JP3100892B2 - High thermal conductive silicon nitride sintered body and method for producing the same - Google Patents

High thermal conductive silicon nitride sintered body and method for producing the same

Info

Publication number
JP3100892B2
JP3100892B2 JP07344237A JP34423795A JP3100892B2 JP 3100892 B2 JP3100892 B2 JP 3100892B2 JP 07344237 A JP07344237 A JP 07344237A JP 34423795 A JP34423795 A JP 34423795A JP 3100892 B2 JP3100892 B2 JP 3100892B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
weight
thermal conductivity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07344237A
Other languages
Japanese (ja)
Other versions
JPH09183666A (en
Inventor
通泰 小松
辰弥 今泉
和行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07344237A priority Critical patent/JP3100892B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to KR1019960705075A priority patent/KR0166406B1/en
Priority to PCT/JP1996/001559 priority patent/WO1997000837A1/en
Priority to EP96916346A priority patent/EP0778249B1/en
Priority to CN96190066A priority patent/CN1082938C/en
Priority to DE69626262T priority patent/DE69626262T2/en
Priority to US08/700,358 priority patent/US5744410A/en
Priority to TW85107431A priority patent/TW386072B/en
Publication of JPH09183666A publication Critical patent/JPH09183666A/en
Application granted granted Critical
Publication of JP3100892B2 publication Critical patent/JP3100892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高熱伝導性窒化けい
素焼結体およびその製造方法に係り、特に窒化けい素本
来の高強度特性に加えて、熱伝導率が高く放熱性に優れ
ており、半導体用基板や各種放熱板として好適な高熱伝
導性窒化けい素焼結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having high thermal conductivity and a method for producing the same. In particular, in addition to the inherent high strength characteristics of silicon nitride, it has high thermal conductivity and excellent heat dissipation. The present invention relates to a high thermal conductive silicon nitride sintered body suitable as a semiconductor substrate or various heat sinks, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化けい素を主成分とするセラミックス
焼結体は、1000℃以上の高温度環境下でも優れた耐
熱性を有し、かつ低熱膨張係数のため耐熱衝撃性も優れ
ている等の諸特性を持つことから、従来の耐熱性超合金
に代わる高温構造材料としてガスタービン用部品、エン
ジン用部品、製鋼用機械部品等の各種高強度耐熱部品へ
の応用が試みられている。また、金属に対する耐食性が
優れていることから溶融金属の耐溶材料としての応用も
試みられ、さらに耐摩耗性も優れていることから、軸受
等の摺動部材、切削工具への実用化も図られている。
2. Description of the Related Art A ceramic sintered body containing silicon nitride as a main component has excellent heat resistance even in a high temperature environment of 1000 ° C. or more, and has excellent thermal shock resistance due to a low coefficient of thermal expansion. Therefore, application to various high-strength heat-resistant parts such as parts for gas turbines, parts for engines, and mechanical parts for steelmaking has been attempted as a high-temperature structural material replacing conventional heat-resistant superalloys. In addition, because of its excellent corrosion resistance to metals, application of molten metal as a melting-resistant material has been attempted, and because of its excellent wear resistance, it has been put to practical use in sliding members such as bearings and cutting tools. ing.

【0003】従来より窒化けい素セラミックス焼結体の
焼結組成としては窒化けい素−酸化イットリウム−酸化
アルミニウム系、窒化けい素−酸化イットリウム−酸化
アルミニウム−窒化アルミニウム系、窒化けい素−酸化
イットリウム−酸化アルミニウム−チタニウム、マグネ
シウムまたはジルコニウムの酸化物系等が知られてい
る。
Conventionally, the sintered composition of a silicon nitride ceramic sintered body has been silicon nitride-yttrium oxide-aluminum oxide, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride, silicon nitride-yttrium oxide. Aluminum oxide-titanium, magnesium or zirconium oxides are known.

【0004】上記焼結組成における酸化イットリウム
(Y)などの希土類元素の酸化物は、従来から焼
結助剤として一般に使用されており、焼結性を高めて焼
結体を緻密化し高強度化をするために添加されている。
An oxide of a rare earth element such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintering composition has been generally used as a sintering aid in the past. It is added to increase the strength.

【0005】従来の窒化けい素焼結体は、窒化けい素粉
末に上記のような焼結助剤を添加物として加えて成形
し、得られた成形体を1600〜1900℃程度の高温
度の焼成炉で所定時間焼成した後に炉冷する製法で量産
されている。
[0005] A conventional silicon nitride sintered body is formed by adding the above-mentioned sintering aid as an additive to silicon nitride powder and molding the obtained molded body at a high temperature of about 1600 to 1900 ° C. It is mass-produced by a method of baking in a furnace for a predetermined time and then cooling the furnace.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来方法によって製造された窒化けい素焼結体では、靭性
値などの機能的強度は優れているものの、熱伝導特性の
点では、他の窒化アルミニウム(AlN)焼結体、酸化
ベリリウム(BeO)焼結体や炭化けい素(SiC)焼
結体などと比較して著しく低いため、特に放熱性を要求
される半導体用基板などの電子用材料としては実用化さ
れておらず、用途範囲が狭い難点があった。
However, although the silicon nitride sintered body manufactured by the above-mentioned conventional method has excellent functional strength such as toughness, it has a problem in terms of heat conduction characteristics. AlN) sintered bodies, beryllium oxide (BeO) sintered bodies, silicon carbide (SiC) sintered bodies, and the like are extremely low, so they are particularly suitable for electronic materials such as semiconductor substrates that require heat dissipation. It has not been put to practical use and has a drawback in that its application range is narrow.

【0007】一方上記窒化アルミニウム焼結体は他のセ
ラミックス焼結体と比較して高い熱伝導率と低熱膨張係
数の特長を有するため、高速化、高出力化、多機能化、
大型化が進展する半導体回路基板材料やパッケージ材料
として普及しているが、機械的強度の点で充分に満足で
きるものは得られていない。そこで高強度を有するとと
もに高い熱伝導率も併せ持ったセラミックス焼結体の開
発が要請されている。
On the other hand, since the aluminum nitride sintered body has characteristics of high thermal conductivity and low coefficient of thermal expansion as compared with other ceramic sintered bodies, high speed, high output, multifunctionality,
Although they have become widespread as semiconductor circuit board materials and package materials, which have been increasing in size, none of them have been sufficiently satisfactory in terms of mechanical strength. Therefore, there is a demand for the development of a ceramic sintered body having high strength and high thermal conductivity.

【0008】本発明は上記のような課題要請に対処する
ためになされたものであり、窒化けい素焼結体が本来備
える高強度特性に加えて、特に熱伝導率が高く放熱性に
優れた窒化けい素焼結体およびその製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to address the above-mentioned demands. In addition to the high strength characteristics inherent in a silicon nitride sintered body, the present invention has a particularly high heat conductivity and excellent heat dissipation. An object is to provide a silicon sintered body and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は上記目的を達
成するため、従来の窒化けい素焼結体を製造する際に、
一般的に使用されていた窒化けい素粉末の種類、焼結助
剤や添加物の種類および添加量、焼結条件等を種々変え
て、それらの要素が最終製品としての焼結体の特性に及
ぼす影響を実験により確認した。
Means for Solving the Problems To achieve the above object, the present inventor has proposed a method for manufacturing a conventional silicon nitride sintered body.
By changing the types of commonly used silicon nitride powder, the types and amounts of sintering aids and additives, and the sintering conditions, these factors can change the characteristics of the sintered body as the final product. The effect was confirmed by experiments.

【0010】その結果、微細で高純度を有する窒化けい
素粉末に希土類元素、必要に応じて窒化アルミニウム、
アルミナやTi,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wの酸化物、炭化物、窒化物、けい化物、硼化物
からなる群より選択される少なくとも1種を所定量ずつ
添加した原料混合体を成形脱脂し、得られた成形体を所
定温度で一定時間加熱保持して緻密化焼結を実施した
後、所定の冷却速度で徐冷したときに熱伝導率が大きく
向上し、かつ高強度を有する窒化けい素焼結体が得られ
ることが判明した。
As a result, a rare earth element, if necessary, aluminum nitride,
Alumina, Ti, Zr, Hf, V, Nb, Ta, Cr,
A raw material mixture to which at least one selected from the group consisting of oxides, carbides, nitrides, silicides, and borides of Mo and W are added by a predetermined amount is molded and degreased, and the obtained molded body is heated at a predetermined temperature. After carrying out densification sintering by heating and holding for a certain period of time, it was found that when gradually cooled at a predetermined cooling rate, the thermal conductivity greatly improved, and a silicon nitride sintered body having high strength was obtained. .

【0011】また酸素や不純物陽イオン元素含有量を低
減した高純度の窒化けい素原料粉末を使用し、窒化けい
素成形体の厚さを小さく設定して焼結することにより、
粒界相におけるガラス相(非晶質相)の生成が効果的に
防止でき、希土類元素酸化物のみを原料粉末に添加した
場合においても80W/m・K以上の高熱伝導率を有す
る窒化けい素焼結体が得られるという知見を得た。
Further, by using a high-purity silicon nitride raw material powder having a reduced content of oxygen and impurity cation elements, setting the thickness of the silicon nitride compact to a small value, and sintering the compact.
The formation of a glass phase (amorphous phase) in the grain boundary phase can be effectively prevented, and silicon nitride firing having a high thermal conductivity of 80 W / m · K or more even when only a rare earth element oxide is added to the raw material powder. We obtained the knowledge that a solid body could be obtained.

【0012】また、従来、焼結操作終了後に焼成炉の加
熱用電源をOFFとして焼結体を炉冷していた場合に
は、冷却速度が毎時400〜800℃と急速であった
が、本発明者の実験によれば、特に冷却速度を毎時10
0℃以下に緩速に制御することにより、窒化けい素焼結
体組織の粒界相が非結晶質状態から結晶相を含む相に変
化し、高強度特性と高伝熱特性とが同時に達成されるこ
とが判明した。
Conventionally, when the sintered body was cooled with the heating power supply turned off after the sintering operation, the cooling rate was as fast as 400 to 800 ° C. per hour. According to the experiment of the inventor, in particular, the cooling rate was set to 10
By slowly controlling the temperature to 0 ° C. or less, the grain boundary phase of the silicon nitride sintered body structure changes from an amorphous state to a phase containing a crystalline phase, and high strength characteristics and high heat transfer characteristics are simultaneously achieved. Turned out to be.

【0013】このような高熱伝導性窒化けい素焼結体自
体は、その一部が既に本発明者により特許出願されてお
り、さらに特開平6−135771号公報および特開平
7−48174号公報によって出願公開されている。そ
して、これらの特許出願において記載されている窒化け
い素焼結体は、希土類元素を酸化物に換算して2.0〜
7.5重量%含有するものである。しかしながら、本発
明者はさらに改良研究を進めた結果、含有される希土類
元素は酸化物に換算して7.5重量%を超えた場合の方
が焼結体の高熱伝導化がさらに進み、焼結性も良いこと
を見い出し、本願発明を完成したものである。特に希土
類元素がランタノイド系列の元素である場合に、その効
果は顕著である。ちなみに粒界相中における結晶化合物
相の粒界相全体に対する割合が60〜70%である場合
においても、焼結体は110〜120W/m・K以上の
高熱伝導率を達成することができる。
A part of such a highly thermally conductive silicon nitride sintered body itself has already been applied for a patent by the present inventor, and further filed in Japanese Patent Application Laid-Open Nos. 6-135977 and 7-48174. It has been published. And the silicon nitride sintered body described in these patent applications converts rare earth elements into oxides of 2.0 to 2.0.
It contains 7.5% by weight. However, as a result of further improvement research, the present inventor has found that when the content of the rare earth element exceeds 7.5% by weight in terms of oxide, the sintered body has higher thermal conductivity, and The inventors have found that they have good binding properties and completed the present invention. In particular, when the rare earth element is a lanthanoid element, the effect is remarkable. Incidentally, even when the ratio of the crystalline compound phase in the grain boundary phase to the entire grain boundary phase is 60 to 70%, the sintered body can achieve a high thermal conductivity of 110 to 120 W / m · K or more.

【0014】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る高熱伝導性窒化けい素
焼結体は、希土類元素を酸化物に換算して7.5重量%
を超え17.5重量%以下、不純物陽イオン元素として
のLi,Na,K,Fe,Ca,Mg,Sr,Ba,M
n,Bを合計で0.3重量%以下含有し、窒化けい素結
晶および粒界相から成るとともに粒界相中における結晶
化合物相の粒界相全体に対する割合が50%以上であ
り、かつ三点曲げ強度が室温で650MPa以上であ
り、熱伝導率が80W/m・K以上であり、気孔率が容
量比で2.5%以下であることを特徴とする。
The present invention has been completed based on the above findings. That is, the high thermal conductivity silicon nitride sintered body according to the present invention has a rare earth element converted to oxide of 7.5% by weight.
Over 17.5% by weight, Li, Na, K, Fe, Ca, Mg, Sr, Ba, M as impurity cation elements
n and B in total of 0.3% by weight or less, comprising silicon nitride crystal and grain boundary phase, wherein the ratio of the crystalline compound phase in the grain boundary phase to the whole grain boundary phase is 50% or more; It is characterized in that the point bending strength is 650 MPa or more at room temperature, the thermal conductivity is 80 W / m · K or more, and the porosity is 2.5% or less in volume ratio.

【0015】また、他の態様として希土類元素を酸化物
に換算して7.5重量%を超え17.5重量%以下含有
し、窒化けい素結晶および粒界相から成るとともに粒界
相中における結晶化合物相の粒界相全体に対する割合が
50%以上であり、かつ三点曲げ強度が室温で650M
Pa以上であり、熱伝導率が80W/m・K以上であ
り、気孔率が容量比で2.5%以下であることを特徴と
する。
In another embodiment, the rare earth element is contained in an amount of more than 7.5% by weight and not more than 17.5% by weight in terms of oxide, and is composed of silicon nitride crystals and a grain boundary phase and contained in the grain boundary phase. The ratio of the crystalline compound phase to the whole grain boundary phase is 50% or more, and the three-point bending strength is 650 M at room temperature.
Pa or more, thermal conductivity is 80 W / m · K or more, and porosity is 2.5% or less in terms of volume ratio.

【0016】さらに希土類元素としてはランタノイド系
列の元素が熱伝導率を向上させるために、特に好まし
い。
Further, as the rare earth element, a lanthanoid series element is particularly preferred for improving the thermal conductivity.

【0017】また、窒化アルミニウムまたはアルミナを
1.0重量%以下添加して構成してもよい。さらにアル
ミナを1.0重量%以下と窒化アルミニウムを1.0重
量%以下とを併用してもよい。
Further, aluminum nitride or alumina may be added in an amount of 1.0% by weight or less. Further, 1.0% by weight or less of alumina and 1.0% by weight or less of aluminum nitride may be used in combination.

【0018】また本発明の高熱伝導性窒化けい素焼結体
は、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wからなる群より選択される少なくとも1種を酸化物に
換算して0.1〜3.0重量%含有することが好まし
い。このTi,Zr,Hf,V,Nb,Ta,Cr,M
o,Wから成る群より選択される少なくとも1種は、酸
化物、炭化物、窒化物、けい化物、硼化物として窒化け
い素粉末に添加することにより含有させることができ
る。
Further, the high thermal conductive silicon nitride sintered body of the present invention comprises Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
It is preferable that at least one selected from the group consisting of W is contained in an amount of 0.1 to 3.0% by weight in terms of oxide. This Ti, Zr, Hf, V, Nb, Ta, Cr, M
At least one selected from the group consisting of o and W can be contained as an oxide, carbide, nitride, silicide, or boride by adding to silicon nitride powder.

【0019】さらに本発明に係る高熱伝導性窒化けい素
焼結体の製造方法は、酸素を1.7重量%以下、不純物
陽イオン元素としてのLi,Na,K,Fe,Ca,M
g,Sr,Ba,Mn,Bを合計で0.3重量%以下、
α相型窒化けい素を90重量%以上含有し、平均粒径
1.0μm以下の窒化けい素粉末に、希土類元素を酸化
物に換算して7.5重量%を超え17.5重量%以下
と、必要に応じてアルミナおよび窒化アルミニウムの少
なくとも一方を1.0重量%以下添加した原料混合体を
成形して成形体を調製し、得られた成形体を脱脂後、温
度1800〜2100℃で雰囲気加圧焼結し、上記焼結
温度から、上記希土類元素により焼結時に形成された液
相が凝固する温度までに至る焼結体の冷却速度を毎時1
00℃以下にして徐冷することを特徴とする。
Further, according to the method for producing a silicon nitride sintered body having high thermal conductivity according to the present invention, oxygen is not more than 1.7% by weight, and Li, Na, K, Fe, Ca, M as impurity cation elements are contained.
g, Sr, Ba, Mn and B in total of 0.3% by weight or less;
In silicon nitride powder containing at least 90% by weight of α-phase silicon nitride and having an average particle diameter of 1.0 μm or less, a rare earth element is converted into an oxide and exceeds 7.5% by weight to 17.5% by weight or less. And a raw material mixture to which at least one of alumina and aluminum nitride is added in an amount of 1.0% by weight or less as needed to prepare a molded body. Atmospheric pressure sintering, the cooling rate of the sintered body from the sintering temperature to the temperature at which the liquid phase formed during sintering by the rare earth element solidifies is 1 hour
It is characterized by gradually cooling to a temperature of not more than 00 ° C.

【0020】上記製造方法において、窒化けい素粉末
に、さらにアルミナおよび窒化アルミニウムの少なくと
も一方を1.0重量%以下添加するとよい。
In the above method, at least one of alumina and aluminum nitride may be further added to the silicon nitride powder in an amount of 1.0% by weight or less.

【0021】さらに窒化けい素粉末に、さらにTi,Z
r,Hf,V,Nb,Ta,Cr,Mo,Wの酸化物、
炭化物、窒化物、けい化物、硼化物からなる群より選択
される少なくとも1種を0.1〜3.0重量%添加する
とよい。
Further, Ti, Z are added to the silicon nitride powder.
oxides of r, Hf, V, Nb, Ta, Cr, Mo, W;
At least one selected from the group consisting of carbides, nitrides, silicides, and borides may be added in an amount of 0.1 to 3.0% by weight.

【0022】上記製造方法によれば、窒化けい素結晶組
織中に希土類元素等を含む粒界相が形成され、気孔率が
2.5%以下、熱伝導率が80W/m・K以上、三点曲
げ強度が室温で650MPa以上の機械的特性および熱
伝導特性が共に優れた窒化けい素焼結体が得られる。
According to the above manufacturing method, a grain boundary phase containing a rare earth element or the like is formed in the silicon nitride crystal structure, the porosity is 2.5% or less, the thermal conductivity is 80 W / m · K or more, A silicon nitride sintered body having a point bending strength of 650 MPa or more at room temperature and excellent in both mechanical properties and heat conduction properties is obtained.

【0023】本発明方法において使用され、焼結体の主
成分となる窒化けい素粉末としては、焼結性、強度およ
び熱伝導率を考慮して、酸素含有量が1.7重量%以
下、好ましくは0.5〜1.5重量%、Li,Na,
K,Fe,Mg,Ca,Sr,Ba,Mn,Bなどの不
純物陽イオン元素含有量が合計で0.3重量%以下、好
ましくは0.2重量%以下に抑制されたα相型窒化けい
素を90重量%以上、好ましくは93重量%以上含有
し、平均粒径が1.0μm以下、好ましくは0.4〜
0.8μm程度の微細な窒化けい素粉末を使用すること
ができる。
The silicon nitride powder used in the method of the present invention and serving as a main component of the sintered body has an oxygen content of 1.7% by weight or less in consideration of sinterability, strength and thermal conductivity. Preferably 0.5-1.5% by weight, Li, Na,
Α-phase silicon nitride in which the total content of impurity cation elements such as K, Fe, Mg, Ca, Sr, Ba, Mn, and B is suppressed to 0.3% by weight or less, preferably 0.2% by weight or less. Containing 90% by weight or more, preferably 93% by weight or more, and having an average particle size of 1.0 μm or less, preferably 0.4 to
A fine silicon nitride powder of about 0.8 μm can be used.

【0024】平均粒径が1.0μm以下の微細な原料粉
末を使用することにより、少量の焼結助剤であっても気
孔率が2.5%以下の緻密な焼結体を形成することが可
能であり、また焼結助剤が熱伝導特性を阻害するおそれ
も減少する。
By using a fine raw material powder having an average particle size of 1.0 μm or less, a dense sintered body having a porosity of 2.5% or less can be formed even with a small amount of a sintering aid. Is also possible, and the possibility that the sintering aid impairs the heat transfer properties is reduced.

【0025】またLi,Na,K,Fe,Ca,Mg,
Sr,Ba,Mn,Bの不純物陽イオン元素も熱伝導性
を阻害する物質となるため、80W/m・K以上の熱伝
導率を確保するためには、上記不純物陽イオン元素の含
有量は合計で0.3重量%以下とすることにより達成可
能である。特に同様の理由により、上記不純物陽イオン
元素の含有量は合計で0.2重量%以下とすることが、
さらに好ましい。ここで通常の窒化けい素焼結体を得る
ために使用される窒化けい素粉末には、特にFe,C
a,Mgが比較的に多く含有されているため、Fe,C
a,Mgの合計量が上記不純物陽イオン元素の合計含有
量の目安となる。
Also, Li, Na, K, Fe, Ca, Mg,
Since the impurity cation elements of Sr, Ba, Mn, and B are also substances that inhibit the thermal conductivity, the content of the impurity cation element must be at least 80 W / m · K to ensure the thermal conductivity of 80 W / m · K or more. This can be achieved by making the total 0.3% by weight or less. Particularly for the same reason, the content of the impurity cation element is set to 0.2% by weight or less in total.
More preferred. Here, the silicon nitride powder used for obtaining a normal silicon nitride sintered body includes, in particular, Fe, C
a, Mg are contained in a relatively large amount, so that Fe, C
The total amount of a and Mg is a measure of the total content of the impurity cation element.

【0026】さらに、β相型と比較して焼結性に優れた
α相型窒化けい素を90重量%以上含有する窒化けい素
原料粉末を使用することにより、高密度の焼結体を製造
することができる。
Further, a high-density sintered body can be produced by using a silicon nitride raw material powder containing 90% by weight or more of α-phase type silicon nitride which is superior in sinterability as compared with β-phase type. can do.

【0027】また窒化けい素原料粉末に焼結助剤として
添加する希土類元素としては、Ho,Er,Yb,Y,
La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなど
の酸化物もしくは焼結操作により、これらの酸化物とな
る物質が単独で、または2種以上の酸化物を組み合せた
ものを含んでもよいが、特に酸化ホルミウム(Ho
),酸化エルビウム(Er)が好ましい。特に
希土類元素としてランタノイド系列の元素であるHo,
Er,Ybを使用することにより、焼結性が良好にな
り、1850℃程度の低温度領域においても十分に緻密
な焼結体が得られる。したがって焼成装置の設備費およ
びランニングコストを低減できる効果も得られる。これ
らの焼結助剤は、窒化けい素原料粉末と反応して液相を
生成し、焼結促進剤として機能する。
Rare earth elements added as a sintering aid to the silicon nitride raw material powder include Ho, Er, Yb, Y,
Oxides such as La, Sc, Pr, Ce, Nd, Dy, Sm, and Gd, or substances that become these oxides by sintering operation alone or in combination of two or more oxides are included. Good, but especially holmium oxide (Ho 2 O
3 ), erbium oxide (Er 2 O 3 ) is preferred. In particular, Ho, which is a lanthanoid element as a rare earth element,
By using Er and Yb, sinterability is improved, and a sufficiently dense sintered body can be obtained even in a low temperature range of about 1850 ° C. Therefore, the effect of reducing the equipment cost and running cost of the firing apparatus can be obtained. These sintering aids react with the silicon nitride raw material powder to generate a liquid phase and function as sintering accelerators.

【0028】上記焼結助剤の添加量は、酸化物換算で原
料粉末に対して7.5重量%を超え17.5重量%以下
の範囲とする。この添加量が7.5重量%以下の場合
は、焼結体の緻密化あるいは高熱伝導化が不十分であ
り、特に希土類元素がランタノイド系元素のように原子
量が大きい元素の場合には、比較的低強度で比較的に低
熱伝導率の焼結体が形成される。一方、添加量が17.
5重量%を超える過量となると、過量の粒界相が生成
し、熱伝導率の低下や強度が低下し始めるので上記範囲
とする。特に同様の理由により8〜15重量%とするこ
とが望ましい。
The amount of the sintering aid added is in the range of more than 7.5% by weight and not more than 17.5% by weight based on the raw material powder in terms of oxide. When the addition amount is 7.5% by weight or less, the density of the sintered body or the high thermal conductivity is insufficient, and particularly when the rare earth element is an element having a large atomic weight such as a lanthanoid element, A sintered body having relatively low strength and relatively low thermal conductivity is formed. On the other hand, the addition amount is 17.
If the amount exceeds 5% by weight, an excessive amount of the grain boundary phase is generated, and the thermal conductivity and strength begin to decrease. Particularly, for the same reason, it is desirable to set the content to 8 to 15% by weight.

【0029】また本発明において他の選択的な添加成分
として使用するTi,Zr,Hf,V,Nb,Ta,C
r,Mo,Wの酸化物,炭化物、窒化物、けい化物、硼
化物は、上記希土類元素の焼結促進剤の機能を促進する
と共に、結晶組織において分散強化の機能を果しSi
焼結体の機械的強度を向上させるものであり、特
に、Hf,Tiの化合物が好ましい。これらの化合物の
添加量が0.1重量%未満の場合においては添加効果が
不充分である一方、3.0重量%を超える過量となる場
合には熱伝導率および機械的強度や電気絶縁破壊強度の
低下が起こるため、添加量は0.1〜3.0重量%の範
囲とする。特に0.2〜2重量%とすることが望まし
い。
In the present invention, Ti, Zr, Hf, V, Nb, Ta, C
The oxides, carbides, nitrides, silicides, and borides of r, Mo, and W promote the function of the sintering accelerator for the rare earth element, and also have the function of strengthening the dispersion of Si 3 in the crystal structure.
It is intended to improve the mechanical strength of the N 4 sintered body, and particularly, a compound of Hf and Ti is preferable. When the added amount of these compounds is less than 0.1% by weight, the effect of the addition is insufficient, while when the added amount exceeds 3.0% by weight, the thermal conductivity and mechanical strength and electric breakdown are caused. Since the strength is reduced, the amount of addition is in the range of 0.1 to 3.0% by weight. In particular, it is desirable that the content be 0.2 to 2% by weight.

【0030】また上記Ti,Zr,Hf等の化合物は窒
化けい素焼結体を黒色系に着色し不透明性を付与する遮
光剤としても機能する。そのため、特に光によって誤動
作を生じ易い集積回路等を搭載する回路基板を製造する
場合には、上記Ti等の化合物を適正に添加し、遮光性
に優れた窒化けい素基板とすることが望ましい。
The compounds such as Ti, Zr, and Hf also function as a light-shielding agent that imparts opacity by coloring the silicon nitride sintered body to a black color. Therefore, in particular, when manufacturing a circuit board on which an integrated circuit or the like which easily malfunctions due to light is mounted, it is desirable to appropriately add the compound such as Ti and the like to obtain a silicon nitride substrate excellent in light shielding properties.

【0031】さらに本発明において、他の選択的な添加
成分としてのアルミナ(Al)は、上記希土類元
素の焼結促進剤の機能を助長する役目を果すものであ
り、特に加圧焼結を行なう場合に著しい効果を発揮する
ものである。このAlの添加量が0.1重量%未
満の場合においては、より高温度での焼結が必要になる
一方、1.0重量%を超える過量となる場合には過量の
粒界相を生成したり、または窒化けい素に固溶し始め、
熱伝導の低下が起こるため、添加量は1重量%以下、好
ましくは0.1〜0.75重量%の範囲とする。特に強
度、熱伝導率共に良好な性能を確保するためには添加量
を0.1〜0.5重量%の範囲とすることが望ましい。
Furthermore, in the present invention, alumina (Al 2 O 3 ) as another optional additive component plays a role of promoting the function of the rare earth element sintering accelerator, and particularly, pressure sintering. This has a remarkable effect when knotting is performed. When the addition amount of Al 2 O 3 is less than 0.1% by weight, sintering at a higher temperature is required. On the other hand, when the addition amount exceeds 1.0% by weight, an excessive grain boundary is used. Phase or begin to dissolve in silicon nitride,
Since the heat conduction is reduced, the addition amount is 1% by weight or less, preferably in the range of 0.1 to 0.75% by weight. In particular, in order to ensure good performance in both strength and thermal conductivity, it is desirable that the amount of addition be in the range of 0.1 to 0.5% by weight.

【0032】また、後述するAlNと併用する場合に
は、その合計添加量は1.0重量%以下にすることが望
ましい。
When used in combination with AlN, which will be described later, the total amount thereof is desirably 1.0% by weight or less.

【0033】さらに他の添加成分としての窒化アルミニ
ウム(AlN)は焼結過程における窒化けい素の蒸発な
どを抑制するとともに、上記希土類元素の焼結促進剤と
しての機能をさらに助長する役目を果すものである。
Aluminum nitride (AlN) as another additive component serves to suppress the evaporation of silicon nitride during the sintering process and to further promote the function of the rare earth element as a sintering accelerator. It is.

【0034】AlNの添加量が0.1重量%未満(アル
ミナと併用する場合では0.05重量%未満)の場合に
おいては、より高温度での焼結が必要になる一方、1.
0重量%を超える過量となる場合には過量の粒界相を生
成したり、または窒化けい素に固溶し始め、熱伝導率の
低下が起こるため、添加量は0.1〜1.0重量%の範
囲とする。特に焼結性,強度,熱伝導率共に良好な性能
を確保するためには添加量を0.1〜0.5重量%の範
囲とすることが望ましい。なお前記Alと併用す
る場合には、AlNの添加量は0.05〜0.5重量%
の範囲が好ましい。
When the amount of AlN added is less than 0.1% by weight (less than 0.05% by weight when used in combination with alumina), sintering at a higher temperature is required, while
If the amount exceeds 0% by weight, an excessive amount of the grain boundary phase is generated, or the solid solution starts to be dissolved in silicon nitride to cause a decrease in thermal conductivity. % By weight. In particular, in order to ensure good performance in sinterability, strength, and thermal conductivity, it is desirable that the addition amount be in the range of 0.1 to 0.5% by weight. When used in combination with Al 2 O 3 , the addition amount of AlN is 0.05 to 0.5% by weight.
Is preferable.

【0035】また焼結体の気孔率は熱伝導率および強度
に大きく影響するため2.5%以下となるように製造す
る。気孔率が2.5%を超えると熱伝導の妨げとなり、
焼結体の熱伝導率が低下するとともに、焼結体の強度低
下が起こる。
Since the porosity of the sintered body greatly affects the thermal conductivity and the strength, the sintered body is manufactured to be 2.5% or less. If the porosity exceeds 2.5%, it hinders heat conduction,
As the thermal conductivity of the sintered body decreases, the strength of the sintered body decreases.

【0036】また、窒化けい素焼結体は組織的に窒化け
い素結晶と粒界相とから構成されるが、粒界相中の結晶
化合物相の割合は焼結体の熱伝導率に大きく影響し、本
発明に係る焼結体においては粒界相の50%以上とする
ことが必要であり、より好ましくは60%以上が結晶相
で占めることが望ましい。結晶相が50%未満では熱伝
導率が高く放熱特性に優れ、かつ高温強度に優れた焼結
体が得られにくくなるからである。
The silicon nitride sintered body is systematically composed of silicon nitride crystals and a grain boundary phase. The proportion of the crystalline compound phase in the grain boundary phase greatly affects the thermal conductivity of the sintered body. However, in the sintered body according to the present invention, it is necessary that the crystal phase accounts for 50% or more of the grain boundary phase, more preferably 60% or more. If the crystal phase is less than 50%, it becomes difficult to obtain a sintered body having high thermal conductivity, excellent heat dissipation characteristics, and excellent high-temperature strength.

【0037】さらに上記のように窒化けい素焼結体の気
孔率を2.5%以下にし、また窒化けい素結晶組織に形
成される粒界相の50%以上が結晶相で占めるようにす
るためには、窒化けい素成形体を温度1800〜210
0℃で2〜10時間程度、加圧焼結し、かつ焼結操作完
了直後における焼結体の冷却速度を毎時100℃以下に
して徐冷することが重要である。
Further, as described above, the porosity of the silicon nitride sintered body is set to 2.5% or less, and the crystal phase accounts for 50% or more of the grain boundary phase formed in the silicon nitride crystal structure. The silicon nitride compact was heated to a temperature of 1800 to 210
It is important to perform pressure sintering at 0 ° C. for about 2 to 10 hours and gradually cool the sintered body immediately after completion of the sintering operation at a cooling rate of 100 ° C. or less per hour.

【0038】焼結温度を1800℃未満とした場合に
は、焼結体の緻密化が不充分で気孔率が2.5vol%
以上になり機械的強度および熱伝導性が共に低下してし
まう。一方焼結温度が2100℃を超えると窒化けい素
成分自体が蒸発分解し易くなる。特に加圧焼結ではな
く、常圧焼結を実施した場合には、1800℃付近より
窒化けい素の分解蒸発が始まる。
When the sintering temperature is lower than 1800 ° C., the density of the sintered body is insufficient and the porosity is 2.5 vol%.
As a result, both the mechanical strength and the thermal conductivity decrease. On the other hand, when the sintering temperature exceeds 2100 ° C., the silicon nitride component itself tends to be vaporized and decomposed. In particular, when normal pressure sintering is performed instead of pressure sintering, decomposition and evaporation of silicon nitride starts at about 1800 ° C.

【0039】上記焼結操作完了直後における焼結体の冷
却速度は粒界相を結晶化させるために重要な制御因子で
あり、冷却速度が毎時100℃を超えるような急速冷却
を実施した場合には、焼結体組織の粒界相が非結晶質
(ガラス相)となり、焼結体に生成した液相が結晶相と
して粒界相に占める割合が20%未満となり、強度およ
び熱伝導性が共に低下してしまう。
The cooling rate of the sintered body immediately after the completion of the sintering operation is an important control factor for crystallizing the grain boundary phase, and when a rapid cooling is performed such that the cooling rate exceeds 100 ° C./hour. Is that the grain boundary phase of the sintered body structure becomes non-crystalline (glass phase), the ratio of the liquid phase generated in the sintered body as a crystalline phase to the grain boundary phase is less than 20%, and the strength and thermal conductivity are reduced. Both will fall.

【0040】上記冷却速度を厳密に調整すべき温度範囲
は、所定の焼結温度(1800〜2100℃)から、前
記の焼結助剤の反応によって生成する液相が凝固するま
での温度範囲で充分である。ちなみに前記のような焼結
助剤を使用した場合の液相凝固点は概略1600〜15
00℃程度である。そして少なくとも焼結温度から上記
液相凝固温度に至るまでの焼結体の冷却速度を毎時10
0℃以下、好ましくは50℃以下、さらに好ましくは2
5℃以下に制御することにより、粒界相の50%以上が
結晶相になり、熱伝導率および機械的強度が共に優れた
焼結体が得られる。
The temperature range in which the cooling rate should be strictly adjusted is a temperature range from a predetermined sintering temperature (1800 to 2100 ° C.) to a temperature at which a liquid phase produced by the reaction of the sintering aid solidifies. Is enough. Incidentally, the liquidus freezing point when using the sintering aid as described above is approximately 1600 to 15
It is about 00 ° C. The cooling rate of the sintered body at least from the sintering temperature to the above-mentioned liquid phase solidification temperature is set to 10
0 ° C. or lower, preferably 50 ° C. or lower, more preferably 2 ° C.
By controlling the temperature to 5 ° C. or less, 50% or more of the grain boundary phase becomes a crystalline phase, and a sintered body excellent in both thermal conductivity and mechanical strength can be obtained.

【0041】本発明に係る窒化けい素焼結体は、例えば
以下のようなプロセスを経て製造される。すなわち前記
所定の微細粒径を有し、また不純物含有量が少ない微細
な窒化けい素粉末に対して所定量の焼結助剤、有機バイ
ンダ等の必要な添加剤および必要に応じてAl
AlN,Ti化合物等を加えて原料混合体を調整し、次
に得られた原料混合体を成形して所定形状の成形体を得
る。原料混合体の成形法としては、汎用の金型プレス
法、ドクターブレード法のようなシート成形法などが適
用できる。上記成形操作に引き続いて、成形体を非酸化
性雰囲気中で温度600〜800℃、または空気中で温
度400〜500℃で1〜2時間加熱して、予め添加し
ていた有機バインダ成分を充分に除去し、脱脂する。次
に脱脂処理された成形体を窒素ガス、水素ガスやアルゴ
ンガスなどの不活性ガス雰囲気中で1800〜2100
℃の温度で所定時間雰囲気加圧焼結を行う。
The silicon nitride sintered body according to the present invention is manufactured through, for example, the following process. That is, a predetermined amount of a sintering aid, a necessary additive such as an organic binder, and optionally Al 2 O are added to the fine silicon nitride powder having the predetermined fine particle size and a small impurity content. 3 or an AlN or Ti compound is added to adjust the raw material mixture, and then the obtained raw material mixture is molded to obtain a molded body having a predetermined shape. As a forming method of the raw material mixture, a general-purpose mold pressing method, a sheet forming method such as a doctor blade method, or the like can be applied. Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours so that the organic binder component added in advance is sufficiently cooled. And degrease. Next, the degreased compact is placed in an atmosphere of an inert gas such as nitrogen gas, hydrogen gas or argon gas in an atmosphere of 1800-2100.
Atmospheric pressure sintering is performed at a temperature of ° C for a predetermined time.

【0042】上記製法によって製造された窒化けい素焼
結体は気孔率が2.5%以下、80W/m・K(25
℃)以上の熱伝導率を有し、また三点曲げ強度が常温で
650MPa以上と機械的特性にも優れている。
The silicon nitride sintered body manufactured by the above method has a porosity of 2.5% or less and 80 W / m · K (25
° C) or more, and has excellent three-point bending strength of 650 MPa or more at room temperature.

【0043】なお、低熱伝導性の窒化けい素に高熱伝導
性のSiC等を添加して焼結体全体としての熱伝導率を
80W/m・K以上にした窒化けい素焼結体は本発明の
範囲には含まれない。しかしながら、熱伝導率が80W
/m・K以上である窒化けい素焼結体に高熱伝導性のS
iC等を複合させた窒化けい素系焼結体の場合には、本
発明の範囲に含まれることは言うまでもない。
It should be noted that the silicon nitride sintered body of which the thermal conductivity as a whole is 80 W / m · K or more by adding high thermal conductivity SiC or the like to low thermal conductivity silicon nitride is the present invention. Not included in range. However, the thermal conductivity is 80W
/ M · K or higher silicon nitride sintered body with high thermal conductivity S
It goes without saying that a silicon nitride-based sintered body in which iC or the like is compounded is included in the scope of the present invention.

【0044】[0044]

【発明の実施の形態】次に本発明の実施形態を以下に示
す実施例を参照して具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be specifically described with reference to the following examples.

【0045】実施例1〜2および参考例1 酸素を1.3重量%、不純物陽イオン元素としてLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを
合計で0.15重量%含有し、α相型窒化けい素97%
を含む平均粒径0.55μmの窒化けい素原料粉末に対
して、焼結助剤として平均粒径0.9μmのHo
(酸化ホルミウム)粉末12.5重量%を添加し、エチ
ルアルコール中で窒化けい素製ボールを用いて72時間
湿式混合した後に乾燥して原料粉末混合体を調整した。
次に得られた原料粉末混合体に有機バインダを所定量添
加して均一に混合した後に、1000kg/cmの成
形圧力でプレス成形し、長さ50mm×幅50mm×厚
さ5mmの成形体を多数製作した。次に得られた成形体
を700℃の雰囲気ガス中において2時間脱脂した後
に、この脱脂体を窒素ガス雰囲気中9気圧にて1950
℃で6時間保持し、緻密化焼結を実施した後に、焼結炉
に付設した加熱装置への通電量を制御して焼結炉内温度
が1500℃まで降下するまでの間における焼結体の冷
却速度がそれぞれ100℃/hr(参考例1)、50℃
/hr(実施例1)、25℃/hr(実施例2)となる
ように調整して焼結体を徐冷し、それぞれ実施例および
参考例に係る窒化けい素セラミックス焼結体を調製し
た。
Examples 1-2 and Reference Example 1 1.3% by weight of oxygen, Li, as impurity cation element
Na, K, Fe, Ca, Mg, Sr, Ba, Mn, and B are contained in a total of 0.15% by weight, and α-phase silicon nitride is 97%.
Is added to a raw material powder of silicon nitride having an average particle size of 0.55 μm and Ho 2 O 3 having an average particle size of 0.9 μm as a sintering aid.
(Holmium oxide) powder (12.5% by weight) was added, and the mixture was wet-mixed in ethyl alcohol using silicon nitride balls for 72 hours and then dried to prepare a raw material powder mixture.
Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture, and the mixture is uniformly mixed. The mixture is press-formed at a forming pressure of 1000 kg / cm 2 to obtain a formed body having a length of 50 mm × a width of 50 mm × a thickness of 5 mm. Made many. Next, the obtained molded body was degreased in an atmosphere gas at 700 ° C. for 2 hours, and then this degreased body was subjected to 1950 at 9 atm in a nitrogen gas atmosphere.
C. for 6 hours, and after performing the densification sintering, control the amount of electricity to the heating device attached to the sintering furnace to control the sintered body until the temperature in the sintering furnace drops to 1500 ° C. At a cooling rate of 100 ° C./hr (Reference Example 1) and 50 ° C., respectively.
/ Hr (Example 1) and 25 ° C./hr (Example 2), and the sintered body was gradually cooled to prepare silicon nitride ceramic sintered bodies according to Examples and Reference Examples, respectively. .

【0046】比較例1 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で
焼結体を冷却した点以外は参考例1と同一条件で焼結処
理して比較例1に係る窒化けい素焼結体を調製した。
Comparative Example 1 On the other hand, immediately after completion of the densification sintering, the power of the heating device was turned off and the sintered body was cooled at a conventional cooling rate by furnace cooling (about 500 ° C./hr). Sintering was performed under the same conditions as in Example 1 to prepare a silicon nitride sintered body according to Comparative Example 1.

【0047】比較例2 酸素を1.5重量%、前記不純物陽イオン元素を合計で
0.6重量%含有し、α相型窒化けい素93%を含む平
均粒径0.60μmの窒化けい素原料粉末を用いた点以
外は参考例1と同一条件で処理し、比較例2に係る窒化
けい素セラミックス焼結体を調製した。
Comparative Example 2 Silicon nitride containing 1.5% by weight of oxygen and a total of 0.6% by weight of the impurity cation element and containing 93% of α-phase type silicon nitride and having an average particle diameter of 0.60 μm Processing was performed under the same conditions as in Reference Example 1 except that the raw material powder was used, to prepare a silicon nitride ceramics sintered body according to Comparative Example 2.

【0048】比較例3 酸素を1.7重量%、前記不純物陽イオン元素を合計で
0.7重量%含有し、α相型窒化けい素91%を含む平
均粒径1.2μmの窒化けい素原料粉末を用いた点以外
は参考例1と同一条件で処理し、比較例3に係る窒化け
い素焼結体を調製した。
COMPARATIVE EXAMPLE 3 Silicon nitride containing 1.7% by weight of oxygen and 0.7% by weight of the impurity cation element in total and containing 91% of α-phase type silicon nitride and having an average particle size of 1.2 μm Except for using the raw material powder, treatment was performed under the same conditions as in Reference Example 1 to prepare a silicon nitride sintered body according to Comparative Example 3.

【0049】こうして得た実施例1〜2,参考例1およ
び比較例1〜3に係る窒化けい素焼結体について気孔
率、熱伝導率(25℃)、室温での三点曲げ強度の平均
値を測定した。さらに、各焼結体をX線回折法によって
粒界相に占める結晶相の割合(面積比)を測定し、下記
表1に示す結果を得た。
The average values of the porosity, the thermal conductivity (25 ° C.), and the three-point bending strength at room temperature of the silicon nitride sintered bodies according to Examples 1 to 2, Reference Example 1 and Comparative Examples 1 to 3 thus obtained. Was measured. Furthermore, the ratio (area ratio) of the crystal phase to the grain boundary phase of each sintered body was measured by X-ray diffraction, and the results shown in Table 1 below were obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】表1に示す結果から明らかなように実施例
および参考例に係る窒化けい素セラミックス焼結体にお
いては、比較例1と比較して緻密化焼結完了直後におけ
る焼結体の冷却速度を従来より低く設定しているため、
粒界相に結晶相を含み、結晶相の占める割合が高い程、
高熱伝導率を有する放熱性の高い高強度焼結体が得られ
た。
As is clear from the results shown in Table 1, in the silicon nitride ceramic sintered bodies according to the examples and the reference examples, compared with the comparative example 1, the cooling rate of the sintered body immediately after the completion of the densification sintering Is set lower than before,
The crystal phase is included in the grain boundary phase, and the higher the proportion of the crystal phase,
A high-strength sintered body having high heat conductivity and high heat dissipation was obtained.

【0052】一方、比較例1のように焼結体の冷却速度
を大きく設定し、急激に冷却した場合は粒界相において
結晶相が占める割合が10%以下と少なく熱伝導率が低
下した。また、比較例2のように前記不純物陽イオン元
素を合計量の0.6重量%と多く含有した窒化けい素粉
末を用いた場合は焼結体の冷却速度を実施例1と同一に
しても粒界相の大部分が非結晶質で形成され熱伝導率が
低下した。
On the other hand, when the cooling rate of the sintered body was set to a high value as in Comparative Example 1 and the cooling was performed rapidly, the proportion of the crystal phase in the grain boundary phase was as small as 10% or less, and the thermal conductivity was lowered. Further, when a silicon nitride powder containing as much as 0.6% by weight of the total amount of the impurity cation elements as in Comparative Example 2 was used, the cooling rate of the sintered body was the same as in Example 1. Most of the grain boundary phase was formed in an amorphous state, and the thermal conductivity was lowered.

【0053】さらに比較例3のように平均粒径が1.2
μmと粗い窒化けい素粉末を用いた場合は、焼結におい
て緻密化が不充分で強度、熱伝導率とも低下した。
Further, as in Comparative Example 3, the average particle size was 1.2.
When silicon nitride powder as coarse as μm was used, densification was insufficient in sintering, and both strength and thermal conductivity were reduced.

【0054】実施例3〜7,参考例2〜10および比較
例4〜7 実施例3〜7,参考例2〜10として参考例1において
使用した窒化けい素粉末とHo粉末とを表2に示
す組成比となるように調合して原料混合体をそれぞれ調
製した。
Examples 3 to 7, Reference Examples 2 to 10 and Comparison
Examples 4 to 7 The silicon nitride powder and the Ho 2 O 3 powder used in Reference Example 1 as Examples 3 to 7 and Reference Examples 2 to 10 were blended so as to have the composition ratios shown in Table 2, and a raw material mixture was prepared. Was prepared respectively.

【0055】次に得られた各原料混合体を参考例1と同
一条件で成形脱脂処理した後、表2に示す条件で焼結処
理してそれぞれ実施例3〜7および参考例2〜10に係
る窒化けい素セラミックス焼結体を製造した。
Next, each raw material mixture obtained was molded and degreased under the same conditions as in Reference Example 1, and then sintered under the conditions shown in Table 2 to give Examples 3 to 7 and Reference Examples 2 to 10, respectively. Such a silicon nitride ceramic sintered body was manufactured.

【0056】一方比較例4〜6として表2に示すように
Hoを過量に添加したもの(比較例4)、Ho
を過少量に添加したもの(比較例5)、Ho
を過量に添加したもの(比較例6)の原料混合体をそれ
ぞれ調製し、参考例1と同一条件で原料混合から焼結操
作を実施してそれぞれ比較例4〜6に係る焼結体を製造
した。
Meanwhile those added to excess of Ho 2 O 3 as shown in Table 2 as Comparative Examples 4 to 6 (Comparative Example 4), Ho 2
O 3 added in an excessively small amount (Comparative Example 5), Ho 2 O 3
Of the raw materials (Comparative Example 6) in which excessive amounts were added, and sintering operations were performed from the raw material mixture under the same conditions as in Reference Example 1 to produce sintered bodies according to Comparative Examples 4 to 6, respectively. did.

【0057】また、比較例7として焼結温度を1750
℃にした点以外は参考例1と同一条件で原料混合から焼
結操作を実施して比較例7に係る焼結体を製造した。
As a comparative example 7, the sintering temperature was 1750
A sintering operation was performed from the raw material mixture under the same conditions as in Reference Example 1 except that the temperature was changed to ° C., thereby producing a sintered body according to Comparative Example 7.

【0058】こうして製造した実施例3〜7,参考例2
〜10および比較例4〜7に係る各窒化けい素セラミッ
クス焼結体について参考例1と同一条件で気孔率、熱伝
導率(25℃)、室温での三点曲げ強度の平均値、X線
回折法による粒界相に占める結晶相の割合を測定し、下
記表2に示す結果を得た。
Examples 3 to 7 thus produced and Reference Example 2
Porosity, thermal conductivity (25 ° C.), average value of three-point bending strength at room temperature, and X-rays for the silicon nitride ceramics sintered bodies according to Comparative Examples 4 to 7 and Comparative Examples 4 to 7 under the same conditions as in Reference Example 1. The ratio of the crystal phase to the grain boundary phase was measured by a diffraction method, and the results shown in Table 2 below were obtained.

【0059】[0059]

【表2】 [Table 2]

【0060】表2に示す結果から明らかなように、Ho
を所定量含有し、焼結後の冷却速度を所定に設定
した実施例および参考例に係る焼結体は、いずれも高熱
伝導率で高強度値を有している。一方、比較例4〜6に
示すように、Ho成分が過少量、あるいは過量添
加された場合は、緻密化が不充分であったり、粒界相が
過量あるいは粒界相に占める結晶相の割合が低過ぎるた
めに、曲げ強度が低下したり、または熱伝導率が劣るこ
とが確認された。また焼結温度を1750℃に設定した
比較例7に係る焼結体は緻密化が不十分であり、強度お
よび熱伝導率が共に低下した。
As is clear from the results shown in Table 2, Ho
The sintered bodies according to Examples and Reference Examples which contain a predetermined amount of 2 O 3 and have a predetermined cooling rate after sintering have a high thermal conductivity and a high strength value. On the other hand, as shown in Comparative Examples 4 to 6, when the Ho 2 O 3 component is excessively small or excessively added, the densification is insufficient or the crystal in which the grain boundary phase is excessive or occupies the grain boundary phase. It was confirmed that the bending strength was lowered or the thermal conductivity was inferior because the proportion of the phase was too low. The sintered body according to Comparative Example 7 in which the sintering temperature was set to 1750 ° C. was insufficiently densified, and both the strength and the thermal conductivity were reduced.

【0061】実施例8〜14および参考例11〜34 実施例および参考例として参考例1において使用したH
粉末に置き換えて表3に示す希土類酸化物を表
3に示す組成比となるように配合した以外は参考例1と
同一条件で実施例8〜14および参考例11〜34に係
る窒化けい素セラミックス焼結体を製造した。
Examples 8 to 14 and Reference Examples 11 to 34 H used in Examples and Reference Example 1 as Reference Examples
According to Examples 8 to 14 and Reference Examples 11 to 34 under the same conditions as in Reference Example 1 except that the rare earth oxides shown in Table 3 were blended so as to have the composition ratios shown in Table 3 instead of the o 2 O 3 powder. A silicon nitride ceramic sintered body was manufactured.

【0062】こうして得た各実施例に係る焼結体につい
て参考例1と同一条件で気孔率、熱伝導率(25℃)、
室温での三点曲げ強度の平均値、X線回折による粒界相
に占める結晶相の割合を測定し下記表3に示す結果を得
た。
The porosity, thermal conductivity (25 ° C.),
The average value of the three-point bending strength at room temperature and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured, and the results shown in Table 3 below were obtained.

【0063】[0063]

【表3】 [Table 3]

【0064】表3に示す結果から明らかなようにHo
に置き換えて他の希土類元素を使用した実施例およ
び参考例に係る焼結体はHo添加のものと同等の
性能を有することが確認された。
As is clear from the results shown in Table 3, Ho 2
Sintered bodies replaced with O 3 according to Examples and Reference Examples using other rare earth elements was confirmed to have a similar performance to that of Ho 2 O 3 added.

【0065】実施例15,参考例35〜45および比較
例8〜11 参考例1において使用した窒化けい素粉末とHo
粉末とAl粉末とを表4に示す組成比となるよう
に調合して原料混合体をそれぞれ調製した。
Example 15, Reference Examples 35 to 45 and Comparison
Examples 8 to 11 The silicon nitride powder used in Reference Example 1 and Ho 2 O 3
The powder and the Al 2 O 3 powder were blended so as to have the composition ratios shown in Table 4 to prepare raw material mixtures.

【0066】次に得られた各原料混合体を参考例1と同
一条件で成形脱脂処理した後、表4に示す条件で焼結処
理してそれぞれ実施例15および参考例35〜45に係
る窒化けい素セラミックス焼結体を製造した。
Next, each raw material mixture obtained was subjected to molding and degreasing under the same conditions as in Reference Example 1, and then subjected to sintering treatment under the conditions shown in Table 4 to obtain nitriding products according to Example 15 and Reference Examples 35 to 45, respectively. A silicon ceramic sintered body was manufactured.

【0067】一方比較例8〜11として表4に示すよう
にHoを過量に添加したもの(比較例8)、Ho
を過少量に添加したもの(比較例9)、Al
を過量に添加したもの(比較例10)、Ho
過量に添加したもの(比較例11)の原料混合体をそれ
ぞれ調製し、参考例1と同一条件で原料混合から焼結操
作を実施してそれぞれ比較例8〜11に係る焼結体を製
造した。
On the other hand, as shown in Table 4, Comparative Examples 8 to 11 each containing Ho 2 O 3 in an excessive amount (Comparative Example 8)
One in which a small amount of 2 O 3 was added (Comparative Example 9), Al 2 O
3 (Comparative Example 10) and a raw material mixture of Ho 2 O 3 (Comparative Example 11) were added, and the sintering operation was performed from the raw material mixture under the same conditions as in Reference Example 1. Was performed to produce sintered bodies according to Comparative Examples 8 to 11, respectively.

【0068】こうして製造した各実施例,参考例および
比較例に係る各窒化けい素セラミックス焼結体について
実施例1と同一条件で気孔率、熱伝導率(25℃)、室
温での三点曲げ強度の平均値、X線回折法による粒界相
に占める結晶相の割合を測定し、下記表4に示す結果を
得た。
The porosity, thermal conductivity (25 ° C.), and three-point bending at room temperature of the silicon nitride ceramics sintered bodies according to Examples, Reference Examples, and Comparative Examples manufactured in this manner were the same as in Example 1. The average value of the strength and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured, and the results shown in Table 4 below were obtained.

【0069】[0069]

【表4】 [Table 4]

【0070】表4に示す結果から明らかなように、Ho
,Alを所定量含有し、焼結後の冷却速度
を所定に設定した実施例および参考例に係る焼結体は、
いずれも高熱伝導率で高強度値を有している。一方、比
較例8〜11に示すように、Ho,Al
少なくとも1種の成分が過少量、あるいは過量添加され
た場合は、緻密化が不充分であったり、粒界相が過量あ
るいは粒界相に占める結晶相の割合が低過ぎるために、
曲げ強度が低下したり、または熱伝導率が劣ることが確
認された。
As is clear from the results shown in Table 4, Ho
The sintered bodies according to the examples and the reference examples in which 2 O 3 and Al 2 O 3 are contained in predetermined amounts and the cooling rate after sintering is set to predetermined,
All have a high thermal conductivity and a high strength value. On the other hand, as shown in Comparative Examples 8 to 11, when at least one component of Ho 2 O 3 and Al 2 O 3 is excessively small or excessively added, the densification is insufficient or the grain boundary is insufficient. Because the phase is excessive or the proportion of the crystal phase in the grain boundary phase is too low,
It was confirmed that the bending strength was lowered or the thermal conductivity was inferior.

【0071】参考例46〜69 参考例46〜69として参考例39において使用したH
粉末に置き換えて表5に示す希土類酸化物を表
5に示す組成比となるように配合した以外は参考例39
と同一条件で処理して各参考例に係る窒化けい素セラミ
ックス焼結体を製造した。
Reference Examples 46 to 69 H used in Reference Example 39 as Reference Examples 46 to 69
Reference Example 39 except that the rare earth oxides shown in Table 5 were blended so as to have the composition ratios shown in Table 5 instead of the o 2 O 3 powder.
The same conditions were used to produce silicon nitride ceramics sintered bodies according to Reference Examples.

【0072】こうして得た各参考例に係る焼結体につい
て参考例39と同一条件で気孔率、熱伝導率(25
℃)、室温での三点曲げ強度の平均値、X線回折による
粒界相に占める結晶相の割合を測定し下記表5に示す結
果を得た。
The porosity and thermal conductivity (25%) of the thus obtained sintered bodies according to Reference Examples were obtained under the same conditions as in Reference Example 39.
C), the average value of the three-point bending strength at room temperature, and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured, and the results shown in Table 5 below were obtained.

【0073】[0073]

【表5】 [Table 5]

【0074】表5に示す結果から明らかなようにHo
に置き換えて他の希土類元素を使用した各参考例に
係る焼結体はHo添加のものと同等の性能を有す
ることが確認された。
As is clear from the results shown in Table 5, Ho 2
Sintered bodies replaced with O 3 according to the reference example using the other rare earth elements was confirmed to have a similar performance to that of Ho 2 O 3 added.

【0075】次に添加剤として窒化アルミニウム(Al
N)を使用した場合について、以下に示す実施例を参照
して具体的に説明する。
Next, aluminum nitride (Al
The case where N) is used will be specifically described with reference to the following examples.

【0076】実施例16および参考例70〜71 酸素を1.3重量%、前記不純物陽イオン元素を合計で
0.15重量%含有し、α相型窒化けい素97%を含む
平均粒径0.55μmの窒化けい素原料粉末に対して、
焼結助剤として平均粒径0.9μmのHo(酸化
ホルミウム)粉末12.5重量%、平均粒径0.8μm
のAlN(窒化アルミニウム)粉末0.25重量%を添
加し、エチルアルコール中で窒化けい素製ボールを用い
て72時間湿式混合した後に乾燥して原料粉末混合体を
調整した。次に得られた原料粉末混合体に有機バインダ
を所定量添加して均一に混合した後に、1000kg/
cmの成形圧力でプレス成形し、長さ50mm×幅5
0mm×厚さ5mmの成形体を多数製作した。次に得ら
れた成形体を700℃の雰囲気ガス中において2時間脱
脂した後に、この脱脂体を窒素ガス雰囲気中9気圧にて
1900℃で6時間保持し、緻密化焼結を実施した後
に、焼結炉に付設した加熱装置への通電量を制御して焼
結炉内温度が1500℃まで降下するまでの間における
焼結体の冷却速度がそれぞれ100℃/hr(参考例7
0)、50℃/hr(参考例71)、25℃/hr(実
施例16)となるように調整して焼結体を徐冷し、それ
ぞれ実施例および参考例に係る窒化けい素セラミックス
焼結体を調製した。
Example 16 and Reference Examples 70 to 71 An average particle diameter of 1.3% by weight of oxygen, 0.15% by weight of the above-mentioned impurity cation element in total, and 97% of α-phase silicon nitride. .55 μm silicon nitride raw material powder
12.5% by weight of Ho 2 O 3 (holmium oxide) powder having an average particle diameter of 0.9 μm as a sintering aid, and an average particle diameter of 0.8 μm
0.25% by weight of AlN (aluminum nitride) powder was added, wet-mixed in ethyl alcohol using a silicon nitride ball for 72 hours, and then dried to prepare a raw material powder mixture. Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture, and the mixture is uniformly mixed.
Press molding with a molding pressure of cm 2 , length 50 mm × width 5
A large number of compacts having a size of 0 mm and a thickness of 5 mm were produced. Next, after the obtained compact was degreased in an atmosphere gas at 700 ° C. for 2 hours, the degreased body was held at 1900 ° C. for 6 hours at 9 atm in a nitrogen gas atmosphere, and after densifying and sintering, The cooling rate of the sintered body was 100 ° C./hr until the temperature in the sintering furnace dropped to 1500 ° C. by controlling the amount of electricity to the heating device attached to the sintering furnace (Reference Example 7).
0), 50 ° C./hr (Reference Example 71), and 25 ° C./hr (Example 16), and the sintered body was gradually cooled, and sintered silicon nitride ceramics according to Examples and Reference Examples, respectively. A body was prepared.

【0077】比較例12 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で
焼結体を冷却した点以外は参考例70と同一条件で焼結
処理して比較例12に係る窒化けい素焼結体を調製し
た。
Comparative Example 12 On the other hand, immediately after completion of the densification sintering, the power of the heating device was turned off and the sintered body was cooled at the conventional cooling rate by furnace cooling (about 500 ° C./hr). Sintering was performed under the same conditions as in Example 1 to prepare a silicon nitride sintered body according to Comparative Example 12.

【0078】比較例13 酸素を1.5重量%、前記不純物陽イオン元素を合計で
0.6重量%含有し、α相型窒化けい素93%を含む平
均粒径0.60μmの窒化けい素原料粉末を用いた点以
外は参考例70と同一条件で処理し、比較例13に係る
窒化けい素セラミックス焼結体を調製した。
Comparative Example 13 Silicon nitride containing 1.5% by weight of oxygen and a total of 0.6% by weight of the impurity cation element and containing 93% of α-phase silicon nitride and having an average particle diameter of 0.60 μm A treatment was performed under the same conditions as in Reference Example 70 except that the raw material powder was used, to prepare a silicon nitride ceramics sintered body according to Comparative Example 13.

【0079】比較例14 酸素を1.7重量%、前記不純物陽イオン元素を合計で
0.7重量%含有し、α相型窒化けい素91%を含む平
均粒径1.2μmの窒化けい素原料粉末を用いた点以外
は参考例70と同一条件で処理し、比較例14に係る窒
化けい素焼結体を調製した。
Comparative Example 14 Silicon nitride containing 1.7% by weight of oxygen and 0.7% by weight of the above-mentioned impurity cation element in total and containing 91% of α-phase type silicon nitride and having an average particle diameter of 1.2 μm Processing was performed under the same conditions as in Reference Example 70 except that the raw material powder was used, to thereby prepare a silicon nitride sintered body according to Comparative Example 14.

【0080】こうして得た各実施例,参考例および比較
例に係る窒化けい素焼結体について気孔率、熱伝導率
(25℃)、室温での三点曲げ強度の平均値を測定し
た。さらに、各焼結体をX線回折法によって粒界相に占
める結晶相の割合(面積比)を測定し、下記表6に示す
結果を得た。
The porosity, the thermal conductivity (25 ° C.), and the average value of the three-point bending strength at room temperature of the silicon nitride sintered bodies according to the respective Examples, Reference Examples and Comparative Examples thus obtained were measured. Furthermore, the ratio (area ratio) of the crystal phase to the grain boundary phase of each sintered body was measured by X-ray diffraction, and the results shown in Table 6 below were obtained.

【0081】[0081]

【表6】 [Table 6]

【0082】表6に示す結果から明らかなように実施例
16および参考例70〜71に係る窒化けい素セラミッ
クス焼結体においては、比較例12と比較して緻密化焼
結完了直後における焼結体の冷却速度を従来より低く設
定しているため、粒界相に結晶相を含み、結晶相の占め
る割合が高い程、高熱伝導率を有する放熱性の高い高強
度焼結体が得られた。
As is clear from the results shown in Table 6, in the silicon nitride ceramics sintered bodies according to Example 16 and Reference Examples 70 to 71, compared with Comparative Example 12, the sintering immediately after the completion of densification sintering was performed. Since the cooling rate of the body was set lower than before, the crystal phase was included in the grain boundary phase, and the higher the proportion of the crystal phase, the higher the heat-radiating high-strength sintered body having high thermal conductivity was obtained. .

【0083】一方、比較例12のように焼結体の冷却速
度を大きく設定し、急激に冷却した場合は粒界相におい
て結晶相が占める割合が少なく熱伝導率が低下した。ま
た、比較例13のように不純物陽イオン元素を0.6重
量%と多く含有した窒化けい素粉末を用いた場合は焼結
体の冷却速度を参考例70と同一にしても粒界相の大部
分が非結晶質で形成され熱伝導率が低下した。
On the other hand, when the cooling rate of the sintered body was set to a high value as in Comparative Example 12, and the crystal was rapidly cooled, the proportion of the crystal phase in the grain boundary phase was small and the thermal conductivity was lowered. Further, when a silicon nitride powder containing as much as 0.6% by weight of the impurity cation element as in Comparative Example 13 was used, even if the cooling rate of the sintered body was the same as that of Reference Example 70, Most of them were formed in an amorphous state, and the thermal conductivity was lowered.

【0084】さらに比較例14のように平均粒径が1.
2μmと粗い窒化けい素粉末を用いた場合は、焼結にお
いて緻密化が不充分で強度、熱伝導率とも低下した。
Further, as in Comparative Example 14, the average particle size was 1.
When silicon nitride powder having a coarse particle diameter of 2 μm was used, densification was insufficient in sintering, and both strength and thermal conductivity were reduced.

【0085】参考例72〜86および比較例15〜21 参考例72〜86として参考例70において使用した窒
化けい素粉末とHo粉末とAlN粉末と平均粒径
0.5μmのAl粉末とを表7に示す組成比とな
るように調合して原料混合体をそれぞれ調製した。
Reference Examples 72 to 86 and Comparative Examples 15 to 21 Silicon nitride powder, Ho 2 O 3 powder, AlN powder and Al 2 O having an average particle diameter of 0.5 μm used in Reference Example 70 as Reference Examples 72 to 86. The three powders were blended so as to have the composition ratios shown in Table 7 to prepare raw material mixtures.

【0086】次に得られた各原料混合体を参考例70と
同一条件で成形脱脂処理した後、表7に示す条件で焼結
処理してそれぞれ参考例72〜86に係る窒化けい素セ
ラミックス焼結体を製造した。
Next, each of the obtained raw material mixtures was subjected to molding and degreasing under the same conditions as in Reference Example 70, and then sintered under the conditions shown in Table 7 to obtain the silicon nitride ceramics according to Reference Examples 72 to 86, respectively. A compact was produced.

【0087】一方比較例15〜21として表7に示すよ
うにHoを過量に添加したもの(比較例15)、
Hoを過少量に添加したもの(比較例16)、A
lNを過量に添加したもの(比較例17)、Ho
を過量に添加したもの(比較例18),AlNとAl
との合計添加量を過量に設定したもの(比較例19
および20),上記合計添加量を過少に設定したもの
(比較例21)の原料混合体をそれぞれ調製し、参考例
70と同一条件で原料混合から焼結操作を実施してそれ
ぞれ比較例15〜21に係る焼結体を製造した。
On the other hand, as shown in Table 7, Comparative Examples 15 to 21 in which Ho 2 O 3 was added in an excessive amount (Comparative Example 15)
A sample in which Ho 2 O 3 was added in an excessively small amount (Comparative Example 16), A
One with excessive addition of 1N (Comparative Example 17), Ho 2 O 3
(Comparative Example 18), AlN and Al 2
The total amount added with O 3 was set to an excessive amount (Comparative Example 19)
And 20), a raw material mixture in which the total addition amount was set to be too small (Comparative Example 21) was prepared, and the sintering operation was performed from the raw material mixture under the same conditions as in Reference Example 70. 21 was produced.

【0088】こうして製造した各実施例,参考例および
比較例に係る各窒化けい素セラミックス焼結体について
参考例70と同一条件で気孔率、熱伝導率(25℃)、
室温での三点曲げ強度の平均値、X線回折法による粒界
相に占める結晶相の割合を測定し、下記表7に示す結果
を得た。
The porosity, the thermal conductivity (25 ° C.), and the porosity of the silicon nitride ceramics sintered bodies according to Examples, Reference Examples, and Comparative Examples manufactured in the same manner as in Reference Example 70 were obtained.
The average value of the three-point bending strength at room temperature and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured, and the results shown in Table 7 below were obtained.

【0089】[0089]

【表7】 [Table 7]

【0090】表7に示す結果から明らかなように、Ho
、必要に応じてAlN,Alを所定量含有
し、焼結後の冷却速度を所定の低速度に設定した参考例
72〜86に係る焼結体は、いずれも高熱伝導率で高強
度値を有している。一方、比較例15〜21に示すよう
に、Ho,AlNの少なくとも1種の成分または
AlNとAl成分の合計量が過少量、あるいは過
量添加された場合は、緻密化が不充分であったり、粒界
相が過量あるいは粒界相に占める結晶相の割合が低過ぎ
るために、曲げ強度が低下、または熱伝導率が劣ること
が確認された。
As is clear from the results shown in Table 7, Ho
2 O 3, optionally AlN, the Al 2 O 3 contains a predetermined amount, the sintered body according to the reference example 72 to 86 set the cooling rate after sintering a predetermined low speed are both high thermal conductivity It has a high strength value in percent. On the other hand, as shown in Comparative Examples 15 to 21, when at least one component of Ho 2 O 3 and AlN or the total amount of AlN and Al 2 O 3 components is too small or too large, densification is not achieved. It was confirmed that the bending strength was lowered or the thermal conductivity was inferior due to insufficiency, an excessive amount of the grain boundary phase or an excessively low proportion of the crystal phase in the grain boundary phase.

【0091】参考例87〜101 参考例70において使用したHo粉末に置き換え
て表8に示す希土類酸化物を表8に示す組成比となるよ
うに配合した以外は参考例70と同一条件で処理して参
考例87〜101に係る窒化けい素セラミックス焼結体
を製造した。
Reference Examples 87 to 101 The same conditions as in Reference Example 70, except that the rare earth oxides shown in Table 8 were blended so as to have the composition ratios shown in Table 8 instead of the Ho 2 O 3 powder used in Reference Example 70. To produce silicon nitride ceramics sintered bodies according to Reference Examples 87 to 101.

【0092】こうして得た各参考例に係る焼結体につい
て参考例70と同一条件で気孔率、熱伝導率(25
℃)、室温での三点曲げ強度の平均値、X線回折による
粒界相に占める結晶相の割合を測定し下記表8に示す結
果を得た。
The porosity and thermal conductivity (25%) of the thus obtained sintered bodies according to Reference Examples were obtained under the same conditions as Reference Example 70.
C), the average value of the three-point bending strength at room temperature, and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured, and the results shown in Table 8 below were obtained.

【0093】[0093]

【表8】 [Table 8]

【0094】表8に示す結果から明らかなようにHo
に置き換えて他の希土類元素を使用した参考例87
〜101に係る焼結体はHo添加のものと同等の
性能を有することが確認された。
As is clear from the results shown in Table 8, Ho 2
Reference Example 87 Using Another Rare Earth Element Instead of O 3
It was confirmed that the sintered bodies according to Nos. 101 to 101 had the same performance as that of the sintered body to which Ho 2 O 3 was added.

【0095】次にHf化合物等を添加したSi
結体について以下に示す実施例を参照して具体的に説明
する。
Next, a Si 3 N 4 sintered body to which an Hf compound or the like is added will be specifically described with reference to the following examples.

【0096】実施例17〜18および参考例102 酸素を1.3重量%、前記不純物陽イオン元素を合計で
0.15重量%含有し、α相型窒化けい素97%を含む
平均粒径0.55μmの窒化けい素原料粉末に対して、
焼結助剤として平均粒径0.9μmのHo(酸化
ホルミウム)粉末12.5重量%、平均粒径1μmのH
fO(酸化ハフニウム)粉末1.5重量%を添加し、
エチルアルコール中で窒化けい素製ボールを用いて72
時間湿式混合した後に乾燥して原料粉末混合体を調整し
た。次に得られた原料粉末混合体に有機バインダを所定
量添加して均一に混合した後に、1000kg/cm
の成形圧力でプレス成形し、長さ50mm×幅50mm
×厚さ5mmの成形体を多数製作した。次に得られた成
形体を700℃の雰囲気ガス中において2時間脱脂した
後に、この脱脂体を窒素ガス雰囲気中9気圧にて190
0℃で6時間保持し、緻密化焼結を実施した後に、焼結
炉に付設した加熱装置への通電量を制御して焼結炉内温
度が1500℃まで降下するまでの間における焼結体の
冷却速度がそれぞれ100℃/hr(参考例102)、
50℃/hr(実施例17)、25℃/hr(実施例1
8)となるように調整して焼結体を徐冷し、それぞれ実
施例および参考例に係る窒化けい素セラミックス焼結体
を調製した。
Examples 17 to 18 and Reference Example 102 An average particle diameter of 1.3% by weight of oxygen, 0.15% by weight of the impurity cation element in total, and 97% of α-phase silicon nitride. .55 μm silicon nitride raw material powder
As a sintering aid, 12.5% by weight of Ho 2 O 3 (holmium oxide) powder having an average particle size of 0.9 μm and H having an average particle size of 1 μm
1.5% by weight of fO 2 (hafnium oxide) powder is added,
Using silicon nitride balls in ethyl alcohol
After wet-mixing for hours, the mixture was dried to prepare a raw material powder mixture. Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture and uniformly mixed, and then 1000 kg / cm 2
Press molding at a molding pressure of 50 mm long x 50 mm wide
× Many molded bodies having a thickness of 5 mm were manufactured. Next, after the obtained molded body was degreased in an atmosphere gas at 700 ° C. for 2 hours, the degreased body was heated in a nitrogen gas atmosphere at 9 atm for 190 hours.
After maintaining at 0 ° C. for 6 hours and performing densification sintering, sintering is performed until the temperature in the sintering furnace falls to 1500 ° C. by controlling the amount of electricity to a heating device attached to the sintering furnace. The cooling rate of the body is 100 ° C./hr (Reference Example 102),
50 ° C./hr (Example 17), 25 ° C./hr (Example 1)
The sintered body was gradually cooled by adjusting to 8) to prepare silicon nitride ceramics sintered bodies according to the example and the reference example, respectively.

【0097】比較例22 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で
焼結体を冷却した点以外は参考例102と同一条件で焼
結処理して比較例22に係る窒化けい素焼結体を調製し
た。
Comparative Example 22 On the other hand, immediately after the completion of the densification sintering, the heating apparatus was turned off and the sintered body was cooled at the conventional cooling rate of furnace cooling (about 500 ° C./hr). By performing sintering treatment under the same conditions as in the above, a silicon nitride sintered body according to Comparative Example 22 was prepared.

【0098】比較例23 酸素を1.5重量%、前記不純物陽イオン元素を合計で
0.6重量%含有し、α相型窒化けい素93%を含む平
均粒径0.60μmの窒化けい素原料粉末を用いた点以
外は参考例102と同一条件で処理し、比較例23に係
る窒化けい素セラミックス焼結体を調製した。
Comparative Example 23 Silicon nitride containing 1.5% by weight of oxygen and 0.6% by weight of the impurity cation element in total and containing 93% of α-phase type silicon nitride and having an average particle diameter of 0.60 μm A treatment was performed under the same conditions as in Reference Example 102 except that the raw material powder was used, to prepare a silicon nitride ceramics sintered body according to Comparative Example 23.

【0099】比較例24 酸素を1.7重量%、前記不純物陽イオン元素を合計で
0.7重量%含有し、α相型窒化けい素91%を含む平
均粒径1.2μmの窒化けい素原料粉末を用いた点以外
は参考例102と同一条件で処理し、比較例24に係る
窒化けい素焼結体を調製した。
Comparative Example 24 Silicon nitride having an average particle diameter of 1.2 μm containing 1.7% by weight of oxygen and 0.7% by weight of the impurity cation element in total and containing 91% of α-phase type silicon nitride A treatment was performed under the same conditions as in Reference Example 102 except that the raw material powder was used, to prepare a silicon nitride sintered body according to Comparative Example 24.

【0100】こうして得た各実施例,参考例および比較
例に係る窒化けい素焼結体について気孔率、熱伝導率
(25℃)、室温での三点曲げ強度の平均値を測定し
た。さらに、各焼結体をX線回折法によって粒界相に占
める結晶相の割合(面積比)を測定し、下記表9に示す
結果を得た。
The average values of the porosity, the thermal conductivity (25 ° C.), and the three-point bending strength at room temperature of the silicon nitride sintered bodies according to the respective Examples, Reference Examples and Comparative Examples thus obtained were measured. Further, the ratio (area ratio) of the crystal phase to the grain boundary phase of each sintered body was measured by an X-ray diffraction method, and the results shown in Table 9 below were obtained.

【0101】[0101]

【表9】 [Table 9]

【0102】表9に示す結果から明らかなように実施例
および参考例に係る窒化けい素セラミックス焼結体にお
いては、比較例22と比較して緻密化焼結完了直後にお
ける焼結体の冷却速度を従来より低く設定しているた
め、粒界相に結晶相を含み、結晶相の占める割合が高い
程、高熱伝導率を有する放熱性の高い高強度焼結体が得
られた。
As is clear from the results shown in Table 9, in the silicon nitride ceramic sintered bodies according to the examples and the reference examples, the cooling rate of the sintered bodies immediately after the completion of the densification sintering was lower than that in the comparative example 22. Is set lower than in the prior art, so that a high-strength sintered body having a high heat conductivity and a high thermal conductivity was obtained as the grain boundary phase contained a crystal phase and the proportion occupied by the crystal phase was higher.

【0103】一方、比較例22のように焼結体の冷却速
度を大きく設定し、急激に冷却した場合は粒界相におい
て結晶相が占める割合が少なく熱伝導率が低下した。ま
た、比較例23のように前記不純物陽イオン元素を合計
で0.6重量%と多く含有した窒化けい素粉末を用いた
場合は焼結体の冷却速度を参考例102と同一にしても
粒界相の大部分が非結晶質で形成され熱伝導率が低下し
た。
On the other hand, when the cooling rate of the sintered body was set to a high value as in Comparative Example 22, and the crystal was rapidly cooled, the proportion of the crystal phase in the grain boundary phase was small and the thermal conductivity was lowered. When a silicon nitride powder containing a large amount of the impurity cation element as much as 0.6% by weight as in Comparative Example 23 was used, even if the cooling rate of the sintered body was the same as that of Reference Example 102, Most of the boundary phase was formed in an amorphous state, and the thermal conductivity decreased.

【0104】さらに比較例24のように平均粒径が1.
2μmと粗い窒化けい素粉末を用いた場合は、焼結にお
いて緻密化が不充分で強度、熱伝導率とも低下した。
Further, as in Comparative Example 24, the average particle size was 1.
When silicon nitride powder having a coarse particle diameter of 2 μm was used, densification was insufficient in sintering, and both strength and thermal conductivity were reduced.

【0105】実施例19〜39,参考例103〜138
および比較例25〜31 参考例102において使用した窒化けい素粉末と、Ho
粉末と、HfO粉末の他に表10〜表12に示
す各種希土類酸化物粉末および各種金属化合物粉末と、
さらにAl粉末と、AlN粉末とを表10〜表1
2に示す組成比となるように調合して原料混合体をそれ
ぞれ調製した。
Examples 19 to 39 and Reference Examples 103 to 138
And Comparative Examples 25 to 31 The silicon nitride powder used in Reference Example 102 and Ho
2 O 3 powder, various rare earth oxide powders and various metal compound powders shown in Tables 10 to 12 in addition to the HfO 2 powder,
Further, the Al 2 O 3 powder and the AlN powder are shown in Tables 10 to 1
The raw material mixtures were respectively prepared so as to have the composition ratios shown in FIG.

【0106】次に得られた各原料混合体を参考例102
と同一条件で成形脱脂処理した後、表10〜表12に示
す条件で焼結処理してそれぞれ実施例および参考例に係
る窒化けい素セラミックス焼結体を製造した。
Next, each of the obtained raw material mixtures was used in Reference Example 102.
After performing the molding and degreasing treatment under the same conditions as described above, sintering treatment was performed under the conditions shown in Tables 10 to 12 to produce silicon nitride ceramics sintered bodies according to Examples and Reference Examples, respectively.

【0107】一方比較例25〜31として表12に示す
ようにHfOを過少量に添加したもの(比較例2
5)、Hoを過少量に添加したもの(比較例2
6)、HfOを過量に添加したもの(比較例27)、
Hoを過量に添加したもの(比較例28),Ti
を過量に添加したもの(比較例29)、AlNを過
量に添加したもの(比較例30)、アルミナを過量に添
加したもの(比較例31)の原料混合体をそれぞれ調製
し、実施例118と同一条件で原料混合から焼結操作を
実施してそれぞれ比較例25〜31に係る焼結体を製造
した。
On the other hand, as shown in Table 12, Comparative Examples 25 to 31 in which HfO 2 was added in an excessively small amount (Comparative Example 2)
5) A sample to which Ho 2 O 3 was added in an excessively small amount (Comparative Example 2)
6), one containing HfO 2 in an excessive amount (Comparative Example 27),
Excessive addition of Ho 2 O 3 (Comparative Example 28), Ti
A raw material mixture was prepared by adding an excessive amount of O 2 (Comparative Example 29), by adding an excessive amount of AlN (Comparative Example 30), and by adding an excessive amount of alumina (Comparative Example 31). The sintering operation was performed from the raw material mixture under the same conditions as in Example 118 to produce sintered bodies according to Comparative Examples 25 to 31, respectively.

【0108】こうして製造した各実施例,参考例および
比較例に係る各窒化けい素セラミックス焼結体について
参考例102と同一条件で気孔率、熱伝導率(25
℃)、室温での三点曲げ強度の平均値、X線回折法によ
る粒界相に占める結晶相の割合を測定し、下記表10〜
表12に示す結果を得た。
The porosity and thermal conductivity (25%) of the silicon nitride ceramics sintered bodies according to Examples, Reference Examples and Comparative Examples manufactured in this manner under the same conditions as in Reference Example 102.
° C), the average value of the three-point bending strength at room temperature, and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured.
The results shown in Table 12 were obtained.

【0109】[0109]

【表10】 [Table 10]

【0110】[0110]

【表11】 [Table 11]

【0111】[0111]

【表12】 [Table 12]

【0112】表10〜表12に示す結果から明らかなよ
うに、Ho,希土類酸化物,HfO等の各種金
属化合物、必要に応じてAl、AlNを所定量含
有し、焼結後の冷却速度を所定に設定した各実施例およ
び参考例に係る焼結体は、いずれも高熱伝導率で高強度
値を有している。一方、比較例25〜31に示すよう
に、Ho,HfO,TiO,Al,A
lNの少なくとも1種の成分が過少量、あるいは過量添
加された場合は、緻密化が不充分であったり、粒界相が
過量あるいは粒界相に占める結晶相の割合が低過ぎるた
めに、曲げ強度が低下、または熱伝導率が劣ることが確
認された。
As is clear from the results shown in Tables 10 to 12, various metal compounds such as Ho 2 O 3 , rare earth oxides and HfO 2 , and if necessary, Al 2 O 3 and AlN are contained in predetermined amounts. Each of the sintered bodies according to the examples and the reference examples in which the cooling rate after sintering is set to a predetermined value has a high thermal conductivity and a high strength value. On the other hand, as shown in Comparative Examples 25~31, Ho 2 O 3, HfO 2, TiO 2, Al 2 O 3, A
If at least one component of 1N is added in an excessively small amount or an excessive amount, the densification is insufficient or the grain boundary phase is excessive or the proportion of the crystal phase occupying the grain boundary phase is too low. It was confirmed that the strength was reduced or the thermal conductivity was inferior.

【0113】また、上記実施例の他に、窒化けい素粉末
にHo粉末12.5重量%と、ZrC,VC,N
bC,TaC,Cr,MoC,TiN,Zr
N,VN,TaN,CrN,MoN,WN,HfS
,TiSi,ZrSi,VSi,NbS
,TaSi,CrSi,MoSi,WS
,ZrB2 ,VB2 ,NbB2 ,TaB2 ,CrB
2 ,MoB2 ,WB2 からなる群より選択された少なく
とも1種を1重量%添加した組成の原料混合体を参考例
102と同一条件で処理して各種Si焼結体を製
造した。これら焼結体について参考例102と同一条件
で気孔率、熱伝導率(25℃)、室温での三点曲げ強度
の平均値、X線回折による粒界相に占める結晶相の割合
を測定したところ、参考例102〜138および実施例
19〜39とほぼ同様な結果が得られた。
In addition to the above examples, 12.5% by weight of Ho 2 O 3 powder was added to silicon nitride powder, and ZrC, VC, N
bC, TaC, Cr 3 C 2 , Mo 2 C, TiN, Zr
N, VN, TaN, CrN, Mo 2 N, W 2 N, HfS
i 2 , TiSi 2 , ZrSi 2 , VSi 2 , NbS
i 2 , TaSi 2 , CrSi 2 , MoSi 2 , WS
i 2 , ZrB 2 , VB 2 , NbB 2 , TaB 2 , CrB
A raw material mixture having a composition containing 1% by weight of at least one selected from the group consisting of 2 , MoB 2 and WB 2 was treated under the same conditions as in Reference Example 102 to produce various Si 3 N 4 sintered bodies. . The porosity, the thermal conductivity (25 ° C.), the average value of the three-point bending strength at room temperature, and the ratio of the crystal phase to the grain boundary phase by X-ray diffraction were measured on these sintered bodies under the same conditions as in Reference Example 102. However, almost the same results as in Reference Examples 102 to 138 and Examples 19 to 39 were obtained.

【0114】[0114]

【発明の効果】以上説明の通り、本発明に係る高熱伝導
性窒化けい素焼結体およびその製造方法によれば、高強
度かつ高い熱伝導率を有する窒化けい素焼結体が得られ
る。したがって、この窒化けい素焼結体は半導体用基板
ならびに放熱板などの基板として極めて有用である。
As described above, according to the high thermal conductivity silicon nitride sintered body and the method of manufacturing the same of the present invention, a silicon nitride sintered body having high strength and high thermal conductivity can be obtained. Therefore, the silicon nitride sintered body is extremely useful as a substrate for a semiconductor or a substrate such as a heat sink.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−48174(JP,A) 特開 平7−187793(JP,A) 特開 平3−199166(JP,A) 特開 平3−218975(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-48174 (JP, A) JP-A-7-187793 (JP, A) JP-A-3-199166 (JP, A) JP-A-3-1991 218975 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/584

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類元素を酸化物に換算して7.5重
量%を超え17.5重量%以下、不純物陽イオン元素と
してのLi,Na,K,Fe,Ca,Mg,Sr,B
a,Mn,Bを合計で0.3重量%以下含有し、窒化け
い素結晶および粒界相から成るとともに粒界相中におけ
る結晶化合物相の粒界相全体に対する割合が50%以上
であり、かつ三点曲げ強度が室温で650MPa以上で
あり、熱伝導率が80W/m・K以上であり、気孔率が
容量比で2.5%以下であることを特徴とする高熱伝導
性窒化けい素焼結体。
1. The method according to claim 1, wherein the rare earth element is converted to an oxide in an amount exceeding 7.5% by weight and not more than 17.5% by weight, and Li, Na, K, Fe, Ca, Mg, Sr, B as impurity cation elements.
a, Mn, and B in total of 0.3% by weight or less, comprising silicon nitride crystals and a grain boundary phase, and a ratio of the crystalline compound phase in the grain boundary phase to the whole grain boundary phase is 50% or more; And a high thermal conductivity silicon nitride baked material having a three-point bending strength of at least 650 MPa at room temperature, a thermal conductivity of at least 80 W / m · K, and a porosity of at most 2.5% by volume. Union.
【請求項2】 希土類元素を酸化物に換算して7.5重
量%を超え17.5重量%以下含有し、窒化けい素結晶
および粒界相から成るとともに粒界相中における結晶化
合物相の粒界相全体に対する割合が50%以上であり、
かつ三点曲げ強度が室温で650MPa以上であり、熱
伝導率が80W/m・K以上であり、気孔率が容量比で
2.5%以下であることを特徴とする高熱伝導性窒化け
い素焼結体。
2. An oxide containing a rare earth element in an amount of more than 7.5% by weight and not more than 17.5% by weight in terms of oxide, comprising a silicon nitride crystal and a grain boundary phase and a crystalline compound phase in the grain boundary phase. The ratio to the entire grain boundary phase is 50% or more;
And a high thermal conductivity silicon nitride baked material having a three-point bending strength of at least 650 MPa at room temperature, a thermal conductivity of at least 80 W / m · K, and a porosity of at most 2.5% by volume. Union.
【請求項3】 希土類元素がランタノイド系列の元素で
あることを特徴とする請求項1または2記載の高熱伝導
性窒化けい素焼結体。
3. The high thermal conductive silicon nitride sintered body according to claim 1, wherein the rare earth element is a lanthanoid series element.
【請求項4】 高熱伝導性窒化けい素焼結体は、アルミ
ニウムをアルミナに換算して1.0重量%以下含有する
ことを特徴とする請求項1または2記載の高熱伝導性窒
化けい素焼結体。
4. The high thermal conductive silicon nitride sintered body according to claim 1, wherein the high thermal conductive silicon nitride sintered body contains 1.0% by weight or less of aluminum in terms of alumina. .
【請求項5】 高熱伝導性窒化けい素焼結体は、窒化ア
ルミニウムを1.0重量%以下含有することを特徴とす
る請求項1または2記載の高熱伝導性窒化けい素焼結
体。
5. The high thermal conductive silicon nitride sintered body according to claim 1, wherein the high thermal conductive silicon nitride sintered body contains 1.0% by weight or less of aluminum nitride.
【請求項6】 高熱伝導性窒化けい素焼結体は、Ti,
Zr,Hf,V,Nb,Ta,Cr,Mo,Wからなる
群より選択される少なくとも1種を酸化物に換算して
0.1〜3.0重量%含有することを特徴とする請求項
1または2記載の高熱伝導性窒化けい素焼結体。
6. The high thermal conductivity silicon nitride sintered body is Ti,
The composition according to claim 1, wherein at least one selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo and W is contained in an amount of 0.1 to 3.0% by weight in terms of oxide. 3. The high thermal conductive silicon nitride sintered body according to 1 or 2.
【請求項7】 酸素を1.7重量%以下、不純物陽イオ
ン元素としてのLi,Na,K,Fe,Ca,Mg,S
r,Ba,Mn,Bを合計で0.3重量%以下、α相型
窒化けい素を90重量%以上含有し、平均粒径1.0μ
m以下の窒化けい素粉末に、希土類元素を酸化物に換算
して7.5重量%を超え17.5重量%以下添加した原
料混合体を成形して成形体を調製し、得られた成形体を
脱脂後、温度1800〜2100℃で雰囲気加圧焼結
し、上記焼結温度から、上記希土類元素により焼結時に
形成された液相が凝固する温度までに至る焼結体の冷却
速度を毎時100℃以下にして徐冷することにより、焼
結体の粒界相中における結晶化合物相の粒界相全体に対
する割合が50%以上であり、熱伝導率が80W/m・
K以上であり、気孔率が容量比で2.5%以下の焼結体
とすることを特徴とする高熱伝導性窒化けい素焼結体の
製造方法。
7. Oxygen content of 1.7% by weight or less, Li, Na, K, Fe, Ca, Mg, S as impurity cation element
r, Ba, Mn, B in total of 0.3% by weight or less, α-phase type silicon nitride of 90% by weight or more, and an average particle size of 1.0 μm
m or less, and a raw material mixture in which a rare earth element is added in an amount of more than 7.5% by weight and converted to oxide in an amount of 17.5% by weight or less in terms of oxide to form a molded body. After degreasing the body, the body is sintered under pressure at a temperature of 1800 to 2100 ° C., and the cooling rate of the sintered body from the sintering temperature to a temperature at which a liquid phase formed at the time of sintering by the rare earth element solidifies is reduced. By slow cooling at a temperature of 100 ° C. or less per hour, the ratio of the crystalline compound phase to the entire grain boundary phase in the grain boundary phase of the sintered body is 50% or more, and the thermal conductivity is 80 W / m ·.
A method for producing a highly thermally conductive silicon nitride sintered body, wherein the sintered body has a porosity of not less than K and a porosity of 2.5% or less in volume ratio.
【請求項8】 窒化けい素粉末に、アルミナおよび窒化
アルミニウムの少なくとも一方を1.0重量%以下添加
することを特徴とする請求項7記載の高熱伝導性窒化け
い素焼結体の製造方法。
8. The method according to claim 7, wherein at least one of alumina and aluminum nitride is added to the silicon nitride powder in an amount of 1.0% by weight or less.
【請求項9】 窒化けい素粉末に、Ti,Zr,Hf,
V,Nb,Ta,Cr,Mo,Wからなる群より選択さ
れる少なくとも1種を酸化物に換算して0.1〜3.0
重量%添加することを特徴とする請求項7記載の高熱伝
導性窒化けい素焼結体の製造方法。
9. Ti, Zr, Hf,
At least one selected from the group consisting of V, Nb, Ta, Cr, Mo, and W is converted into an oxide to form 0.1 to 3.0.
The method for producing a silicon nitride sintered body having high thermal conductivity according to claim 7, wherein the addition is performed by weight percent.
JP07344237A 1995-06-23 1995-12-28 High thermal conductive silicon nitride sintered body and method for producing the same Expired - Lifetime JP3100892B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP07344237A JP3100892B2 (en) 1995-12-28 1995-12-28 High thermal conductive silicon nitride sintered body and method for producing the same
PCT/JP1996/001559 WO1997000837A1 (en) 1995-06-23 1996-06-07 Highly heat-conductive silicon nitride sinter, process for producing the same, and pressure-welded structure
EP96916346A EP0778249B1 (en) 1995-06-23 1996-06-07 Highly heat-conductive silicon nitride sinter and press-contacted body
CN96190066A CN1082938C (en) 1995-06-23 1996-06-07 Highly heat-conductive silicon nitride sinter, process for producing the same and pressure-welded structure
KR1019960705075A KR0166406B1 (en) 1995-06-23 1996-06-07 High thermal conductive silicon nitride sintered body method of producing the same and press-contacted body
DE69626262T DE69626262T2 (en) 1995-06-23 1996-06-07 Sintered silicon nitride with high thermal conductivity and pressure-welded structure
US08/700,358 US5744410A (en) 1995-06-23 1996-06-07 High thermal conductive silicon nitride sintered body, method of producing the same and press-contacted body
TW85107431A TW386072B (en) 1995-06-23 1996-06-19 High thermal conductive silicon nitride sintered body and press-contacted body comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07344237A JP3100892B2 (en) 1995-12-28 1995-12-28 High thermal conductive silicon nitride sintered body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11288316A Division JP2000095569A (en) 1999-10-08 1999-10-08 High heat conductivity silicon nitride sintered compact and its production

Publications (2)

Publication Number Publication Date
JPH09183666A JPH09183666A (en) 1997-07-15
JP3100892B2 true JP3100892B2 (en) 2000-10-23

Family

ID=18367693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07344237A Expired - Lifetime JP3100892B2 (en) 1995-06-23 1995-12-28 High thermal conductive silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3100892B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314969A (en) * 1998-03-05 1999-11-16 Sumitomo Electric Ind Ltd High heat conductivity trisilicon tetranitride sintered compact and its production
JP5289184B2 (en) * 1998-05-12 2013-09-11 株式会社東芝 Method for producing high thermal conductivity silicon nitride sintered body
JP4346151B2 (en) * 1998-05-12 2009-10-21 株式会社東芝 High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
JP4642971B2 (en) * 2000-05-23 2011-03-02 株式会社東芝 Silicon nitride ceramic sintered body and wear-resistant member using the same
JP3797905B2 (en) * 2000-10-27 2006-07-19 株式会社東芝 Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP5172738B2 (en) * 2000-10-27 2013-03-27 株式会社東芝 Semiconductor module and electronic device using the same
JP4384101B2 (en) * 2000-10-27 2009-12-16 株式会社東芝 Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP4869070B2 (en) * 2004-05-20 2012-02-01 株式会社東芝 High thermal conductivity silicon nitride sintered body and silicon nitride structural member

Also Published As

Publication number Publication date
JPH09183666A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
US5439856A (en) High thermal conductive silicon nitride sintered body and method of producing the same
JP5444387B2 (en) Semiconductor device heat sink
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP2774761B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2000095569A (en) High heat conductivity silicon nitride sintered compact and its production
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP3290685B2 (en) Silicon nitride based sintered body
JP4516057B2 (en) Silicon nitride wiring board and method for manufacturing the same
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JP2661113B2 (en) Manufacturing method of aluminum nitride sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2541150B2 (en) Aluminum nitride sintered body
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP2000191376A (en) Aluminum nitride sintered body and its production
JP3667145B2 (en) Silicon nitride sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JP2536448B2 (en) Aluminum nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

EXPY Cancellation because of completion of term