JPH08109069A - Aluminum nitride sintered compact - Google Patents

Aluminum nitride sintered compact

Info

Publication number
JPH08109069A
JPH08109069A JP6271737A JP27173794A JPH08109069A JP H08109069 A JPH08109069 A JP H08109069A JP 6271737 A JP6271737 A JP 6271737A JP 27173794 A JP27173794 A JP 27173794A JP H08109069 A JPH08109069 A JP H08109069A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
aln
layer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6271737A
Other languages
Japanese (ja)
Inventor
Kazuo Kimura
和生 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6271737A priority Critical patent/JPH08109069A/en
Publication of JPH08109069A publication Critical patent/JPH08109069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain an aluminum nitride sintered compact developing no bled liquid phase portion on its surface and capable of forming an electrically conductive layer with high bond strength thereon. CONSTITUTION: This sintered compact is obtained by monolithically forming a porous aluminum nitride layer 2a having <90% of relative density on at least a part of the surface of aluminum nitride sintered compact body 3a. The relative density inside the body 3a is designed to stand at >=90%. Besides, it is preferable that the thickness of the layer 2a is set at 20-1000μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置用の絶縁性基
板や放熱基板部品として使用される窒化アルミニウム焼
結体に係り、特に導電層との接合強度を高めることが可
能な窒化アルミニウム焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body used as an insulating substrate for a semiconductor device or a heat dissipation substrate part, and more particularly to an aluminum nitride sintered body capable of increasing the bonding strength with a conductive layer. Regarding the body

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)焼結体は高
温度まで強度低下が少なく、化学的耐性にも優れている
ため、耐熱材料として用いられる一方、その高熱伝導
性,高電気絶縁性を利用して半導体装置の放熱板材料,
回路基板用絶縁体材料としても広く使用されている。
2. Description of the Related Art Aluminum nitride (AlN) sintered bodies are used as heat-resistant materials because they have little strength deterioration even at high temperatures and have excellent chemical resistance, while utilizing their high thermal conductivity and high electrical insulation. Then, the heat sink material of the semiconductor device,
It is also widely used as an insulator material for circuit boards.

【0003】上記窒化アルミニウム焼結体は通常、微細
な窒化アルミニウム粉末に、焼結助剤として1〜7重量
%の希土類元素化合物(例えばY2 3 )を添加した原
料混合体を加圧成形法等によって所定形状に成形し、得
られた成形体を窒化アルミニウム製または窒化ほう素製
の敷き板上に載置し、これらを窒化アルミニウム製また
はカーボン製の鞘と蓋とから成る焼成容器内に収容し、
窒素ガスを含む還元性雰囲気中で1600〜2000℃
の温度で長時間焼成して製造されている。
The above-mentioned aluminum nitride sintered body is usually formed by pressing a raw material mixture obtained by adding 1 to 7% by weight of a rare earth element compound (for example, Y 2 O 3 ) as a sintering aid to fine aluminum nitride powder. In a firing container made of aluminum nitride or carbon nitride sheath and lid, which is molded into a predetermined shape by a method or the like, and the resulting molded body is placed on a floor plate made of aluminum nitride or boron nitride. Housed in
1600 to 2000 ° C in a reducing atmosphere containing nitrogen gas
It is manufactured by firing at a temperature of.

【0004】このようにして製造された窒化アルミニウ
ム焼結体は、他のセラミックス焼結体と比較して高い熱
伝導率を有することを特徴としているが、この熱伝導率
の高低は焼結体内部の不純物酸素量の多少に大きく影響
される。すなわち上記焼成操作により、焼結助剤として
添加した酸化イットリウム(Y2 3 )が窒化アルミニ
ウム原料粉末表面の酸素や粉末内部の酸素と反応してA
X Y 3(X+Y)/2などのイットリウム・アルミニウム
化合物の液相を生成し、この液相により原料粉末の焼結
が促進される。
The aluminum nitride sintered body produced in this manner is characterized by having a higher thermal conductivity than other ceramics sintered bodies. It is greatly affected by the amount of oxygen in impurities inside. That is, by the above firing operation, yttrium oxide (Y 2 O 3 ) added as a sintering aid reacts with oxygen on the surface of the aluminum nitride raw material powder and oxygen inside the powder to produce A.
A liquid phase of a yttrium-aluminum compound such as l X Y Y O 3 (X + Y) / 2 is formed, and this liquid phase promotes sintering of the raw material powder.

【0005】一方、焼結時にAlN中に固溶する酸素
が、Y2 3 を添加することにより、結晶粒界の酸化物
として偏析する。その結果、窒化アルミニウム結晶粒子
内が高純度化され、格子欠陥の少ないAlN焼結体とな
り、熱伝導率が向上するものと考えられる。
On the other hand, oxygen dissolved in AlN at the time of sintering segregates as an oxide at the grain boundary by adding Y 2 O 3 . As a result, it is considered that the inside of the aluminum nitride crystal grains is highly purified to be an AlN sintered body with few lattice defects, and the thermal conductivity is improved.

【0006】なお上記結晶粒界相に残存するAl5 3
12,AlYO3 ,Al2 4 9などの酸化物は熱伝
導の阻害物質になると考えられている。
Al 5 Y 3 remaining in the grain boundary phase
Oxides such as O 12 , AlYO 3 and Al 2 Y 4 O 9 are considered to be heat conduction inhibiting substances.

【0007】そこで焼成容器としてカーボン製容器およ
び蓋を使用し、カーボンガスおよび窒素ガスを含有する
還元性雰囲気中でAlN成形体の焼成を行ない、粒界相
の酸化物を低減する方法も採用される。すなわち上記カ
ーボンガスおよび窒素ガスを含有する還元性雰囲気にて
焼成を行なうと、粒界相に残存していたイットリア・ア
ルミニウム化合物は焼結体表面でカーボンガスにより還
元され、さらに窒素ガスと反応して窒化イットリウム
(YN)を生成する。このような還元窒化反応が焼結体
の表面のみで進行しても、焼結体内部での物質拡散が順
次起こり、焼結体内部から粒界相を徐々に排除すること
ができる。その結果、260W/m・K程度の、より高
い熱伝導率を有するAlN焼結体も得られている。
Therefore, a method of using a carbon container and a lid as a firing container and firing the AlN compact in a reducing atmosphere containing carbon gas and nitrogen gas to reduce oxides in the grain boundary phase is also adopted. It That is, when firing is performed in a reducing atmosphere containing the above carbon gas and nitrogen gas, the yttria-aluminum compound remaining in the grain boundary phase is reduced by the carbon gas on the surface of the sintered body and further reacted with nitrogen gas. To produce yttrium nitride (YN). Even if such a reduction nitriding reaction proceeds only on the surface of the sintered body, material diffusion in the sintered body occurs sequentially, and the grain boundary phase can be gradually removed from the inside of the sintered body. As a result, an AlN sintered body having a higher thermal conductivity of about 260 W / m · K is also obtained.

【0008】[0008]

【発明が解決しようとする課題】上記AlN焼結体によ
れば、その化学組成,熱伝導率,密度などの諸特性は、
焼結体の各部分において一様である。しかしながら、焼
結したままのAlN焼結体表面には、液相が染み出て固
化した部分が局部的に形成されているため、その焼結体
表面に、例えば高融点金属メタライズ法等で導電層を形
成して回路基板を形成しようとしても、導電層の接合強
度が低くなる欠点がある。そこで従来はラッピング加工
やホーニング加工により、予め上記染み出し部分を削り
取り、しかる後に導電層(メタライズ回路パターン)を
形成する方法を採用していた。しかしながら、この方法
においても、導電層の接合強度は充分ではなく、さらに
機械的な研削加工の工数も付加されるため、安価に回路
基板を製作することが困難であるという問題点があっ
た。
According to the above AlN sintered body, various characteristics such as chemical composition, thermal conductivity and density are
It is uniform in each part of the sintered body. However, since the liquid phase is exuded and solidified locally on the surface of the AlN sintered body as it is sintered, the surface of the sintered body is electrically conductive by, for example, a refractory metallization method. Even if an attempt is made to form a layer to form a circuit board, there is a drawback that the bonding strength of the conductive layer is lowered. Therefore, conventionally, a method has been adopted in which the exuded portion is scraped off in advance by lapping or honing, and then a conductive layer (metallized circuit pattern) is formed. However, even in this method, the bonding strength of the conductive layer is not sufficient, and the number of man-hours for mechanical grinding is added, so that there is a problem that it is difficult to inexpensively manufacture the circuit board.

【0009】また従来の窒化アルミニウム焼結体の製造
方法においては、成形体全体に還元雰囲気が均一に作用
するように焼成していたため、組成,熱伝導率,密度な
どの特性は、一様な焼結体しか得られなかった。そのた
め、例えば要求伝熱特性が異なる素子等を複数搭載する
基板材料としては、その素子の要求特性に応じた基板を
個別に調製する必要があった。
Further, in the conventional method for producing an aluminum nitride sintered body, since the whole compact is fired so that the reducing atmosphere acts uniformly, characteristics such as composition, thermal conductivity and density are uniform. Only a sintered body was obtained. Therefore, for example, as a substrate material for mounting a plurality of elements having different required heat transfer characteristics, it is necessary to individually prepare substrates according to the required characteristics of the element.

【0010】本発明は上記問題点を解決するためになさ
れたものであり、表面に液相の染み出し部分が生じるこ
とがなく、接合強度が高い導電層を形成することが可能
な窒化アルミニウム焼結体を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and does not cause a liquid phase bleeding portion on the surface thereof, and aluminum nitride firing capable of forming a conductive layer having high bonding strength. The purpose is to provide a union.

【0011】また焼結体の表面とその内部とにおいて、
または焼結体の同一表面の任意形状部分において、組
成,熱伝導率,密度などの特性が異なる窒化アルミニウ
ム焼結体を提供することを他の目的とする。
Further, on the surface of the sintered body and inside thereof,
Another object is to provide an aluminum nitride sintered body having different characteristics such as composition, thermal conductivity, and density in arbitrary shaped portions on the same surface of the sintered body.

【0012】[0012]

【課題を解決するための手段】本発明者は上記目的を達
成するため、窒化アルミニウム成形体の焼成条件を種々
変えて焼結体を形成し、各条件が焼結体の組成,密度等
に及ぼす影響を比較検討した。その結果、特に窒化アル
ミニウム成形体と焼成用カーボン容器の内壁との距離を
調節することにより、表面に液相の染み出し部分がな
く、また焼結体の表面と内部とで密度や組成が異なる窒
化アルミニウム焼結体が得られた。すなわち焼結体表面
に窒化アルミニウムと窒化イットリウムとから成る低密
度の多孔質窒化アルミニウム層が形成される一方、内部
は緻密な窒化アルミニウムから成る窒化アルミニウム焼
結体が得られた。また焼成時に還元性ガスを放出するカ
ーボンなどの還元物質を含有するペーストを成形体表面
に部分的に塗布したり、あるいは上記還元物質を含有す
る治具を成形体上に部分的に載置したりすることによ
り、焼成時に上記還元物質による焼結助剤の還元作用に
よって当該部位に多孔質窒化アルミニウム層が皮膜状に
形成されることが判明した。
In order to achieve the above-mentioned object, the present inventor forms a sintered body by changing the firing conditions of the aluminum nitride molded body, and the respective conditions vary depending on the composition, density, etc. of the sintered body. The effects on them were compared and examined. As a result, especially by adjusting the distance between the aluminum nitride compact and the inner wall of the carbon container for firing, there is no exudation part of the liquid phase on the surface, and the density and composition are different between the surface and the inside of the sintered body. An aluminum nitride sintered body was obtained. That is, a low-density porous aluminum nitride layer made of aluminum nitride and yttrium nitride was formed on the surface of the sintered body, while an aluminum nitride sintered body having a dense aluminum nitride inside was obtained. Further, a paste containing a reducing substance such as carbon that releases a reducing gas during firing is partially applied to the surface of the molded body, or a jig containing the reducing substance is partially placed on the molded body. It was found that the porous aluminum nitride layer was formed in a film form on the site due to the reduction action of the sintering aid by the reducing substance during firing.

【0013】この皮膜状の多孔質窒化アルミニウム層
は、焼結体内部と比較して還元作用によって生じた窒化
イットリウム(YN)が存在し、熱伝導率および密度が
低いという特徴を有している。そしてこの多孔質窒化ア
ルミニウム層を介して窒化アルミニウム焼結体表面に、
メタライズ法等によって導電層を形成したときに高い接
合強度を有する回路基板が得られるという知見を得た。
本発明は上記知見に基づいて完成されたものである。
This film-like porous aluminum nitride layer is characterized by the presence of yttrium nitride (YN) produced by the reducing action as compared with the inside of the sintered body, and the low thermal conductivity and density. . And on the surface of the aluminum nitride sintered body through this porous aluminum nitride layer,
It was found that a circuit board having high bonding strength can be obtained when the conductive layer is formed by the metallizing method or the like.
The present invention has been completed based on the above findings.

【0014】すなわち本発明に係る窒化アルミニウム焼
結体は、窒化アルミニウム焼結体本体の少なくとも一部
の表面に、相対密度が90%未満の多孔質窒化アルミニ
ウム層を一体に形成したことを特徴とする。また窒化ア
ルミニウム焼結体本体内部の相対密度は90%以上とす
る。さらに多孔質窒化アルミニウム層の厚さは20〜1
000μmに設定するとよい。また、窒化アルミニウム
焼結体本体表面に任意の平面形状の多孔質窒化アルミニ
ウム層を形成して構成することもできる。
That is, the aluminum nitride sintered body according to the present invention is characterized in that a porous aluminum nitride layer having a relative density of less than 90% is integrally formed on at least part of the surface of the aluminum nitride sintered body. To do. The relative density inside the aluminum nitride sintered body is 90% or more. Further, the thickness of the porous aluminum nitride layer is 20 to 1
It is recommended to set it to 000 μm. It is also possible to form a porous aluminum nitride layer having an arbitrary plane shape on the surface of the aluminum nitride sintered body body.

【0015】本発明の窒化アルミニウム焼結体は、窒化
アルミニウム原料粉末に対して1〜7重量%の焼結助剤
を添加して調製した原料混合体を成形し、得られた成形
体をカーボン製焼成容器内に収容した状態で還元雰囲気
中で1700〜2000℃の温度で3〜100時間焼成
して製造される。
The aluminum nitride sintered body of the present invention is formed into a raw material mixture prepared by adding 1 to 7% by weight of a sintering aid to aluminum nitride raw material powder, and the obtained green body is formed into carbon. It is manufactured by firing in a reducing atmosphere in a reducing vessel at a temperature of 1700 to 2000 ° C. for 3 to 100 hours.

【0016】上記窒化アルミニウム原料粉末としては、
焼結性および熱伝導性を考慮して不純物酸素含有量が3
重量%以下に抑制され、かつ平均粒径が0.05〜5μ
m、好ましくは3μm以下のAlN原料粉末を使用す
る。
As the above aluminum nitride raw material powder,
Considering sinterability and thermal conductivity, the impurity oxygen content is 3
It is suppressed to less than or equal to wt% and the average particle size is 0.05 to 5μ.
m, preferably 3 μm or less of AlN raw material powder is used.

【0017】従来、熱伝導率が260W/m・K程度の
高熱伝導性AlN焼結体を製造する場合には、焼成用カ
ーボン容器から発生するカーボンガスを含む還元雰囲気
が成形体全体に及ぶように充分な空間をカーボン容器内
に確保して焼成した。しかるに本願では、上記従来法と
は逆に成形体の特定表面をカーボン容器の内壁に接近さ
せたり、または焼成時に還元性ガスを放出するカーボン
などの還元物質を含有するペーストを成形体表面に部分
的に塗布したり、あるいは上記還元物質を含有する治具
を成形体上に部分的に載置したりすることにより、カー
ボンガス等の還元作用をより強く受ける焼結体部位を設
定し、この部位に部分的に多孔質AlN層を形成するも
のである。
Conventionally, when a high thermal conductivity AlN sintered body having a thermal conductivity of about 260 W / m · K is produced, a reducing atmosphere containing carbon gas generated from a carbon container for firing is spread over the entire compact. A sufficient space was secured in the carbon container for firing. However, in the present application, contrary to the above-mentioned conventional method, the specific surface of the molded body is brought close to the inner wall of the carbon container, or a paste containing a reducing substance such as carbon that releases a reducing gas during firing is partially formed on the molded body surface. Of the reducing substance such as carbon gas is applied to the sintered body by applying the reducing agent or the jig containing the reducing substance partially on the molded body. A porous AlN layer is partially formed at the site.

【0018】窒化アルミニウム原料粉末に添加されたY
2 3 などの焼結助剤はAlN結晶粒の緻密化に大きく
影響し、焼結助剤が少ない場合には、焼結体の緻密化が
阻害されることになる。しかるに本願発明の焼成方法に
おいて、AlN成形体を焼成用カーボン容器の内壁に接
近させることにより、または還元物質を含有するペース
トや治具を成形体に塗布または載置したりすることによ
り、焼成初期において成形体表面に存在する焼結助剤と
してのY2 3 がカーボンガス等によって還元され、同
時に雰囲気中の窒素ガスによって窒化されて窒化イット
リウム(YN)となる。つまり、カーボン容器内壁に接
近したAlN成形体の表面部分のみ、またはペーストを
塗布した部分、治具を載置した部分のみにおいて焼結助
剤が欠乏状態となり、焼成後においても緻密化しない。
一方、AlN成形体の表面の上記以外の部分においては
充分な焼結助剤が残留し、通常通りの焼結が進行し、さ
らに焼結体の緻密化および高純度化が進行する。このよ
うにして表面だけに緻密化が進行しない多孔質窒化アル
ミニウム層が形成され窒化イットリウム(YN)が残る
一方、内部には緻密なAlN焼結体本体が形成される。
Y added to aluminum nitride raw material powder
A sintering aid such as 2 O 3 has a great influence on the densification of AlN crystal grains, and if the amount of the sintering aid is small, the densification of the sintered body is hindered. However, in the firing method of the present invention, the AlN molded body is brought close to the inner wall of the carbon container for firing, or a paste or a jig containing a reducing substance is applied to or placed on the molded body so that the initial firing is performed. In the above, Y 2 O 3 as a sintering aid existing on the surface of the molded body is reduced by carbon gas or the like, and at the same time, nitrided by nitrogen gas in the atmosphere to become yttrium nitride (YN). That is, the sintering aid becomes deficient only in the surface portion of the AlN molded body that is close to the inner wall of the carbon container, or in the portion where the paste is applied or the portion where the jig is placed, and the sintering aid is not densified even after firing.
On the other hand, a sufficient amount of the sintering aid remains on the surface of the AlN compact other than the above, the normal sintering progresses, and further the densification and high purification of the sintered compact progress. In this way, a porous aluminum nitride layer in which densification does not proceed is formed only on the surface and yttrium nitride (YN) remains, while a dense AlN sintered body body is formed inside.

【0019】こうして形成された多孔質AlN層は、内
部のAlN焼結体内部と比較して相対的に熱伝導率およ
び密度が低いなどの特徴を有する。
The porous AlN layer thus formed has characteristics such as relatively low thermal conductivity and density as compared with the inside of the AlN sintered body.

【0020】また上記多孔質AlN層の相対密度は、そ
の上部に導電層を形成して回路基板を製作する場合に、
導電層の接合強度に影響を与える。多孔質AlN層の相
対密度が90%以上となると、導電層との接合強度が低
下するため、多孔質AlN層の相対密度は90%未満に
設定される。さらに多孔質AlN層の厚さは20〜10
00μmの範囲に設定される。この厚さが20μm未満
の場合には、導電層の接合強度の改善効果が少ない一
方、厚さが1000μmを超えると、AlN焼結体全体
の構造強度が低下し、さらにAlN本来の高熱伝導性が
損われる。
Further, the relative density of the porous AlN layer is as follows when a circuit board is manufactured by forming a conductive layer on the porous AlN layer.
Affects the bonding strength of the conductive layer. When the relative density of the porous AlN layer is 90% or more, the bonding strength with the conductive layer decreases, so the relative density of the porous AlN layer is set to less than 90%. Furthermore, the thickness of the porous AlN layer is 20 to 10
It is set in the range of 00 μm. When the thickness is less than 20 μm, the effect of improving the bonding strength of the conductive layer is small, while when the thickness exceeds 1000 μm, the structural strength of the entire AlN sintered body decreases, and further, the high thermal conductivity inherent to AlN. Is damaged.

【0021】また表層部の多孔質AlN層以外の部分、
すなわち内部のAlN焼結体本体の相対密度は、焼結体
全体の構造強度を保持させるために90%以上、好まし
くは93%以上とする。
Further, a portion other than the porous AlN layer in the surface layer portion,
That is, the relative density of the internal AlN sintered body is 90% or more, preferably 93% or more, in order to maintain the structural strength of the entire sintered body.

【0022】上記所定厚さの多孔質AlN層を形成する
ためには、焼成時におけるAlN成形体とカーボン製焼
成容器の内壁との距離を3〜20mmに設定して焼成を行
なう。
In order to form the porous AlN layer having the above-mentioned predetermined thickness, the distance between the AlN compact and the inner wall of the carbon-made baking container at the time of baking is set to 3 to 20 mm, and the baking is performed.

【0023】なお、多孔質AlN層を形成する方法とし
て、上記製法では、出発素体としてAlN成形体を使用
しているが、一旦通常の焼結法によって製造したAlN
焼結体を、カーボン製焼成容器内に収容し、AlN焼結
体とカーボン容器の内壁との間隔を上記範囲に設定して
焼成することにより形成する方法、または還元物質を含
有するペーストや治具を焼結体に塗布または載置した後
に、再度焼成して形成する方法も使用できる。
As a method for forming a porous AlN layer, in the above-mentioned manufacturing method, an AlN compact is used as a starting element, but AlN once manufactured by a normal sintering method.
The sintered body is housed in a firing container made of carbon, and the firing is performed by setting the distance between the AlN sintered body and the inner wall of the carbon container within the above range, or by firing or paste containing a reducing substance. It is also possible to use a method in which the tool is applied to or placed on a sintered body and then fired again to form the tool.

【0024】[0024]

【作用】上記構成に係る窒化アルミニウム焼結体によれ
ば、液相成分を還元して多孔質窒化アルミニウム層を形
成しているため、液相の染み出し部分等が形成されず、
そのまま導電層を形成した場合に、導電層成分が多孔質
窒化アルミニウム層の空孔部分に回り込んで固化するた
め、導電層の接合強度を大幅に高めることができ、信頼
性が高い回路基板等を安価に提供することができる。
According to the aluminum nitride sintered body having the above structure, since the liquid phase component is reduced to form the porous aluminum nitride layer, the exuded portion of the liquid phase is not formed,
When the conductive layer is formed as it is, the conductive layer component wraps around the pores of the porous aluminum nitride layer and solidifies, so that the bonding strength of the conductive layer can be significantly increased and a highly reliable circuit board, etc. Can be provided at low cost.

【0025】また上記多孔質窒化アルミニウム層を部分
的に形成することにより、密度や熱伝導性などの特性が
異なった焼結体が得られ、要求特性が異なる複数の素子
部品などを1個の窒化アルミニウム焼結体に組み付ける
ことが可能になり、素子搭載基板等を安価に製造するこ
とが可能になる。
Further, by partially forming the above porous aluminum nitride layer, a sintered body having different characteristics such as density and thermal conductivity can be obtained, and a plurality of element parts having different required characteristics can be formed as a single piece. It becomes possible to assemble it on the aluminum nitride sintered body, and it becomes possible to manufacture the element mounting substrate and the like at low cost.

【0026】[0026]

【実施例】以下本発明の実施例について添付図面を参照
してより具体的に説明する。
Embodiments of the present invention will now be described more specifically with reference to the accompanying drawings.

【0027】実施例1〜5 0.7重量%の不純物酸素を含有する平均粒径1.0μ
mの窒化アルミニウム原料粉末に焼結助剤としての酸化
イットリウム(Y2 3 )を5重量%添加し、さらにバ
インダーを加えて混合後、ドクターブレード法によって
シート成形した。得られたシート状成形体を複数層熱圧
着して積層成形体とし、この積層成形体を窒素ガス雰囲
気中で温度500℃で脱脂した後に、脱脂体を窒化アル
ミニウム製の敷き板に載置し、脱脂体を載置した敷き板
をカーボン製焼成容器内に収容した。そして脱脂体と焼
成容器の内壁との間隔を、表1に示すように、3〜15
mmの範囲でそれぞれ設定し、カーボンガスを含有する9
気圧の窒素ガス雰囲気において温度1800℃で2時間
保持した後、窒素ガス圧力を1気圧に下げた状態で温度
1850℃で24時間加熱焼成することにより、実施例
1〜5に係るAlN焼結体を調製した。
Examples 1 to 5 Average particle size 1.0 μm containing 0.7% by weight of impurity oxygen
5% by weight of yttrium oxide (Y 2 O 3 ) as a sintering aid was added to the aluminum nitride raw material powder of m, and a binder was further added and mixed, and a sheet was formed by a doctor blade method. The obtained sheet-shaped molded body is thermocompression-bonded to form a laminated molded body. The laminated molded body is degreased at a temperature of 500 ° C. in a nitrogen gas atmosphere, and then the degreased body is placed on an aluminum nitride laying plate. The floor plate on which the degreased body was placed was housed in a carbon baking container. Then, as shown in Table 1, the distance between the degreased body and the inner wall of the baking container is 3 to 15 mm.
Set in the range of mm and contain carbon gas 9
After holding at a temperature of 1800 ° C. for 2 hours in a nitrogen gas atmosphere at atmospheric pressure, the NiN sintered body according to Examples 1 to 5 is fired at a temperature of 1850 ° C. for 24 hours with the nitrogen gas pressure lowered to 1 atmosphere. Was prepared.

【0028】比較例1〜3 一方、実施例1〜5において、脱脂体とカーボン製焼成
容器の内壁との間隔を30,50,70mmの範囲と広く
設定した以外は、実施例1〜5と同様に成形・脱脂・焼
成処理してそれぞれ比較例1〜3に係るAlN焼結体を
調製した。
Comparative Examples 1 to 3 On the other hand, in Examples 1 to 5, except that the interval between the degreased body and the inner wall of the carbon burning container was set to a wide range of 30, 50 and 70 mm. Similarly, molding, degreasing and firing were performed to prepare AlN sintered bodies according to Comparative Examples 1 to 3, respectively.

【0029】こうして調製した実施例1〜5のAlN焼
結体においては、表面部が還元されて多孔質AlN層が
形成されているため、液相の染み出し部分は一切観察さ
れなかった。また実施例1〜5のAlN焼結体の表面近
傍の組織を調査するため、各試料の厚さ方向の断面を走
査型電子顕微鏡(SEM)で観察したところ、図1およ
び図2に示すような結果を得た。
In the AlN sintered bodies of Examples 1 to 5 thus prepared, the surface portion was reduced and the porous AlN layer was formed, so that no exudation portion of the liquid phase was observed. Further, in order to investigate the structures in the vicinity of the surface of the AlN sintered bodies of Examples 1 to 5, the cross section in the thickness direction of each sample was observed with a scanning electron microscope (SEM), and as shown in FIGS. 1 and 2. I got good results.

【0030】図1〜図2に示すように実施例1〜5のA
lN焼結体においては、表面1から厚さ50〜800μ
mの範囲に亘って多孔質AlN層2が形成され、それよ
り内部には、緻密なAlN焼結体本体3が形成されてお
り、焼結体の表層部と内部とで組織が全く異なっている
ことがわかる。また緻密なAlN焼結体本体3をさらに
拡大してSEM観察したところ、窒化アルミニウム結晶
粒子と粒界部のイットリウム・アルミニウム化合物とが
観察された。
As shown in FIGS. 1 and 2, A of Examples 1 to 5
In the 1N sintered body, the thickness from the surface 1 is 50 to 800 μm.
A porous AlN layer 2 is formed over a range of m, and a dense AlN sintered body body 3 is formed inside the porous AlN layer 2, and the texture is completely different between the surface layer and the inside of the sintered body. You can see that Further, when the dense AlN sintered body main body 3 was further enlarged and observed by SEM, aluminum nitride crystal grains and yttrium-aluminum compound in the grain boundary portion were observed.

【0031】一方、実施例1〜5の焼結体から多孔質A
lN層部分のみを粉砕し、得られた粉末をX線回折装置
(XRD)に供してその構成成分を調査した結果、図3
に示すようなXRDプロファイルを得た。すなわち多孔
質AlN層は、AlN結晶粒子と、助剤成分等が還元さ
れて生成した窒化イットリウム(YN)とから成ること
が判明した。
On the other hand, from the sintered bodies of Examples 1 to 5, the porous A
As a result of crushing only the 1N layer portion and subjecting the obtained powder to an X-ray diffractometer (XRD) to investigate its constituent components, FIG.
The XRD profile as shown in was obtained. That is, it was found that the porous AlN layer was composed of AlN crystal particles and yttrium nitride (YN) produced by reducing the auxiliary component and the like.

【0032】一方、比較例1〜3に係るAlN焼結体に
おいては、成形体とカーボン容器との間隔を従来通り広
く設定しているため、表面部における還元窒化反応が大
きく進行することはなく、多孔質AlN層の形成は確認
できず、厚さ方向について組織も均一であった。
On the other hand, in the AlN sintered bodies according to Comparative Examples 1 to 3, since the distance between the compact and the carbon container is set to be wide as before, the reductive nitriding reaction on the surface portion does not proceed greatly. The formation of the porous AlN layer was not confirmed, and the structure was uniform in the thickness direction.

【0033】また上記実施例1〜5および比較例1〜3
に係るAlN焼結体表面にそれぞれ高融点金属メタライ
ズ法によって導電層を形成し、その導電層の接合強度を
測定した。すなわちAlN焼結体表面にMo−Mnペー
ストを塗布した後に、窒素ガスを封入した加熱炉中で温
度1700℃で20分間焼成し、Mo−Mnから成る厚
さ20μmの導電層を形成した、次に各導電層上面にピ
ンを半田接合して固定し、そのピンを上方に引っ張り上
げて導電層が剥離する際の最大プル強度を接合強度とし
て測定し、下記表1に示す結果を得た。
The above Examples 1 to 5 and Comparative Examples 1 to 3
Conductive layers were formed on the surfaces of the AlN sintered bodies according to the above-mentioned items by a high melting point metallizing method, and the bonding strength of the conductive layers was measured. That is, after applying the Mo-Mn paste on the surface of the AlN sintered body, it was fired at a temperature of 1700 ° C. for 20 minutes in a heating furnace filled with nitrogen gas to form a conductive layer of Mo-Mn having a thickness of 20 μm. The pins were soldered and fixed on the upper surface of each conductive layer, and the maximum pull strength when the pins were pulled upward to separate the conductive layer was measured as the bonding strength, and the results shown in Table 1 below were obtained.

【0034】[0034]

【表1】 [Table 1]

【0035】表1に示す結果から明らかなように、焼成
時におけるAlN成形体とカーボン製焼成容器の内壁と
の間隔を小さくして焼成することにより多孔質AlN層
を形成した実施例1〜5に係るAlN焼結体において
は、多孔質AlN層を形成しない比較例1〜3に係るA
lN焼結体と比較して、いずれも導電層の接合強度が高
く、耐久性に優れた回路基板として使用できることが判
明した。
As is clear from the results shown in Table 1, Examples 1 to 5 in which a porous AlN layer was formed by firing with a small distance between the AlN compact and the inner wall of the carbon firing vessel during firing In the AlN sintered body according to Example 1, A according to Comparative Examples 1 to 3 in which a porous AlN layer is not formed.
It was found that, as compared with the 1N sintered body, the conductive layer has a high bonding strength and can be used as a circuit board having excellent durability.

【0036】上記のように導電層の接合強度が高くなる
理由は、図4に示すように、AlN焼結体本体3aの表
面部に形成された多孔質AlN層2aの空孔部に導電層
4の構成成分が回り込むことによって多孔質AlN層2
aと導電層4との引っ掛かりによる接合面積が増加する
ためと考えられる。
The reason why the bonding strength of the conductive layer is increased as described above is that, as shown in FIG. 4, the conductive layer is formed in the pores of the porous AlN layer 2a formed on the surface of the AlN sintered body 3a. Porous AlN layer 2
It is considered that this is because the junction area due to the catching between a and the conductive layer 4 increases.

【0037】また、実施例1〜5に係るAlN焼結体の
表面には液相の染み出し部分が形成されないため、染み
出し部分を除去するためのラッピング加工やホーニング
加工が不要であり、焼結後、そのままの状態で導電層を
形成して回路基板を形成することができる。したがっ
て、接合強度が高い導電層を形成する回路基板を安価に
製造することができる。
Further, since the exuded portion of the liquid phase is not formed on the surface of the AlN sintered bodies according to Examples 1 to 5, lapping processing or honing processing for removing the exuded portion is not required, After the bonding, the circuit board can be formed by forming the conductive layer as it is. Therefore, it is possible to inexpensively manufacture a circuit board on which a conductive layer having high bonding strength is formed.

【0038】さらに上記各実施例によれば、表面と内部
とにおいて、密度,熱伝導率,組成などの諸特性が異な
る焼結体が得られるため、要求特性が異なる複数の素子
部品などを1枚の焼結体表面上に組み付けることができ
る。したがって、従来要求特性毎に基板を個別に調製し
ていた場合と比較して素子搭載部品等を安価に、かつ低
コストで製造することができる。
Further, according to each of the above embodiments, a sintered body having various characteristics such as density, thermal conductivity and composition on the surface and the inside can be obtained, so that a plurality of element parts having different required characteristics can be obtained. It can be assembled on the surface of one sintered body. Therefore, it is possible to manufacture the element-mounted component and the like at low cost and at low cost, as compared with the case where the substrate is individually prepared for each required characteristic.

【0039】また本実施例に係るAlN焼結体によれ
ば、熱伝導性および光透過性が小さい多孔質AlN層を
所定箇所に形成することによって、熱の伝達方向や光の
透過方向を任意に設定することができる。すなわち図5
に示すようにAlN焼結体本体3bの裏面に多孔質Al
N層2bを形成した場合には、裏面方向には熱を伝達せ
ずに矢印で示すように表面と側面方向のみに熱を伝達す
る基板を形成することができる。一方、図6に示すよう
に、柱状のAlN焼結体本体3cの側面のみに多孔質A
lN層2cを形成した場合には、矢印で示すように、A
lN焼結体の高さ方向のみ、熱を伝達したり、光を透過
させることができる。
Further, according to the AlN sintered body of this embodiment, the heat transfer direction and the light transmission direction can be arbitrarily set by forming the porous AlN layer having a small thermal conductivity and a low light transmission property at a predetermined position. Can be set to. That is, FIG.
As shown in, porous Al is formed on the back surface of the AlN sintered body 3b.
When the N layer 2b is formed, it is possible to form a substrate that does not transfer heat in the rear surface direction but transfers heat only in the front surface and side surface directions as indicated by the arrow. On the other hand, as shown in FIG. 6, only the side surface of the columnar AlN sintered body 3c has the porosity A.
When the 1N layer 2c is formed, as shown by the arrow, A
Heat can be transmitted and light can be transmitted only in the height direction of the 1N sintered body.

【0040】実施例6 0.7重量%の不純物酸素を含有する平均粒径1.0μ
mの窒化アルミニウム原料粉末に焼結助剤としての酸化
イットリウム(Y2 3 )を5重量%添加し、さらにバ
インダーを加えて混合後、ドクターブレード法によって
シート成形した。得られたシート状成形体を複数層熱圧
着して積層成形体とした。次に図7に示すように、この
積層成形体5の表面に、カーボン(グラファイト)ペー
ストをスクリーン印刷して所定形状のペースト層6a,
6bを形成した。次にこの積層成形体5を窒素ガス雰囲
気中で温度500℃で脱脂した後に、脱脂体を窒化アル
ミニウム製の敷き板に載置し、脱脂体を載置した敷き板
をカーボン製焼成容器内に収容した。そしてこの脱脂体
を収容した焼成容器を、カーボンガスを含有する9気圧
の窒素ガス雰囲気において温度1800℃で2時間保持
して焼成した後、窒素ガス圧力を1気圧に下げた状態で
温度1850℃で24時間保持して熱処理することによ
り、実施例6に係るAlN焼結体を調製した。
Example 6 Average particle size 1.0 μm containing 0.7% by weight of impurity oxygen
5% by weight of yttrium oxide (Y 2 O 3 ) as a sintering aid was added to the aluminum nitride raw material powder of m, and a binder was further added and mixed, and a sheet was formed by a doctor blade method. The obtained sheet-shaped compact was thermocompression-bonded to obtain a laminated compact. Next, as shown in FIG. 7, a carbon (graphite) paste is screen-printed on the surface of the laminated molded body 5 to form a paste layer 6a having a predetermined shape.
6b was formed. Next, after degreasing the laminated molded body 5 in a nitrogen gas atmosphere at a temperature of 500 ° C., the degreased body is placed on a floor plate made of aluminum nitride, and the floor plate on which the degreased body is placed is placed in a carbon baking container. Accommodated. Then, the firing container containing the degreased body was held in a nitrogen gas atmosphere containing carbon gas at 9 atm at a temperature of 1800 ° C. for 2 hours to be fired, and then the temperature of the nitrogen gas was lowered to 1 atm at a temperature of 1850 ° C. Then, the AlN sintered body according to Example 6 was prepared by holding it for 24 hours and performing heat treatment.

【0041】上記実施例6に係るAlN焼結体において
は、図8に示すようにカーボンペーストを印刷した形状
に対応して平面形状の多孔質AlN層2d,2eが形成
される一方、印刷を行なわない部位においては、通常の
高密度で高熱伝導率の窒化アルミニウム焼結体の性状を
呈していた。
In the AlN sintered body according to Example 6 described above, as shown in FIG. 8, the porous AlN layers 2d and 2e having a planar shape corresponding to the shape printed with the carbon paste are formed, while the printing is performed. In the non-performed portion, the aluminum nitride sintered body had the usual properties of high density and high thermal conductivity.

【0042】また上記AlN焼結体の多孔質AlN層2
d,2e上面に、Mo−Mnペーストを塗布した後に、
窒素ガスを封入した加熱炉中で温度1700℃で20分
間焼成し、図9に示すようにAlN焼結体本体3dの上
面に多孔質AlN層2d,2eを介してMo−Mnから
成る厚さ15μmの導電層4a,4bを形成した。そし
てこの導電層4a,4bの最大プル強度を同様に測定し
たところ、前記実施例1〜5の場合と同様に高い値が得
られた。
The porous AlN layer 2 of the above AlN sintered body is also used.
After applying the Mo-Mn paste on the upper surfaces of d and 2e,
It is fired at a temperature of 1700 ° C. for 20 minutes in a heating furnace filled with nitrogen gas, and as shown in FIG. 9, a thickness of Mo—Mn is formed on the upper surface of an AlN sintered body body 3d with porous AlN layers 2d and 2e interposed therebetween. The conductive layers 4a and 4b having a thickness of 15 μm were formed. Then, when the maximum pull strengths of the conductive layers 4a and 4b were measured in the same manner, a high value was obtained as in the case of Examples 1 to 5.

【0043】実施例7 0.7重量%の不純物酸素を含有する平均粒径1.0μ
mの窒化アルミニウム原料粉末に焼結助剤としての酸化
イットリウム(Y2 3 )を5重量%添加し、さらにバ
インダーを加えて混合後、ドクターブレード法によって
シート成形した。得られたシート状成形体を複数層熱圧
着して積層成形体とし、この積層成形体を窒素ガス雰囲
気中で温度500℃で脱脂した後に、脱脂体を窒化アル
ミニウム製の敷き板に載置し、脱脂体を載置した敷き板
を窒化アルミニウム製焼成容器内に収容した。そしてこ
の脱脂体を収容した焼成容器を1気圧の窒素ガス雰囲気
において温度1800℃で2時間保持して焼成し熱伝導
率が170W/m・KのAlN焼結体本体を調製した。
次に得られたAlN焼結体本体上に所定形状のカーボン
製治具を載置し、この治具を載置したAlN焼結体本体
をカーボン製焼成容器内に収容した状態で、1気圧の窒
素ガス雰囲気中で温度1850℃で24時間保持して熱
処理することにより、実施例7に係るAlN焼結体を調
製した。
Example 7 Average particle size 1.0 μ containing 0.7% by weight of impurity oxygen
5% by weight of yttrium oxide (Y 2 O 3 ) as a sintering aid was added to the aluminum nitride raw material powder of m, and a binder was further added and mixed, and a sheet was formed by a doctor blade method. The obtained sheet-shaped molded body is thermocompression-bonded to form a laminated molded body. The laminated molded body is degreased at a temperature of 500 ° C. in a nitrogen gas atmosphere, and then the degreased body is placed on an aluminum nitride laying plate. The floor plate on which the degreased body was placed was housed in a baking container made of aluminum nitride. Then, the firing container containing the degreased body was held in a nitrogen gas atmosphere of 1 atm at a temperature of 1800 ° C. for 2 hours to perform firing to prepare an AlN sintered body body having a thermal conductivity of 170 W / m · K.
Next, a carbon jig having a predetermined shape was placed on the obtained AlN sintered body main body, and the AlN sintered body main body on which the jig was placed was stored in a carbon firing container at 1 atm. The AlN sintered body according to Example 7 was prepared by heat-treating at a temperature of 1850 ° C. for 24 hours in the nitrogen gas atmosphere.

【0044】上記実施例7に係るAlN焼結体において
は、載置した治具の形状に対応して平面形状の多孔質A
lN層が形成される一方、治具を載置しない部位におい
ては、通常の高密度で高熱伝導率の窒化アルミニウム焼
結体の性状を呈していた。
In the AlN sintered body according to Example 7, the porous A having a planar shape corresponding to the shape of the placed jig was used.
While the 1N layer was formed, in the area where the jig was not placed, the aluminum nitride sintered body had the usual properties of high density and high thermal conductivity.

【0045】また前記実施例6と同様に上記AlN焼結
体の多孔質AlN層上面に、導電層を形成し、その最大
プル強度を同様に測定したところ、前記実施例1〜5の
場合と同様に高い値が得られた。
Further, a conductive layer was formed on the upper surface of the porous AlN layer of the AlN sintered body in the same manner as in Example 6, and the maximum pull strength thereof was measured in the same manner as in Examples 1 to 5 above. High values were obtained as well.

【0046】実施例6〜7によれば、所望の形状の多孔
質窒化アルミニウムを通常の緻密な窒化アルミニウム表
面に一体に形成することができ、その多孔質部分は液相
成分を還元して多孔質窒化アルミニウム層を形成してい
る。そのため、液相の染み出し部分等が形成されず、そ
のまま多孔質窒化アルミニウム層の表面に導電層を形成
した場合に、導電層成分が多孔質窒化アルミニウム層の
空孔部分に回り込んで固化するため、導電層の接合強度
を大幅に高めることができた。一方、導電層を形成しな
い部分については通常の窒化アルミニウムの特性が得ら
れるため、放熱性が高く、また信頼性が高い回路基板等
を安価に提供することができた。
According to Examples 6 to 7, porous aluminum nitride having a desired shape can be integrally formed on the surface of ordinary dense aluminum nitride, and the porous portion reduces the liquid phase component and becomes porous. A high quality aluminum nitride layer is formed. Therefore, the exuded portion of the liquid phase is not formed, and when the conductive layer is formed on the surface of the porous aluminum nitride layer as it is, the conductive layer component wraps around the void portion of the porous aluminum nitride layer and solidifies. Therefore, the bonding strength of the conductive layer could be significantly increased. On the other hand, since the properties of ordinary aluminum nitride can be obtained in the portion where the conductive layer is not formed, a circuit board or the like having high heat dissipation and high reliability could be provided at low cost.

【0047】[0047]

【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム焼結体によれば、液相成分を還元して表面部に多
孔質窒化アルミニウム層を形成しているため、液相の染
み出し部分等が形成されず、そのまま導電層を形成した
場合に、導電層成分が多孔質窒化アルミニウム層の空孔
部分に回り込んで固化するため、導電層の接合強度を大
幅に高めることができ、信頼性が高い回路基板等を安価
に提供することができる。
As described above, according to the aluminum nitride sintered body of the present invention, since the liquid phase component is reduced to form the porous aluminum nitride layer on the surface, the exuded portion of the liquid phase When the conductive layer is formed as it is without forming the metal etc., the conductive layer component wraps around the pores of the porous aluminum nitride layer and solidifies, so that the bonding strength of the conductive layer can be greatly increased and the reliability is improved. It is possible to provide a circuit board or the like having high properties at low cost.

【0048】また上記多孔質窒化アルミニウム層を部分
的に形成することにより、密度や熱伝導性などの特性が
異なった焼結体が得られ、要求特性が異なる複数の素子
部品などを1個の窒化アルミニウム焼結体に組み付ける
ことが可能になり、素子搭載基板等を安価に製造するこ
とが可能になる。
Further, by partially forming the porous aluminum nitride layer, a sintered body having different characteristics such as density and thermal conductivity can be obtained, and a plurality of element parts having different required characteristics can be formed as one element. It becomes possible to assemble it on the aluminum nitride sintered body, and it becomes possible to manufacture the element mounting substrate and the like at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化アルミニウム焼結体の結晶組
織を示す走査型電子顕微鏡(SEM)写真。
FIG. 1 is a scanning electron microscope (SEM) photograph showing the crystal structure of an aluminum nitride sintered body according to the present invention.

【図2】図1に示す結晶組織を模式的に示す断面図。FIG. 2 is a sectional view schematically showing the crystal structure shown in FIG.

【図3】多孔質AlN層部分のXRDプロファイルを示
すグラフ。
FIG. 3 is a graph showing an XRD profile of a porous AlN layer portion.

【図4】導電層を形成したAlN焼結体を模式的に示す
断面図。
FIG. 4 is a sectional view schematically showing an AlN sintered body on which a conductive layer is formed.

【図5】実施例の窒化アルミニウム焼結体の熱の移動方
向を示す断面図。
FIG. 5 is a sectional view showing a heat transfer direction of the aluminum nitride sintered body of the example.

【図6】実施例の窒化アルミニウム焼結体中の熱の移動
方向および光の透過方向を示す断面図。
FIG. 6 is a cross-sectional view showing a heat transfer direction and a light transmission direction in the aluminum nitride sintered body of the example.

【図7】窒化アルミニウム積層成形体表面にペースト層
をスクリーン印刷した状態を示す斜視図。
FIG. 7 is a perspective view showing a state in which a paste layer is screen-printed on the surface of the aluminum nitride laminated body.

【図8】図7に示す積層成形体を焼成した後の図7にお
けるVIII−VIII矢視断面図。
8 is a sectional view taken along the line VIII-VIII in FIG. 7 after firing the laminated molded body shown in FIG. 7.

【図9】図8に示す多孔質AlN層表面に導電層を形成
した窒化アルミニウム焼結体の断面図。
9 is a cross-sectional view of an aluminum nitride sintered body having a conductive layer formed on the surface of the porous AlN layer shown in FIG.

【符号の説明】[Explanation of symbols]

1 AlN焼結体表面 2,2a,2b,2c,2d,2e 多孔質AlN層 3,3a,3b,3c,3d AlN焼結体本体(内
部) 4,4a,4b 導電層 5 AlN積層成形体 6a,6b ペースト層
1 AlN Sintered Body Surface 2, 2a, 2b, 2c, 2d, 2e Porous AlN Layer 3, 3a, 3b, 3c, 3d AlN Sintered Body Main Body (Inside) 4, 4a, 4b Conductive Layer 5 AlN Laminated Formed Body 6a, 6b paste layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 C04B 35/64 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 35/64 C04B 35/64 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム焼結体本体の少なくと
も一部の表面に、相対密度が90%未満の多孔質窒化ア
ルミニウム層を一体に形成したことを特徴とする窒化ア
ルミニウム焼結体。
1. An aluminum nitride sintered body, wherein a porous aluminum nitride layer having a relative density of less than 90% is integrally formed on at least a part of the surface of the aluminum nitride sintered body.
【請求項2】 窒化アルミニウム焼結体本体内部の相対
密度が90%以上であることを特徴とする請求項1記載
の窒化アルミニウム焼結体。
2. The aluminum nitride sintered body according to claim 1, wherein the relative density inside the aluminum nitride sintered body is 90% or more.
【請求項3】 多孔質窒化アルミニウム層の厚さが20
〜1000μmであることを特徴とする請求項1記載の
窒化アルミニウム焼結体。
3. The porous aluminum nitride layer has a thickness of 20.
The aluminum nitride sintered body according to claim 1, wherein the aluminum nitride sintered body has a thickness of about 1000 μm.
【請求項4】 窒化アルミニウム焼結体本体表面に任意
の平面形状の多孔質窒化アルミニウム層を形成したこと
を特徴とする請求項1記載の窒化アルミニウム焼結体。
4. The aluminum nitride sintered body according to claim 1, wherein a porous aluminum nitride layer having an arbitrary plane shape is formed on the surface of the aluminum nitride sintered body body.
JP6271737A 1994-10-11 1994-10-11 Aluminum nitride sintered compact Pending JPH08109069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6271737A JPH08109069A (en) 1994-10-11 1994-10-11 Aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6271737A JPH08109069A (en) 1994-10-11 1994-10-11 Aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH08109069A true JPH08109069A (en) 1996-04-30

Family

ID=17504135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6271737A Pending JPH08109069A (en) 1994-10-11 1994-10-11 Aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH08109069A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098942A1 (en) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Al/AlN JOINT MATERIAL, BASE PLATE FOR POWER MODULE, POWER MODULE AND PROCESS FOR PRODUCING Al/AlN JOINT MATERIAL
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7605102B2 (en) 2004-06-18 2009-10-20 Ngk Insulators, Ltd. Aluminum nitride ceramic and semiconductor manufacturing member
JP2014214069A (en) * 2013-04-27 2014-11-17 京セラ株式会社 Semiconductive ceramic and method for producing the same
WO2016002852A1 (en) * 2014-07-01 2016-01-07 京セラ株式会社 Ceramic structure, flow passage body, and electrode internal plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098942A1 (en) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Al/AlN JOINT MATERIAL, BASE PLATE FOR POWER MODULE, POWER MODULE AND PROCESS FOR PRODUCING Al/AlN JOINT MATERIAL
US7532481B2 (en) 2004-04-05 2009-05-12 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
JP2011091417A (en) * 2004-04-05 2011-05-06 Mitsubishi Materials Corp Al/aln joint material, base plate for power module, power module, and method of producing al/aln joint material
US8164909B2 (en) 2004-04-05 2012-04-24 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
US7605102B2 (en) 2004-06-18 2009-10-20 Ngk Insulators, Ltd. Aluminum nitride ceramic and semiconductor manufacturing member
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
US7973481B2 (en) 2004-06-21 2011-07-05 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP2012025660A (en) * 2004-06-21 2012-02-09 Tokuyama Corp Nitride sintered compact and method for manufacturing the same
EP2420482A3 (en) * 2004-06-21 2012-08-01 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP2014214069A (en) * 2013-04-27 2014-11-17 京セラ株式会社 Semiconductive ceramic and method for producing the same
WO2016002852A1 (en) * 2014-07-01 2016-01-07 京セラ株式会社 Ceramic structure, flow passage body, and electrode internal plate

Similar Documents

Publication Publication Date Title
KR100353387B1 (en) Aluminum Nitride Sintered Body and Method of Preparing the Same
KR100706064B1 (en) Ceramic member and method for producing the same
JP4804046B2 (en) Aluminum nitride ceramics, semiconductor manufacturing member, and aluminum nitride ceramic manufacturing method
KR20140047607A (en) Aln substrate and method for producing same
JPH08109069A (en) Aluminum nitride sintered compact
JPH11214124A (en) Ceramic heater
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
JPH10259444A (en) Functionally gradient material
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPH11236270A (en) Silicon nitride substrate and its manufacture
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2677748B2 (en) Ceramics copper circuit board
JPH10251069A (en) Silicon nitride circuit board and semiconductor device
JP4535575B2 (en) Silicon nitride multilayer wiring board
JP2661113B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0977559A (en) Aluminum nitride sintered compact and its production
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
WO2024190346A1 (en) Aluminum nitride sintered body, and method for manufacturing aluminum nitride sintered body
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2001019556A (en) Silicon nitride sintered compact, its production and substrate using the same
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JPS61146764A (en) Aluminum nitride sintered body and manufacture