carried out under the same conditions as in Example 1 except that the holding operation was carried out in a nitrogen gas atmosphere of 1 × 104 Pa at a temperature of 1600 ° C. for 2 hours. A silicon nitride ceramic substrate for Example 4 was prepared.

[比較例1〜3]
比較例1として成形圧力を90MPaとした点および真空雰囲気中で温度1400℃での途中保持操作を実施しない点以外は実施例1と同一条件で処理することにより比較例1用の窒化けい素セラミックス基板を調製した。また、比較例2として成形圧力を90MPaとした点および焼結途中での保持操作を実施しない点、さらに焼結後の冷却速度を従来の炉冷による500℃/hrとした点以外は実施例1と同一条件で処理して比較例2用の窒化けい素セラミックス基板を調製した。比較例3として酸素量が1.7質量%であり、前記不純物陽イオン元素含有量が合計で0.7質量%であり、α相型窒化けい素を91%含む平均粒径1.5μmのSi(窒化けい素)原料粉末を使用した点以外は実施例1と同一条件で処理することにより比較例3用の窒化けい素セラミックス基板を調製した。
[Comparative Examples 1-3]
As Comparative Example 1, silicon nitride ceramics for Comparative Example 1 were treated under the same conditions as in Example 1 except that the molding pressure was 90 MPa and the intermediate holding operation at a temperature of 1400 ° C. was not performed in a vacuum atmosphere. A substrate was prepared. Further, as Comparative Example 2, the example except that the molding pressure was set to 90 MPa, the holding operation during the sintering was not performed, and the cooling rate after sintering was set to 500 ° C./hr by conventional furnace cooling. 1 was prepared under the same conditions as in No. 1 to prepare a silicon nitride ceramic substrate for Comparative Example 2. As Comparative Example 3, the oxygen content is 1.7% by mass, the total content of the impurity cation elements is 0.7% by mass, and the average particle size is 1.5 μm containing 91% α-phase silicon nitride. A silicon nitride ceramic substrate for Comparative Example 3 was prepared by processing under the same conditions as in Example 1 except that Si 3 N 4 (silicon nitride) raw material powder was used.

こうして得られた実施例1〜4および比較例1〜3用の各窒化けい素セラミックス基板について全酸素量、気孔率、粒界相中の最大気孔径、電流リーク値、熱伝導率、室温での3点曲げ強度、マイクロインデンテーション法における新原方式による破壊靭性値を測定して表1に示す結果を得た。   For each of the silicon nitride ceramic substrates for Examples 1 to 4 and Comparative Examples 1 to 3 thus obtained, the total oxygen amount, porosity, maximum pore diameter in the grain boundary phase, current leak value, thermal conductivity, at room temperature The results shown in Table 1 were obtained by measuring the three-point bending strength and the fracture toughness value by the Niihara method in the microindentation method.

なお、電流リーク値の測定は以下のように実施した。すなわち、板状に形成した各セラミックス基板の両面をダイヤモンド砥石で研削し、その厚さを0.6mmに設定した。そして温度25℃、湿度70%の条件に調整したチャンバー内において板状に形成した各基板の表裏面間に1.5Kv(100Hz)の交流電圧を印加した際に基板の表裏間に流れるリーク電流の値をカーブトレーサ測定装置にて計測した。   The current leak value was measured as follows. That is, both surfaces of each ceramic substrate formed in a plate shape were ground with a diamond grindstone, and the thickness was set to 0.6 mm. A leakage current that flows between the front and back of the substrate when an AC voltage of 1.5 Kv (100 Hz) is applied between the front and back surfaces of each substrate formed in a plate shape in a chamber adjusted to a temperature of 25 ° C. and a humidity of 70%. The value of was measured with a curve tracer measuring device.

また、気孔率はアルキメデス法、熱伝導率はレーザーフラッシュ法により計測した。粒界相中の最大気孔径は焼結体の断面の中から、単位面積100μm×100μmを任意の3個所を選択し、走査型電子顕微鏡写真(SEM)等の拡大写真により測定し、その中から最も大きな気孔径を計測した。なお、最大気孔径としては拡大写真中に示される最も長い対角線を採用した。   The porosity was measured by Archimedes method, and the thermal conductivity was measured by laser flash method. The maximum pore diameter in the grain boundary phase was measured by selecting an arbitrary three locations with a unit area of 100 μm × 100 μm from the cross section of the sintered body, and measuring it with an enlarged photograph such as a scanning electron micrograph (SEM). The largest pore diameter was measured. As the maximum pore diameter, the longest diagonal line shown in the enlarged photograph was adopted.

また、窒化けい素セラミックス基板中の全酸素量の計測は、不活性ガス融解−赤外線吸収法に準ずる酸素分析計により測定した。   Further, the total oxygen amount in the silicon nitride ceramic substrate was measured by an oxygen analyzer according to an inert gas melting-infrared absorption method.

また、三点曲げ強度については焼結体の片面をダイヤモンド砥石で研削し、その厚さを0.6mmに設定して、焼結上がり面を、そのまま三点曲げ強度試験における引張り面側に配置し、スパン(支点距離)を30mmとし、荷重の印加速度を0.5mm/minに設定した条件で測定した。各測定結果を下記表1に示す。   Also, for the three-point bending strength, one side of the sintered body is ground with a diamond grindstone, the thickness is set to 0.6 mm, and the sintered surface is directly placed on the tensile surface side in the three-point bending strength test. The span (fulcrum distance) was set to 30 mm, and the load application speed was set to 0.5 mm / min. Each measurement result is shown in Table 1 below.

Figure 0005172738
Figure 0005172738

上記表1に示す結果から明らかなように各実施例用の窒化けい素セラミックス基板においては、焼結工程途中で所定の保持操作を実施した後に本焼結を実施して形成されているため、基板の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、リーク電流の発生が少なく高熱伝導率を有する高強度の窒化けい素セラミックス基板が得られた。   As is clear from the results shown in Table 1, the silicon nitride ceramic substrate for each example is formed by performing main sintering after performing a predetermined holding operation during the sintering process. As a result, the oxygen concentration of the substrate was reduced, the generation of pores was suppressed, the maximum pore diameter was miniaturized, and a high-strength silicon nitride ceramic substrate having a high thermal conductivity with little generation of leakage current was obtained.

一方、焼結工程の途中での保持操作を実施しない比較例1,2においては、酸素の低減効果が少なく気孔の残存が多く、リーク電流値は増加した。   On the other hand, in Comparative Examples 1 and 2 in which the holding operation in the middle of the sintering process was not performed, the effect of reducing oxygen was small, and many pores remained, and the leakage current value increased.

また、比較例2のように焼結体の冷却速度を大きく設定し、急激に冷却した場合は粒界相において結晶相が占める割合が低下するとともに最大気孔径が大きくなり熱伝導率が低下した。さらに粒界相のガラス相の割合が相対的に大きくなるため、リーク電流値も高くなった。   In addition, when the cooling rate of the sintered body was set large as in Comparative Example 2 and rapidly cooled, the proportion of the crystal phase in the grain boundary phase decreased and the maximum pore diameter increased and the thermal conductivity decreased. . Further, since the ratio of the glass phase of the grain boundary phase is relatively large, the leakage current value is also increased.

また、原料粉末中の酸素量が過大である比較例3においては、焼結途中の保持操作および徐冷を実施しても気孔率が大きく、また最大気孔径も大きくなるため、リーク電流値も大きく絶縁性が低下することが判明した。   Further, in Comparative Example 3 in which the amount of oxygen in the raw material powder is excessive, the porosity is large even when the holding operation and the slow cooling during the sintering are performed, and the maximum pore diameter is also large. It has been found that the insulation is greatly reduced.

[実施例5〜47]
実施例5〜47として実施例1において使用した窒化けい素原料粉末と、Y粉末と、MgO粉末と、HfO粉末と、表2および表3に示すように平均粒径0.9〜1.0μmの各種希土類酸化物粉末の他に、平均粒径0.4〜0.5μmの各種化合物粉末を表2〜3に示す組成比となるように調合して原料混合体をそれぞれ調製した。
[Examples 5 to 47]
The silicon nitride raw material powder used in Example 1 as Examples 5 to 47, Y 2 O 3 powder, MgO powder, HfO 2 powder, and average particle size 0.9 as shown in Tables 2 and 3 In addition to various rare earth oxide powders of ~ 1.0 μm, various compound powders having an average particle size of 0.4 to 0.5 μm were prepared so as to have the composition ratios shown in Tables 2 to 3, and respective raw material mixtures were prepared. did.

次に得られた各原料混合体を実施例1と同一条件で成形脱脂処理した後、焼結途中において表2および表3に示す条件で保持操作を実施した後、本焼結を実施することにより、それぞれ実施例5〜47に係る窒化けい素セラミックス基板を製造した。また、実施例43,44,45として、実施例29,30,31においてそれぞれの基板の厚さを実施例1に示す条件で0.3mmに研削加工することにより、実施例43,44,45用の窒化けい素セラミックス基板をそれぞれ製作した。   Next, each raw material mixture obtained was molded and degreased under the same conditions as in Example 1, followed by holding operations under the conditions shown in Tables 2 and 3 during the sintering, and then performing the main sintering. Thus, silicon nitride ceramic substrates according to Examples 5 to 47 were manufactured. Further, as Examples 43, 44, and 45, the thicknesses of the respective substrates in Examples 29, 30, and 31 were ground to 0.3 mm under the conditions shown in Example 1 to obtain Examples 43, 44, and 45. Each silicon nitride ceramic substrate was manufactured.

[比較例4〜9]
一方比較例4〜9として表3に示すようにYを過少量に添加したもの(比較例4)、Erを過量に添加したもの(比較例5)、Hoを過量に添加したもの(比較例6)、MgOを過量に添加したもの(比較例7)、HfOを過量に添加したもの(比較例8)、TiOを過量に添加したもの(比較例9)の原料混合体をそれぞれ調製した。
[Comparative Examples 4 to 9]
On the other hand, as shown in Table 3 as Comparative Examples 4 to 9, Y 2 O 3 was added in an excessive amount (Comparative Example 4), Er 2 O 3 was added in an excessive amount (Comparative Example 5), and Ho 2 O 3. (Comparative Example 6), MgO added excessively (Comparative Example 7), HfO 2 added excessively (Comparative Example 8), TiO 2 added excessively (Comparative Example) The raw material mixture of 9) was prepared.

次に得られた各原料混合体を実施例5と同一条件で成形脱脂処理した後、表3に示す条件で焼結途中において保持操作を実施した後、本焼結することにより、それぞれ比較例4〜9用の窒化けい素セラミックス基板を製造した。   Next, after each raw material mixture obtained was molded and degreased under the same conditions as in Example 5, a holding operation was performed in the middle of sintering under the conditions shown in Table 3, followed by main sintering, thereby comparing each of the comparative examples. Silicon nitride ceramic substrates for 4-9 were produced.

こうして製造した各実施例および比較例用の各窒化けい素セラミックス基板について、実施例1と同一条件で全酸素量、気孔率、粒界相中の最大気孔径、電流リーク値、熱伝導率、室温での三点曲げ強度、破壊靭性値を測定して下記表2〜3に示す結果を得た。   About each silicon nitride ceramic substrate for each example and comparative example manufactured in this way, the total oxygen amount, the porosity, the maximum pore diameter in the grain boundary phase, the current leakage value, the thermal conductivity under the same conditions as in Example 1. The three-point bending strength and fracture toughness value at room temperature were measured and the results shown in Tables 2 to 3 below were obtained.

Figure 0005172738
Figure 0005172738

Figure 0005172738
Figure 0005172738

上記表2および表3に示す結果から明らかなように、所定量の希土類元素を含み、酸素量を規定した原料成形体の焼結工程の途中で所定条件で保持操作を実施するとともに、焼結後に徐冷して製造された各実施例用のセラミックス基板においては、セラミックス基板の酸素濃度が減少し、気孔の発生が抑制されて最大気孔径が微小化されており、リーク電流の発生が少なく高熱伝導率を有する高強度の窒化けい素セラミックス基板が得られている。   As is clear from the results shown in Tables 2 and 3 above, the holding operation is performed under predetermined conditions in the course of the sintering process of the raw material compact that includes a predetermined amount of rare earth elements and defines the amount of oxygen. In the ceramic substrate for each example manufactured by slow cooling later, the oxygen concentration of the ceramic substrate is reduced, the generation of pores is suppressed, the maximum pore diameter is miniaturized, and the generation of leakage current is small. A high-strength silicon nitride ceramic substrate having high thermal conductivity has been obtained.

一方、比較例4〜9で示すように、希土類成分の添加量が本発明で規定する範囲外とした基板では、焼結途中での保持操作および焼結後の徐冷を実施しても、焼結体の全酸素量,気孔率,最大気孔径,熱伝導率,三点曲げ強度等のいずれかの特性において本発明で規定する特性要件が満たされていないことが確認できる。   On the other hand, as shown in Comparative Examples 4 to 9, in the substrate in which the addition amount of the rare earth component is outside the range specified in the present invention, even if the holding operation during the sintering and the slow cooling after the sintering are performed, It can be confirmed that the characteristic requirements defined in the present invention are not satisfied in any of the characteristics such as the total oxygen content, porosity, maximum pore diameter, thermal conductivity, and three-point bending strength of the sintered body.

また、実施例10と組成が同一であり、焼結後の冷却速度を500℃/hr(自然冷却)に設定して作成した実施例46,47に係る窒化けい素セラミックス基板についても、本発明で規定する範囲のリーク電流値が得られている。しかしながら、実施例46,47においては徐冷で調製した実施例10の基板と比較して熱伝導率がやや劣ることが確認できた。   Further, the present invention also applies to silicon nitride ceramic substrates according to Examples 46 and 47, which have the same composition as Example 10 and were prepared by setting the cooling rate after sintering to 500 ° C./hr (natural cooling). The leakage current value in the range specified by is obtained. However, in Examples 46 and 47, it was confirmed that the thermal conductivity was slightly inferior compared with the substrate of Example 10 prepared by slow cooling.

さらに、実施例28と比較例2用の窒化けい素セラミックス基板について、印加電圧を変えた場合のリーク電流値を測定して下記表4に示す結果を得た。なお、いずれの場合においても、周波数は100Hzに統一した。

Figure 0005172738
Further, with respect to the silicon nitride ceramic substrates for Example 28 and Comparative Example 2, the leakage current value was measured when the applied voltage was changed, and the results shown in Table 4 below were obtained. In any case, the frequency was unified to 100 Hz.
Figure 0005172738

上記表4に示す結果から明らかなように、印加電圧が0.1kV未満の場合にはリーク電流値に大きな差異は表われないが、印加電圧の上昇に伴ってその差異が大きくなる傾向が判明した。換言すると、本実施例用の窒化けい素セラミックス基板は、0.1kV(100V)以上の比較的に大きな電圧を作用させる回路基板に有効であると言える。   As is apparent from the results shown in Table 4 above, when the applied voltage is less than 0.1 kV, a large difference in the leakage current value does not appear, but the difference tends to increase as the applied voltage increases. did. In other words, it can be said that the silicon nitride ceramic substrate for this example is effective for a circuit substrate on which a relatively large voltage of 0.1 kV (100 V) or more is applied.

また上記実施例28および比較例2用の窒化けい素セラミックス基板を使用して表5および図1〜図3に示す窒化けい素セラミックス回路基板1をそれぞれ調製した。この窒化けい素セラミックス回路基板1は、窒化けい素セラミックス基板2の表面側に一対の金属回路板3,3としての厚さ0.30mmのCu板を、その間隙Lが表5に示す値となるように接合する一方、基板2の背面側には裏金属板としての厚さ0.25mmの裏銅板を接合して形成した。   In addition, using the silicon nitride ceramic substrates for Example 28 and Comparative Example 2, silicon nitride ceramic circuit substrates 1 shown in Table 5 and FIGS. 1 to 3 were prepared. This silicon nitride ceramic circuit board 1 has a 0.30 mm thick Cu plate as a pair of metal circuit boards 3 and 3 on the surface side of the silicon nitride ceramic substrate 2, and the gap L is the value shown in Table 5. On the other hand, a back copper plate as a back metal plate having a thickness of 0.25 mm was formed on the back side of the substrate 2.

なお、金属板の接合方法は表5に示す通り、活性金属法または直接接合法を用いた。活性金属法では、重量組成が70Ag−27Cu−3Tiであるろう材を使用して銅板を接合した。一方、直接接合法では、窒化けい素セラミックス基板表面を酸化して厚さ1μmの酸化膜を設けた後に銅板を接合した。   In addition, as shown in Table 5, the active metal method or the direct joining method was used for the joining method of the metal plate. In the active metal method, the copper plates were joined using a brazing material having a weight composition of 70Ag-27Cu-3Ti. On the other hand, in the direct bonding method, the surface of the silicon nitride ceramic substrate was oxidized to provide an oxide film having a thickness of 1 μm, and then the copper plate was bonded.

さらに、上記のように調製した窒化けい素セラミックス回路基板に半導体素子を搭載して半導体モジュールを組み立てた。そして各半導体モジュールに動作電圧として0.02kVおよび1.5kVの電圧を印加して素子機能の良否を確認した。具体的には、上記の半導体モジュールを100組用意し、各半導体モジュールを組み込んだ電子機器を100時間連続稼動させた場合に全ての半導体素子が正常に機能したときには不具合無しとして「○」で評価する一方、正常に機能しなかった場合は、不具合有りとして「×」と評価した。評価結果を下記表5に示す。

Figure 0005172738
Further, a semiconductor module was assembled by mounting a semiconductor element on the silicon nitride ceramic circuit board prepared as described above. And the voltage of 0.02 kV and 1.5 kV was applied to each semiconductor module as an operating voltage, and the quality of the element function was confirmed. Specifically, 100 sets of the above-mentioned semiconductor modules are prepared, and when all the semiconductor elements function normally when an electronic device incorporating each semiconductor module is continuously operated for 100 hours, it is evaluated as “◯” as no defect. On the other hand, when it did not function normally, it was evaluated as “x” as being defective. The evaluation results are shown in Table 5 below.
Figure 0005172738

上記表5に示す結果から明らかなように、各実施例用の窒化けい素セラミックス回路基板によれば、金属回路板の間隙Lを0.1mmと狭くした場合においても素子機能は正常であり、何らの不具合を生じないことが確認できた。   As is apparent from the results shown in Table 5 above, according to the silicon nitride ceramic circuit board for each example, the element function is normal even when the gap L of the metal circuit board is narrowed to 0.1 mm, It was confirmed that no problems occurred.

これに対して、各比較例用の回路基板においては、印加電圧が小さいときには、いずれも動作は正常であるが、印加電圧が大きくなると、不具合が生じている。特に金属回路板の間隙が0.5mm以下の場合では動作不良などの不具合が生じ易いことが判明した。また金属回路板の間隙Lを2mmと大きくした比較例2〜4の場合でも、不具合が完全に解消できなかったため、「△」と評価した。   On the other hand, in the circuit boards for the respective comparative examples, the operation is normal when the applied voltage is small, but a problem occurs when the applied voltage is large. In particular, it has been found that problems such as malfunctions are likely to occur when the gap between the metal circuit boards is 0.5 mm or less. Further, even in Comparative Examples 2 to 4 in which the gap L between the metal circuit boards was increased to 2 mm, the problem could not be completely eliminated, and therefore, “Δ” was evaluated.

このように表3および表4に示す結果から明らかなように、各実施例においてはセラミックス基板におけるリーク電流値を所定の値以下に制御しているため、印加電圧が0.1kV以上の比較的大きな電圧を印加する回路基板において、金属回路板の間隙Lを0.1〜0.5mm程度に設定することが可能となる。そのため、回路基板の高密度実装や小型化が容易になる。換言すると、本発明は印加電圧が0.1kV以上であり、金属回路板の間隙が0.1〜0.5mm程度と微細な回路構成を有する窒化けい素回路基板に特に有効であるといえる。   As can be seen from the results shown in Tables 3 and 4, in each example, the leakage current value in the ceramic substrate is controlled to a predetermined value or less, so that the applied voltage is a relatively high value of 0.1 kV or more. In the circuit board to which a large voltage is applied, the gap L between the metal circuit boards can be set to about 0.1 to 0.5 mm. This facilitates high-density mounting and miniaturization of the circuit board. In other words, the present invention is particularly effective for a silicon nitride circuit board having a fine circuit configuration in which the applied voltage is 0.1 kV or more and the gap between the metal circuit boards is about 0.1 to 0.5 mm.

次に原料混合体の成形圧力を変え、また炭素量を制御した場合における本発明の参考形態を以下に示す参考例を参照して具体的に説明する。 Next, a reference embodiment of the present invention when the molding pressure of the raw material mixture is changed and the carbon amount is controlled will be specifically described with reference to the following reference examples.

参考例101〜149]
酸素を1.3重量%以下、不純物陽イオン元素としてAl,Li,Na,K,Fe,Ba,Mn,Bを合計で0.10重量%以下含有し、α相型窒化けい素97%を含む平均粒径0.40μmの窒化けい素原料粉末に対して、表6〜表8に示すように焼結助剤として平均粒径0.7μmの希土類酸化物(Y,Er,Ho,Yb,Dy,Sm,Nd,Pr11,CeOの1種または2種以上)粉末,平均粒径0.5μmのMgO(酸化マグネシウム)粉末、さらには必要に応じHf化合物、Ti等の化合物を所定量添加し、エチルアルコール中で72時間湿式混合した後に乾燥して原料粉末混合体を調製した。
[ Reference Examples 101-149]
1.3% by weight or less of oxygen, Al, Li, Na, K, Fe, Ba, Mn, and B as impurity cation elements in total containing 0.10% by weight or less, 97% α-phase type silicon nitride With respect to the silicon nitride raw material powder having an average particle size of 0.40 μm, rare earth oxides (Y 2 O 3 , Er 2 O having an average particle size of 0.7 μm as a sintering aid as shown in Tables 6 to 8 are used. 3 , Ho 2 O 3 , Yb 2 O 3 , Dy 2 O 3 , Sm 2 O 3 , Nd 2 O 3 , Pr 6 O 11 , CeO 2 or more) powder, average particle size 0.5 μm MgO (magnesium oxide) powder and, if necessary, a predetermined amount of a compound such as Hf compound and Ti were added, wet mixed in ethyl alcohol for 72 hours, and then dried to prepare a raw material powder mixture.

次に得られた原料粉末混合体に有機バインダなどを所定量添加して均一に混合した後に、表6〜表8に示す成形圧力でプレス成形またはドクターブレード成形を行い、成形体を多数製作した。次に得られた成形体を脱脂した後に、この脱脂体を窒素ガス雰囲気中にて表6〜表8に示す焼結条件で緻密化焼結を実施した後に、焼結炉に付設した加熱装置への通電量を制御して焼結炉内温度が1500℃まで降下するまでの間における焼結体の冷却速度がそれぞれ表6〜表8に示す値となるように調整して焼結体を徐冷し、それぞれ各参考例用の窒化けい素セラミックス基板を調製した。 Next, a predetermined amount of an organic binder or the like was added to the obtained raw material powder mixture and mixed uniformly, and then press molding or doctor blade molding was performed at the molding pressure shown in Tables 6 to 8 to produce a large number of compacts. . Next, after degreasing the obtained molded body, the degreased body was densified and sintered under the sintering conditions shown in Tables 6 to 8 in a nitrogen gas atmosphere, and then a heating apparatus attached to a sintering furnace. The sintered body was adjusted so that the cooling rate of the sintered body during the period until the temperature inside the sintering furnace dropped to 1500 ° C. by controlling the amount of current applied to the steel sheet was the values shown in Tables 6 to 8 respectively. After slow cooling, silicon nitride ceramic substrates for each reference example were prepared.

なお、各窒化けい素セラミックス基板の寸法は、長さ60mm×幅40mm×厚さ0.3〜0.8mmとし、必要に応じ、敷粉を除去するためにホーニング加工を施すものとする。なお、基板厚さは参考例101〜120が0.8mm、参考例121〜130が0.5mm、参考例131〜149が0.3mmである。 In addition, the dimension of each silicon nitride ceramic substrate shall be length 60mm x width 40mm x thickness 0.3-0.8mm, and shall perform a honing process in order to remove bed powder as needed. The substrate thickness is 0.8mm is Reference Example 101 to 120, Reference Example 121 to 130 is 0.5 mm, reference example 131 to 149 is 0.3 mm.

[比較例101]
一方、原料混合体にMgOを添加せず、また緻密化焼結完了直後に、加熱装置電源をOFFにし、従来の、特別な制御を行わない炉冷(自然冷却)による冷却速度(約500℃/hr)で焼結体を冷却した点以外は参考例103と同一条件で焼結処理して比較例101用の窒化けい素セラミックス基板を調製した。
[Comparative Example 101]
On the other hand, the MgO is not added to the raw material mixture, and immediately after completion of the densification sintering, the heating device power is turned off, and the conventional cooling rate by furnace cooling (natural cooling) without special control (about 500 ° C. The silicon nitride ceramic substrate for Comparative Example 101 was prepared by sintering under the same conditions as in Reference Example 103 except that the sintered body was cooled at / hr).

[比較例102]
酸素を1.5重量%、前記不純物陽イオン元素を合計で0.6重量%含有し、α相型窒化けい素93%を含む平均粒径0.60μmの窒化けい素原料粉末を用い、成形圧力を100MPaと低く設定した点以外は参考例103と同一条件で処理し、比較例102用の窒化けい素セラミックス基板を調製した。
[Comparative Example 102]
Molding using silicon nitride raw material powder having an average particle diameter of 0.60 μm containing 1.5% by weight of oxygen, 0.6% by weight of the above-mentioned impurity cation elements in total, and 93% of α-phase type silicon nitride A silicon nitride ceramic substrate for Comparative Example 102 was prepared in the same manner as in Reference Example 103 except that the pressure was set to 100 MPa.

[比較例103]
成形体の厚さを1.6mmと厚くし、焼結後に表面を研磨加工して各参考例と同一厚さに調整した点以外は参考例103と同一条件で処理し、比較例103用の窒化けい素セラミックス基板を調製した。
[Comparative Example 103]
The thickness of the molded body was increased to 1.6 mm, the surface was polished after sintering, and processed under the same conditions as Reference Example 103 except that the thickness was adjusted to the same thickness as each Reference Example. A silicon nitride ceramic substrate was prepared.

[比較例104]
焼結体中の残留炭素量を800ppmと本発明の好ましい範囲外とした点以外は参考例103と同一の条件で処理し、比較例104用の窒化けい素セラミックス基板を調製した。
[Comparative Example 104]
A silicon nitride ceramic substrate for Comparative Example 104 was prepared by treating under the same conditions as Reference Example 103 except that the amount of residual carbon in the sintered body was 800 ppm, which was outside the preferred range of the present invention.

こうして得た参考例101〜149および比較例101〜104用の窒化けい素セラミックス基板について気孔率、熱伝導率(25℃)、室温での三点曲げ強度の平均値を測定した。さらに、各基板をX線回折法によって粒界相に占める結晶相の割合(面積比)を測定した。 For the silicon nitride ceramic substrates for Reference Examples 101 to 149 and Comparative Examples 101 to 104 thus obtained, the average values of the porosity, thermal conductivity (25 ° C.), and three-point bending strength at room temperature were measured. Furthermore, the ratio (area ratio) of the crystal phase occupying the grain boundary phase of each substrate was measured by X-ray diffraction.

また、各窒化けい素セラミックス基板の残留炭素量をX線マイクロアナライザ(EPMA)で測定する一方、基板表面の任意の4箇所に1辺が10μmの正方状の測定領域を設定し、各領域において幅が1μm以上のマイクロクラックの発生の有無を顕微鏡写真によって確認するとともに、幅が1μm未満のサブミクロンクラックの発生数の最大値により求めた。   In addition, while measuring the residual carbon content of each silicon nitride ceramic substrate with an X-ray microanalyzer (EPMA), a square measurement region having a side of 10 μm is set at any four locations on the substrate surface. The presence or absence of the occurrence of microcracks having a width of 1 μm or more was confirmed by a micrograph, and the maximum number of submicron cracks having a width of less than 1 μm was determined.

さらに、各窒化けい素セラミックス基板の表裏面に金属回路板を接合し、カーブトレーサ測定装置を用いて表裏面の金属回路板に測定用電極を接触させ1.5kV−100Hzの交流電圧を印可したときのリーク電流値を測定した。なお表裏面の金属回路板の接合は、Ag−28wt%Cu−2wt%Tiペーストを使用して活性金属接合法により接続した。なお、金属回路板の接合においては他にAl−0.2〜15wt%Si合金板により直接接合したものを使用してもよい。   Furthermore, a metal circuit board was joined to the front and back surfaces of each silicon nitride ceramic substrate, and an AC voltage of 1.5 kV-100 Hz was applied by contacting the measurement electrodes to the metal circuit boards on the front and back surfaces using a curve tracer measuring device. When the leakage current value was measured. The metal circuit boards on the front and back surfaces were joined by an active metal joining method using an Ag-28 wt% Cu-2 wt% Ti paste. In addition, in joining of a metal circuit board, you may use what was directly joined by Al-0.2-15wt% Si alloy board.

上記リーク電流の測定においては、測定用電極を窒化けい素セラミックス基板の表裏面に直接接触させて測定することも可能であるが、測定中にテスター電極と基板表面の接触部にズレが生じ易いことから、本参考例においては金属回路板を接合してから測定を行った。なお、金属回路板は電気伝導性が良好であることから、これを接合した後に測定したとしても基板のリーク電流値に影響を与えるものではない。また両電極間に1MHzの高周波数の交流電圧を印加したときのそれぞれの誘電損失をインピーダンスアナライザを用いて計測し、下記表6〜表8に示す結果を得た。 In the measurement of the leakage current, it is possible to measure the measurement electrode by directly contacting the front and back surfaces of the silicon nitride ceramic substrate, but the contact between the tester electrode and the substrate surface is likely to be displaced during the measurement. Therefore, in this reference example, the measurement was performed after joining the metal circuit boards. Since the metal circuit board has good electrical conductivity, it does not affect the leakage current value of the substrate even if it is measured after bonding. Moreover, each dielectric loss when a 1 MHz high frequency alternating voltage was applied between both electrodes was measured using the impedance analyzer, and the result shown in following Table 6-Table 8 was obtained.

Figure 0005172738
Figure 0005172738

Figure 0005172738
Figure 0005172738

Figure 0005172738
Figure 0005172738

表6〜表8に示す結果から明らかなように各参考例用の窒化けい素セラミックス回路基板においては、比較例101と比較して緻密化焼結完了直後における焼結体の冷却速度を従来より低く設定しているため、粒界相に結晶相を含み、結晶相の占める割合が高い程、リーク電流の発生が少なく、高熱伝導率を有する放熱性の高い高強度基板が得られた。 As is apparent from the results shown in Tables 6 to 8, in the silicon nitride ceramic circuit board for each reference example, the cooling rate of the sintered body immediately after completion of densification sintering compared to Comparative Example 101 is higher than that of the conventional example. Since the grain boundary phase contains a crystal phase, and the proportion of the crystal phase is higher, the generation of leakage current is less, and a high heat dissipation and high strength substrate having high heat conductivity is obtained.

また、いずれの参考例においても1.5kVの高電圧を印加した際のリーク電流値は500nA以下であり、優れた絶縁特性を示している。さらに1MHzの高周波領域における誘電損失はいずれも0.0001以下であり、この基板を使用したパワーモジュールの大電力化および高容量化に際しても優れた信頼性を実現することができる。特に各参考例に係る基板において、1〜5MHzの高周波領域において、誘電損失が周波数にほぼ比例する関係であるため、基板の絶縁性や信頼性の向上がより顕著になる。 In any of the reference examples, the leak current value when a high voltage of 1.5 kV is applied is 500 nA or less, indicating excellent insulation characteristics. Further, the dielectric loss in the high frequency region of 1 MHz is 0.0001 or less, and excellent reliability can be realized even when the power module using this substrate is increased in power and capacity. In particular, in the substrate according to each reference example, in the high frequency region of 1 to 5 MHz, the dielectric loss is in a proportional relationship with the frequency, and therefore, the improvement of the insulation and reliability of the substrate becomes more remarkable.

さらに、所定量のMgを含有する各参考例においては、粒界相の結晶化が進行し易く、ガラス相の割合を相対的に低減できるため、クラックの発生が少なく、高強度で熱伝導度が向上した窒化けい素基板が得られている。 Furthermore, in each of the reference examples containing a predetermined amount of Mg, the crystallization of the grain boundary phase is easy to proceed, and the ratio of the glass phase can be relatively reduced, so that there are few cracks, high strength and thermal conductivity. A silicon nitride substrate with improved is obtained.

また、窒化けい素セラミックス基板の残留炭素量を500ppm以下にするように、十分に脱脂操作を実施した各参考例に係る基板においてはリーク電流値も小さくなり、優れた耐電圧特性を示すことも確認できた。
In addition, in the substrate according to each reference example that has been sufficiently degreased so that the residual carbon content of the silicon nitride ceramic substrate is 500 ppm or less, the leakage current value is also reduced, and excellent withstand voltage characteristics may be exhibited. It could be confirmed.

一方、比較例101のように焼結体の冷却速度を大きく設定し、急激に冷却した場合は粒界相において結晶相が占める割合が10%以下と少なく熱伝導率が低下した。さらに粒界相のガラス相の割合が相対的に大きくなるため、リーク電流値も高くなった。   On the other hand, when the cooling rate of the sintered body was set large as in Comparative Example 101 and rapidly cooled, the proportion of the crystal phase in the grain boundary phase was as low as 10% or less, and the thermal conductivity was lowered. Further, since the ratio of the glass phase of the grain boundary phase is relatively large, the leakage current value is also increased.

また、比較例102のように成形圧力を低くした場合は、クラックの発生量が多くリーク電流値も高く絶縁性が低くなる。また前記不純物陽イオン元素を合計量の0.6重量%と多く含有した窒化けい素粉末を用いた比較例102の場合は、焼結体の冷却速度を実施例101と同一にしても粒界相の大部分が非結晶質で形成され熱伝導率が相対的に低下した。   Further, when the molding pressure is lowered as in the comparative example 102, the amount of cracks generated is large, the leakage current value is high, and the insulating property is lowered. In the case of Comparative Example 102 using silicon nitride powder containing a large amount of the impurity cation element as 0.6% by weight of the total amount, the grain boundary is set even if the cooling rate of the sintered body is the same as in Example 101. Most of the phase was formed amorphous and the thermal conductivity decreased relatively.

さらに比較例103のように焼結して得た基板を研磨加工して所定の厚さに調整した場合は、研磨加工による衝撃力によって基板表面にクラックが発生し易くなり、リーク電流値が高く、基板の耐電圧特性が低下することが確認できた。   Further, when the substrate obtained by sintering as in Comparative Example 103 is polished and adjusted to a predetermined thickness, cracks are likely to occur on the substrate surface due to the impact force due to the polishing, and the leakage current value is high. It was confirmed that the withstand voltage characteristics of the substrate deteriorated.

なお、本発明で使用する窒化けい素セラミックス基板を用いた回路基板は、実施例に示したような基板の両面に金属回路板を設けた形態に限定されるものではなく、表面のみに金属回路板を設けた形態、または表面に金属回路板を設ける一方、裏面にヒートシンクまたは反り防止のための金属板を設けた形態でも形成できることは言うまでもない。   In addition, the circuit board using the silicon nitride ceramic substrate used in the present invention is not limited to the form in which the metal circuit board is provided on both surfaces of the substrate as shown in the embodiment, but the metal circuit only on the surface. Needless to say, it may be formed in a form in which a plate is provided, or a metal circuit board is provided on the front surface and a heat sink or a metal plate for preventing warpage is provided on the back surface.

1 窒化けい素セラミックス回路基板
2 窒化けい素セラミックス基板
3 金属回路板(銅板)
4 裏金属板(裏銅板)
DESCRIPTION OF SYMBOLS 1 Silicon nitride ceramic circuit board 2 Silicon nitride ceramic board 3 Metal circuit board (copper board)
4 Back metal plate (back copper plate)

Claims (8)

気孔率が容量比で2.5%以下であり、粒界相中の最大気孔径が0.3μm以下であり、厚さが1.5mm以下である窒化けい素焼結体から成り、温度25℃,湿度70%の条件下で上記窒化けい素焼結体の表裏間に1.5Kv−100Hzの交流電圧を印加したときの電流リーク値が1000nA以下であり、熱伝導率が50W/m・K以上、3点曲げ強度が500MPa以上である窒化けい素セラミックス基板と、この窒化けい素セラミックス基板に接合された金属回路板と、この金属回路板上に搭載された半導体素子とを備え、上記窒化けい素セラミックス基板は、HfおよびMgの少なくとも一方を酸化物に換算して0.3〜3.0質量%含有する一方、不純物陽イオン元素としてのAl,Li,Na,K,Fe,Ba,Mn,Bを合計で0.5質量%以下含有すると共に、上記窒化けい素セラミックス基板の全酸素量が3.5質量%以下であることを特徴とする半導体モジュール。 It consists of a silicon nitride sintered body having a porosity of 2.5% or less by volume ratio, a maximum pore diameter in the grain boundary phase of 0.3 μm or less, and a thickness of 1.5 mm or less, and a temperature of 25 ° C. When the AC voltage of 1.5 Kv-100 Hz is applied between the front and back of the silicon nitride sintered body under the condition of 70% humidity, the current leakage value is 1000 nA or less, and the thermal conductivity is 50 W / m · K or more. , a silicon nitride ceramic substrate 3-point bending strength is not less than 500 MPa, and a metal circuit plate bonded to the silicon nitride ceramic substrate, e Bei a semiconductor element mounted on the metal circuit board, the nitriding The silicon ceramic substrate contains at least one of Hf and Mg in an amount of 0.3 to 3.0% by mass in terms of oxide, while Al, Li, Na, K, Fe, Ba, Mn, B Together containing 0.5 mass% in total, the semiconductor module, wherein the total oxygen content of the silicon nitride ceramic substrate is less than 3.5 wt%. 前記窒化けい素セラミックス基板の破壊靭性値が6.5MPa・m1/2以上であることを特徴とする請求項1記載の半導体モジュール。 2. The semiconductor module according to claim 1, wherein the silicon nitride ceramic substrate has a fracture toughness value of 6.5 MPa · m 1/2 or more. 前記窒化けい素セラミックス基板は、窒化けい素結晶および粒界相から成るとともに粒界相中における結晶化合物相の粒界相全体に対する割合が20%以上であることを特徴とする請求項1記載の半導体モジュール。 2. The silicon nitride ceramic substrate according to claim 1, wherein the silicon nitride ceramic substrate comprises a silicon nitride crystal and a grain boundary phase, and a ratio of a crystal compound phase in the grain boundary phase to the whole grain boundary phase is 20% or more. Semiconductor module. 前記窒化けい素セラミックス基板は、希土類元素を酸化物に換算して2.0〜17.5質量%含有することを特徴とする請求項1記載の半導体モジュール。 2. The semiconductor module according to claim 1, wherein the silicon nitride ceramic substrate contains a rare earth element in an amount of 2.0 to 17.5% by mass in terms of an oxide. 前記窒化けい素セラミックス基板の熱伝導率が90W/m・K以上であることを特徴とする請求項1記載の半導体モジュール。 The semiconductor module according to claim 1, wherein the silicon nitride ceramic substrate has a thermal conductivity of 90 W / m · K or more. 前記窒化けい素セラミックス基板は、MgをMgOに換算して0.3〜3.0質量%含有することを特徴とする請求項1記載の半導体モジュール。 The semiconductor module according to claim 1, wherein the silicon nitride ceramic substrate contains 0.3 to 3.0 mass% of Mg in terms of MgO. 前記窒化けい素セラミックス基板は、Ti,Zr,W,Mo,Ta,Nb,V,Crからなる群より選択される少なくとも1種を酸化物に換算して2質量%以下含有することを特徴とする請求項1記載の半導体モジュール。 The silicon nitride ceramic substrate contains at least one selected from the group consisting of Ti, Zr, W, Mo, Ta, Nb, V, and Cr in an amount of 2% by mass or less in terms of oxide. The semiconductor module according to claim 1. 請求項1ないし請求項のいずれかに記載の半導体モジュールを搭載したことを特徴とする電子機器。 Electronic apparatus, characterized in that mounting the semiconductor module according to any one of claims 1 to 7.
JP2009036843A 2000-10-27 2009-02-19 Semiconductor module and electronic device using the same Expired - Lifetime JP5172738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036843A JP5172738B2 (en) 2000-10-27 2009-02-19 Semiconductor module and electronic device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000329499 2000-10-27
JP2000329499 2000-10-27
JP2009036843A JP5172738B2 (en) 2000-10-27 2009-02-19 Semiconductor module and electronic device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005264271A Division JP4384101B2 (en) 2000-10-27 2005-09-12 Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same

Publications (2)

Publication Number Publication Date
JP2009120483A JP2009120483A (en) 2009-06-04
JP5172738B2 true JP5172738B2 (en) 2013-03-27

Family

ID=40813047

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009036843A Expired - Lifetime JP5172738B2 (en) 2000-10-27 2009-02-19 Semiconductor module and electronic device using the same
JP2009171176A Expired - Fee Related JP5039097B2 (en) 2000-10-27 2009-07-22 Power module

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009171176A Expired - Fee Related JP5039097B2 (en) 2000-10-27 2009-07-22 Power module

Country Status (1)

Country Link
JP (2) JP5172738B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172738B2 (en) * 2000-10-27 2013-03-27 株式会社東芝 Semiconductor module and electronic device using the same
US8906522B2 (en) 2009-07-07 2014-12-09 Morgan Advanced Materials And Technology Inc. Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
JP5630695B2 (en) * 2009-10-01 2014-11-26 日立金属株式会社 Silicon nitride circuit board and manufacturing method thereof
JP5996435B2 (en) 2010-11-22 2016-09-21 株式会社東芝 Semiconductor module and method for manufacturing semiconductor module
JP5743752B2 (en) * 2011-06-29 2015-07-01 京セラ株式会社 Circuit board
CN112805822B (en) * 2018-12-06 2024-09-10 日本碍子株式会社 Substrate for semiconductor device
WO2023106226A1 (en) 2021-12-10 2023-06-15 三菱マテリアル株式会社 Copper/ceramic joined body and insulated circuit board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698780B2 (en) * 1995-03-20 1998-01-19 株式会社東芝 Silicon nitride circuit board
JP3100892B2 (en) * 1995-12-28 2000-10-23 株式会社東芝 High thermal conductive silicon nitride sintered body and method for producing the same
JP3501317B2 (en) * 1995-07-21 2004-03-02 日産自動車株式会社 High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body
JP2000128643A (en) * 1998-10-21 2000-05-09 Sumitomo Electric Ind Ltd Highly heat conductive silicon nitride-based sintered compact and its production
JP3797905B2 (en) * 2000-10-27 2006-07-19 株式会社東芝 Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP4221006B2 (en) * 2000-10-27 2009-02-12 株式会社東芝 Silicon nitride ceramic circuit board
JP5172738B2 (en) * 2000-10-27 2013-03-27 株式会社東芝 Semiconductor module and electronic device using the same
JP4384101B2 (en) * 2000-10-27 2009-12-16 株式会社東芝 Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same

Also Published As

Publication number Publication date
JP2009120483A (en) 2009-06-04
JP2009280494A (en) 2009-12-03
JP5039097B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP3797905B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
US6613443B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
JP5172738B2 (en) Semiconductor module and electronic device using the same
WO2013008919A1 (en) Ceramic circuit board
KR20070103330A (en) Sintered silicon nitride, method of manufacturing the same and sintered silicon nitride substrate
CN101844916B (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
KR960016070B1 (en) Sintered aluminium nitride and its production
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP2698780B2 (en) Silicon nitride circuit board
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP4593062B2 (en) Aluminum nitride sintered body and method for producing the same
JPH07172921A (en) Aluminum nitride sintered material and its production
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4516057B2 (en) Silicon nitride wiring board and method for manufacturing the same
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JP4702978B2 (en) Aluminum nitride sintered body
JP2003020282A (en) Aluminum nitride sintered compact, production method therefor and its use
JPH0881266A (en) Production of aluminum nitride sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350