JP2661113B2 - Manufacturing method of aluminum nitride sintered body - Google Patents

Manufacturing method of aluminum nitride sintered body

Info

Publication number
JP2661113B2
JP2661113B2 JP63056355A JP5635588A JP2661113B2 JP 2661113 B2 JP2661113 B2 JP 2661113B2 JP 63056355 A JP63056355 A JP 63056355A JP 5635588 A JP5635588 A JP 5635588A JP 2661113 B2 JP2661113 B2 JP 2661113B2
Authority
JP
Japan
Prior art keywords
carbon
aluminum nitride
thermal conductivity
sheath
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63056355A
Other languages
Japanese (ja)
Other versions
JPH01230481A (en
Inventor
一成 渡辺
勝正 中原
直志 入沢
満夫 高畠
幹夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63056355A priority Critical patent/JP2661113B2/en
Publication of JPH01230481A publication Critical patent/JPH01230481A/en
Application granted granted Critical
Publication of JP2661113B2 publication Critical patent/JP2661113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関す
るものである。
The present invention relates to a method for manufacturing an aluminum nitride sintered body.

(従来の技術) 近年、半導体素子の高集積化、高機能化が進み従来の
Al2O3ではSiチップの発熱量の増大、チップサイズの大
型化による熱膨張のミスマッチの問題への対応が難かし
く、新しい高熱伝導性絶縁材料が求められている。
(Prior Art) In recent years, the integration and function of semiconductor elements have been advanced and
With Al 2 O 3 , it is difficult to cope with the problem of thermal expansion mismatch due to an increase in the heat generation of the Si chip and an increase in chip size, and a new high thermal conductive insulating material is required.

窒化アルミニウム(AlN)は高熱伝導性の他に、熱膨
張率がSiチップに近く、又高電気絶縁性などの優れた材
料特性を有する為、半導体実装用基板材料として特に注
目を集めている。
Aluminum nitride (AlN) has attracted particular attention as a substrate material for semiconductor mounting because it has excellent thermal conductivity, a coefficient of thermal expansion close to that of a Si chip, and excellent material properties such as high electrical insulation.

AlNは難焼結性物質であるため緻密な焼結体を得るこ
とが困難である。また原料中には不純物酸素を通常1〜
3wt%程度含有しており、焼結助剤なしでホットプレス
等で緻密に焼結させてもAlN粒子のまわりにAl−O−N
などの酸素固溶層が形成され、熱伝導率が著しく低下す
ることが知られている。
Since AlN is a hard-to-sinter material, it is difficult to obtain a dense sintered body. In addition, impurity oxygen is usually contained in the raw material.
About 3wt%, even if it is densely sintered by hot press etc. without sintering aid, Al-O-N
It is known that an oxygen solid solution layer is formed and the thermal conductivity is significantly reduced.

従来より、AlNの緻密化、高熱伝導化をはかるため、
種々の焼結助剤が検討されてきたが、これらの中でY
2O3,CaOなどの酸化物が特に有効であることがわかって
きた。(Proc.1st IEEE CHMT Syms.,15(1984))例え
ばY2O3添加による高熱伝導化の機構についてはY2O3が不
純物酸素と反応し、AlN粒界の三重点にYAGなどの化合物
を形成し、酸素をトラップするためと考えられている。
このようにY2O3添加により高熱伝導化は、はかられる
が、熱伝導率は約100W/mk程度と理論値の320W/mkに比較
して充分高いとはいいがたい。その他、多数の焼結助剤
が提案されているが、本発明のカーボン添加に関連した
従来技術についてもいくつか報告されている。
Conventionally, in order to make AlN denser and higher thermal conductivity,
Various sintering aids have been studied.
Oxides such as 2 O 3 and CaO have been found to be particularly effective. (Proc.1st IEEE CHMT Syms., 15 (1984)) for example Y 2 O 3 Y 2 O 3 reacts with oxygen impurity is the mechanism of the high thermal conductivity of by addition, compounds such as YAG in the triple point of AlN grain boundaries Is believed to form and trap oxygen.
As described above, high thermal conductivity can be achieved by adding Y 2 O 3 , but it is hard to say that the thermal conductivity is about 100 W / mk, which is sufficiently higher than the theoretical value of 320 W / mk. A number of other sintering aids have been proposed, but some prior arts relating to the addition of carbon of the present invention have been reported.

カーボンを成形体中に添加する方法については、特開
昭60−186479号公報、特開昭61−155263号公報に記載さ
れている。前者ではAlN粉末に炭素又は分解して炭素に
なる化合物を、後者ではAlN粉末に遊離炭素、酸化イッ
トリウムを添加し成形、焼成を経て、熱伝導率がそれぞ
れ50W/mk,150W/mk程度のAlN焼結体をえている。
The method of adding carbon to a molded product is described in JP-A-60-186479 and JP-A-61-155263. In the former, a compound that becomes carbon or decomposes into carbon into AlN powder, and in the latter, free carbon and yttrium oxide are added to AlN powder, and after molding and firing, the thermal conductivity of AlN is about 50 W / mk and 150 W / mk, respectively. We have a sintered body.

更に特開昭61−270263号公報ではAlN粉末にTiなどの
元素又は化合物を添加し、硼素及び/又は炭素の供給源
を有する非酸化性雰囲気中で焼成することにより、約90
W/mkの熱伝導率を有する焼結体を得ている。以上のよう
にカーボン添加に関連した系でいくつか報告されている
が、いずれも熱伝導率は150W/mk程度で不十分であり、
更に熱伝導率の高い窒化アルミニウム焼結体が求められ
ていた。
Further, in Japanese Patent Application Laid-Open No. 61-270263, an element or a compound such as Ti is added to AlN powder and calcined in a non-oxidizing atmosphere having a source of boron and / or carbon to obtain a powder of about 90%.
A sintered body with a thermal conductivity of W / mk has been obtained. As mentioned above, several systems related to carbon addition have been reported, but the thermal conductivity of each is insufficient at about 150 W / mk,
Further, an aluminum nitride sintered body having a higher thermal conductivity has been demanded.

[発明が解決しようとする問題点] 本発明はカーボン添加に関連した従来技術が有してい
た前述の欠点を解消しようとするものであり、熱伝導率
が200W/mk程度の高熱伝導性窒化アルミニウム焼結体を
安定的に供給する製造方法を提供することを目的とする
ものである。
[Problems to be Solved by the Invention] The present invention is intended to solve the above-mentioned disadvantages of the prior art relating to carbon addition, and has a high thermal conductivity of about 200 W / mk. An object of the present invention is to provide a manufacturing method for stably supplying an aluminum sintered body.

[問題点を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであ
り、窒化アルミニウム粉末と焼結助剤を混合して成形し
た後、この窒化アルミニウムの成形体とカーボン供給源
を少なくとも内面が非カーボン質のサヤの中に入れ、非
酸化性雰囲気中で焼成することを特徴とする窒化アルミ
ニウム焼結体の製造方法を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and after mixing and molding aluminum nitride powder and a sintering aid, this aluminum nitride compact An object of the present invention is to provide a method for producing an aluminum nitride sintered body, characterized in that a carbon supply source is placed in a sheath having at least an inner surface made of non-carbon material and fired in a non-oxidizing atmosphere.

(構成の詳細説明) 以下、本発明について詳細に説明する。(Detailed Description of Configuration) Hereinafter, the present invention will be described in detail.

まず、窒化アルミニウムの粉末は高純度のもの、例え
ば98%以上のものが好ましいが、95〜98%程度のものも
使用可能である。粒径は10μm以下、好ましくは2μm
以下のものが良い。粒径が10μmをこえると焼結性が低
下し好ましくない。
First, the aluminum nitride powder is preferably of a high purity, for example, 98% or more, but a powder of about 95 to 98% can also be used. Particle size is 10 μm or less, preferably 2 μm
The following are good. If the particle size exceeds 10 μm, the sinterability decreases, which is not preferable.

かかる窒化アルミニウムの粉末に添加される焼結助剤
は緻密な焼結体を得るもので、Y2O3,CaOなどが好ましい
が、緻密化を促進するものであれは、これに限定される
ものではない。一方、焼結助剤の添加量が多過ぎると窒
化アルミニウム以外の結晶相が増加し、熱伝導率が低下
するもので好ましくない。従って、好ましい焼結助剤の
添加量は10wt%以下、特に好ましくは5wt%以下であ
る。
The sintering aid added to the aluminum nitride powder is for obtaining a dense sintered body, and is preferably Y 2 O 3 , CaO, or the like.However, any material that promotes densification is not limited thereto. Not something. On the other hand, if the addition amount of the sintering aid is too large, the crystal phase other than aluminum nitride increases and the thermal conductivity decreases, which is not preferable. Therefore, the preferable addition amount of the sintering aid is 10% by weight or less, particularly preferably 5% by weight or less.

また、焼結助剤の粒径は細かい方が好ましく、特に1
μm以下が望ましい。かかる窒化アルミニウム粉末と焼
結助剤を所定の割合で混合後、ドクターブレード法又は
プレス法により所定形状に成形し、Alと酸素の反応によ
り熱伝導率が低下するのを防ぐためにこれを窒素などの
非酸化性雰囲気中で焼成する。この際成形体は少なくと
も内面が非カーボン質のサヤに収められるが、サヤの材
質としては、常圧で窒化アルミニウム焼成温度より融
点、又は昇華分解温度の高い例えば窒化アルミニウム、
窒化ホウ素、炭化ケイ素などが望ましい。特に窒化アル
ミニウム、窒化ホウ素製のサヤは窒化アルミニウム焼結
体の焼結性、熱伝導性の向上を阻害せずより望ましい。
又サヤとして安価で軽く、加工性に優れたカーボンを使
用する場合は、少なくともサヤの内面を上記の窒化アル
ミニウム、窒化ホウ素などの材質でコーティングするこ
とにより、焼成時でのカーボンの遊離を押える効果をも
たせることが望ましい。
Further, the particle size of the sintering aid is preferably small,
μm or less is desirable. After mixing the aluminum nitride powder and the sintering aid in a predetermined ratio, the mixture is formed into a predetermined shape by a doctor blade method or a press method, and is mixed with nitrogen or the like to prevent a reduction in thermal conductivity due to a reaction between Al and oxygen. Baking in a non-oxidizing atmosphere. In this case, at least the inner surface of the molded body is housed in a non-carbon sheath, but as a material of the sheath, for example, aluminum nitride having a melting point or a sublimation decomposition temperature higher than the aluminum nitride firing temperature at normal pressure,
Boron nitride, silicon carbide and the like are desirable. In particular, a sheath made of aluminum nitride or boron nitride is more preferable because it does not hinder the improvement of the sinterability and thermal conductivity of the aluminum nitride sintered body.
When using carbon that is inexpensive, light, and excellent in workability as a sheath, at least the inner surface of the sheath is coated with the above-mentioned materials such as aluminum nitride and boron nitride, thereby suppressing the release of carbon during firing. It is desirable to have

更に、上記サヤ内には同時にカーボンの供給源として
カーボン粉末、カーボンセラミックス、容易にカーボン
に転換しうる炭素化合物(例えば、バインダーに使用さ
れる炭素化合物)のうち少なくとも1つを入れる。これ
らカーボン供給源にはAlN焼結体の物性を左右する適量
が存在し、供給量が不足の場合は熱伝導率は100〜120W/
mk程度と低く、供給過剰になると熱伝導率は200W/mk程
度まで向上するが絶縁抵抗は109〜1010Ωcmまで劣化
し、いずれも好ましくない。
Further, at least one of carbon powder, carbon ceramics, and a carbon compound which can be easily converted to carbon (for example, a carbon compound used as a binder) is supplied into the sheath at the same time as a carbon supply source. These carbon sources have an appropriate amount that affects the physical properties of the AlN sintered body.If the supply amount is insufficient, the thermal conductivity is 100 to 120 W /
When the supply is excessive, the thermal conductivity increases to about 200 W / mk, but the insulation resistance deteriorates to 10 9 to 10 10 Ωcm, which is not preferable.

カーボン供給源が適量の場合、熱伝導率は200W/mkを
こえ、絶縁抵抗1014Ωcm以上と良好な特性を示す。この
ようにカーボン供給源の適量添加が重要であり、例えば
焼成時に使用するカーボンサヤ、発熱体などの炭素をそ
の供給源とした場合、サヤ、発熱体の形状、表面状態、
使用状態位置などによりカーボン供給量が著しく変動
し、良好な特性を有するAlN焼結体を安定的に確保する
ことが困難である。そのため本発明ではカーボンの適量
添加をはかるため、前述のようにサヤの少なくとも内面
を非カーボン質として、サヤ、発熱体からのカーボンの
侵入を防止した上で、サヤ内に適量のカーボン供給源を
入れる方法を採用した。
When the amount of carbon source is appropriate, the thermal conductivity exceeds 200 W / mk and the insulation resistance is 10 14 Ωcm or more, showing good characteristics. As described above, it is important to add an appropriate amount of a carbon source.For example, when carbon such as a carbon sheath used for firing and a heating element is used as the source, the sheath, the shape of the heating element, the surface state,
The amount of carbon supply varies remarkably depending on the position of use, etc., and it is difficult to stably secure an AlN sintered body having good characteristics. Therefore, in order to add an appropriate amount of carbon in the present invention, at least the inner surface of the sheath is made of non-carbon as described above to prevent the invasion of carbon from the sheath and the heating element. The method of putting was adopted.

組成中にすでにカーボンを添加する方式についても実
験を行なったが、熱伝導率は150W/mk程度までしか上が
らなかった。
An experiment was also conducted on a method in which carbon was added to the composition, but the thermal conductivity increased only to about 150 W / mk.

[作用] 本発明ではサヤ内にカーボン供給源を適量添加するこ
とにより熱伝導率が著しく向上することを見い出した。
この高熱伝導化のメカニズムについてはまだ明らかでは
ないが、サヤに入れる窒化アルミニウム成形体の重量と
ともに最適なカーボン量も増加する傾向にあることや、
一般にAlNの高熱伝導化に不純物酸素が密接に関連して
いることから、成形体中に含まれる不純物酸素がサヤ内
にカーボンを適量入れることにより、焼結過程で結果的
に粒界の三重点などにトラップされるか又は系外に除去
されるために高熱伝導化が達成されたものと考えられ
る。
[Operation] In the present invention, it has been found that the thermal conductivity is significantly improved by adding an appropriate amount of a carbon source to the sheath.
Although the mechanism of this high thermal conductivity is not yet clear, the optimal amount of carbon tends to increase with the weight of the aluminum nitride molded body put into the sheath,
In general, impurity oxygen is closely related to the high thermal conductivity of AlN. Therefore, by adding an appropriate amount of carbon into the sheath by the impurity oxygen contained in the compact, the triple point of the grain boundary is consequently obtained during the sintering process. It is considered that high thermal conductivity has been achieved because the material is trapped in the material or removed outside the system.

したがって、最適なカーボン量は窒化アルミニウム成
形体の重量だけでなく、窒化アルミニウム原料に含まれ
る不純物酸素量、焼成助剤の種類とその量、工程中に混
入する不純物、バインダーなどの成形助剤の種類とその
量、焼成温度などに依存することが考えられる。
Therefore, the optimal amount of carbon is not only the weight of the aluminum nitride molded body, but also the amount of impurity oxygen contained in the aluminum nitride raw material, the type and amount of the firing aid, the amount of impurities mixed during the process, and the amount of the forming aid such as a binder. It is conceivable that it depends on the kind, the amount, the firing temperature and the like.

[実施例1] 平均粒径が2μmの窒化アルミニウム粉末にY2O3粉末
を2.5wt%添加し、アルコール中で湿式混合した。次い
で乾燥後2t/cm2の圧力で70×70×3mmの形状に成形し
た。この成形体を1個、窒化アルミニウムのサヤ(内寸
法100×100×20mm)の中に収容し、そのまわりにカーボ
ンブラック粉末を敷き、サヤにフタをした状態で窒素雰
囲気下1850℃で5時間保持して窒化アルミニウム焼結体
を得た。この窒化アルミニウム焼結体について相対密
度、熱伝導率、絶縁抵抗を測定した。第1表にカーボン
ブラック粉末の添加量及び測定結果を示す。試料NO1,2
はカーボン添加量が少なく熱伝導率は150W/mk以下と低
かったのに対し試料NO5,6ではカーボンが過剰添加とな
っており、絶縁抵抗の劣化がみられた。一方試料3,4で
は熱伝導率は200W/mk前後になり、絶縁抵抗も1014Ω・c
m以上と良好な結果が得られた。
Example 1 2.5 wt% of Y 2 O 3 powder was added to aluminum nitride powder having an average particle size of 2 μm, and wet-mixed in alcohol. Next, after drying, it was formed into a shape of 70 × 70 × 3 mm at a pressure of 2 t / cm 2 . One of the compacts was placed in an aluminum nitride sheath (100 x 100 x 20 mm in size), carbon black powder was spread around it, and the sheath was covered with a lid at 1850 ° C for 5 hours in a nitrogen atmosphere. By holding, an aluminum nitride sintered body was obtained. The relative density, thermal conductivity, and insulation resistance of this aluminum nitride sintered body were measured. Table 1 shows the amount of carbon black powder added and the measurement results. Sample NO1,2
Although the amount of carbon added was small and the thermal conductivity was as low as 150 W / mk or less, carbon was excessively added in samples NO5 and 6, and the insulation resistance was deteriorated. On the other hand, in samples 3 and 4, the thermal conductivity was around 200 W / mk, and the insulation resistance was 10 14 Ω
m and good results were obtained.

[実施例2] Y2O3粉末のかわりにCaOを1.5wt%添加した他は実施例
1と同様な方法で焼成し、窒化アルミニウム焼結体を得
た。第2表にカーボンブラック粉末の添加量及び測定結
果を示す。Y2O3を添加した系と同様の傾向を示し、カー
ボンブラック粉末の適量添加となっているNO9,10では熱
伝導率、絶縁抵抗ともに良好な特性を有していた。
EXAMPLE 2] Y 2 O 3 powder except that the CaO was added 1.5 wt% instead of calcined in the same manner as in Example 1, to obtain an aluminum nitride sintered body. Table 2 shows the amount of carbon black powder added and the measurement results. The same tendency as that of the system to which Y 2 O 3 was added was exhibited, and NO9 and 10 in which an appropriate amount of carbon black powder was added had good characteristics in both thermal conductivity and insulation resistance.

[実施例3] 実施例1において窒化アルミニウムのサヤのかわりに
内面を窒化ホウ素でコーティングしたカーボンサヤ(内
寸法100×100×20mm)を用いた以外は同様な方法で実験
を行なった。カーボンブラック粉末の添加量及び測定結
果は下記のとおりであった。
Example 3 An experiment was performed in the same manner as in Example 1, except that a carbon sheath (inner dimensions 100 × 100 × 20 mm) having an inner surface coated with boron nitride was used instead of the aluminum nitride sheath. The addition amount and measurement results of the carbon black powder were as follows.

カーボンブラック添加量:0.4g 相対密度:99.2% 熱伝導率:230W/mk 絶縁抵抗:7×1014Ωcm このように内面を窒化ホウ素でコーティングしたカー
ボンサヤを用いても良好な特性が得られた。
Carbon black addition amount: 0.4 g Relative density: 99.2% Thermal conductivity: 230 W / mk Insulation resistance: 7 × 10 14 Ωcm In this way, good characteristics were obtained even with a carbon sheath coated with boron nitride on the inner surface. .

[比較例1] 実施例1で用いたAlN,Y2O3,カーボンブラック粉末を
第3表に示す組成で混合し、同様に70×70×3mmに成形
した。この形成体のまわりにカーボンブラック粉末を敷
かずに、他の条件については実施例1と同様焼成を行な
った。第3表にその測定結果を示す。
Comparative Example 1 The AlN, Y 2 O 3 , and carbon black powders used in Example 1 were mixed according to the composition shown in Table 3 and similarly molded into 70 × 70 × 3 mm. The calcination was performed in the same manner as in Example 1 except that the carbon black powder was not spread around the formed body. Table 3 shows the measurement results.

熱伝導率は実施例1に比較し、150W/mk程度しかな
く、相対密度も低下していた。
The thermal conductivity was only about 150 W / mk and the relative density was lower than that of Example 1.

[比較例2] 実施例1において窒化アルミニウムのサヤのかわりに
カーボンサヤ(内寸法100×100×20)を用い、それ以外
の条件は実施例1と同様に実験を行なった。カーボンブ
ラック粉末の添加量及び測定結果を第4表に示す。
Comparative Example 2 In Example 1, an experiment was performed in the same manner as in Example 1 except that a carbon sheath (internal dimensions 100 × 100 × 20) was used instead of the aluminum nitride sheath. Table 4 shows the amount of carbon black powder added and the measurement results.

試料NO19はカーボンサヤ内にカーボンブラック粉末を
敷いていないにもかかわらずカーボンサヤからカーボン
が過剰に供給されたため絶縁抵抗が劣化しており、熱伝
導率、嵩密度も低かった。
In sample NO19, despite the fact that no carbon black powder was laid in the carbon sheath, the carbon was excessively supplied from the carbon sheath, the insulation resistance was deteriorated, and the thermal conductivity and the bulk density were low.

[発明の効果] 本発明により製造した窒化アルミニウム焼結体は高密
度で200W/mk前後と熱伝導性に優れ、良好な電気特性を
示すことから半導体実装用基板、各種ヒートシンクとし
てのみならず、ルツボ、蒸着用容器、耐熱ジグ高温部材
等の高温材料としての応用も可能であり、工業的に多く
の利点を有するものである。
[Effect of the Invention] The aluminum nitride sintered body manufactured according to the present invention is excellent in thermal conductivity at around 200 W / mk at high density and exhibits good electric characteristics, so that it can be used not only as a substrate for semiconductor mounting and various heat sinks, It can be applied as a high-temperature material such as a crucible, a container for vapor deposition, and a heat-resistant jig high-temperature member, and has many industrial advantages.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−277573(JP,A) 特開 昭62−252374(JP,A) 特開 昭59−207882(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-277573 (JP, A) JP-A-62-252374 (JP, A) JP-A-59-207882 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウム粉末と焼結助剤を混合し
て成形した後、この窒化アルミニウムの成形体とカーボ
ン供給源を少なくとも内面が非カーボン質のサヤの中に
入れ、非酸化性雰囲気中で焼成することを特徴とする窒
化アルミニウム焼結体の製造方法。
An aluminum nitride powder and a sintering aid are mixed and molded, and then the aluminum nitride compact and a carbon supply source are placed in a sheath having at least an inner surface made of non-carbon material, and the mixture is placed in a non-oxidizing atmosphere. A method for producing an aluminum nitride sintered body, characterized by firing.
JP63056355A 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2661113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056355A JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056355A JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01230481A JPH01230481A (en) 1989-09-13
JP2661113B2 true JP2661113B2 (en) 1997-10-08

Family

ID=13024935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056355A Expired - Fee Related JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2661113B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859873A1 (en) * 1998-12-23 2000-06-29 Degussa soot
WO2005092789A1 (en) 2004-03-29 2005-10-06 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride powder and aluminum nitride sintered compact
EP1777204A4 (en) 2004-06-21 2010-12-01 Tokuyama Corp Nitride sintered compact and method for production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207882A (en) * 1983-05-12 1984-11-26 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS62252374A (en) * 1986-04-24 1987-11-04 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JP2578113B2 (en) * 1987-05-08 1997-02-05 株式会社東芝 Method for producing high thermal conductive aluminum nitride sintered body

Also Published As

Publication number Publication date
JPH01230481A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
JPS6353151B2 (en)
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0717453B2 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2661113B2 (en) Manufacturing method of aluminum nitride sintered body
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS6331434B2 (en)
JPH0748174A (en) Highly thermally conductive silicon nitride sinterted compact and its production
KR100404815B1 (en) Ceramic material substrate
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JPH0196067A (en) Production of aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2535139B2 (en) Heat dissipation board
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPH08109069A (en) Aluminum nitride sintered compact
JPH0515668B2 (en)
JPH03275567A (en) Production of aluminum nitride sintered body
JP4264236B2 (en) Method for producing aluminum nitride sintered body
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JP3230861B2 (en) Silicon nitride metallized substrate
JP2541150B2 (en) Aluminum nitride sintered body
JPH05221761A (en) High heat radiating aluminum nitride sintered compact and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees