JPS62252374A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS62252374A
JPS62252374A JP61096112A JP9611286A JPS62252374A JP S62252374 A JPS62252374 A JP S62252374A JP 61096112 A JP61096112 A JP 61096112A JP 9611286 A JP9611286 A JP 9611286A JP S62252374 A JPS62252374 A JP S62252374A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
sintered body
coating material
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61096112A
Other languages
Japanese (ja)
Inventor
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61096112A priority Critical patent/JPS62252374A/en
Publication of JPS62252374A publication Critical patent/JPS62252374A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高密度、高熱伝導性の窒化アルミニウム焼結
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a high density, high thermal conductivity aluminum nitride sintered body.

(従来の技術) IC,LSIなどの基板、サイリスタの放熱板として窒
化アルミニウム焼結体からなる基板が注目されている。
(Prior Art) Substrates made of aluminum nitride sintered bodies are attracting attention as substrates for ICs, LSIs, etc., and as heat sinks for thyristors.

窒化アルミニウムそのものは、アルミニウムを窒素雰囲
気中、1300〜1500℃で熱処理する直接窒化法、
Al2O3に炭素粉末を混合し、これを窒素雰囲気中1
400〜1700℃で熱処理する還元窒化法などで合成
することにより得られる。
Aluminum nitride itself can be produced using a direct nitriding method in which aluminum is heat-treated at 1300 to 1500°C in a nitrogen atmosphere;
Carbon powder is mixed with Al2O3, and this is heated in a nitrogen atmosphere for 1
It can be synthesized by a reductive nitriding method that involves heat treatment at 400 to 1,700°C.

この窒化アルミニウムの焼結体を得るに当たって、窒化
アルミニウムそのものをホットプレス、あるいは常圧下
で竺成していた。そして、高熱伝導性を得るには、窒化
アルミニウム焼結体中の酸素含有量を少なくすること、
緻密な焼結体が得られるように焼結条件を制御すること
が必要である。通常、常圧下での焼結では、希土類金属
酸化物、アルカリ土類全屈酸化物などが焼結助剤として
用いられている。このことについては、たとえば、特公
昭47−18655号公報に開示されている。
In order to obtain this sintered body of aluminum nitride, the aluminum nitride itself was formed by hot pressing or under normal pressure. In order to obtain high thermal conductivity, the oxygen content in the aluminum nitride sintered body must be reduced.
It is necessary to control the sintering conditions so that a dense sintered body is obtained. Usually, in sintering under normal pressure, rare earth metal oxides, alkaline earth oxides, etc. are used as sintering aids. This is disclosed, for example, in Japanese Patent Publication No. 47-18655.

(発明が解決しようとする問題) しかしながら、上記した焼結助剤を添加含有させた状態
で窒化アルミニウム焼結体を得る方法では、焼結助剤そ
のものが易蒸発性であるため、縁密な焼結体を得ること
ができず、しかも焼結体中の酸素含有量を少なくするこ
とができなかった。
(Problem to be solved by the invention) However, in the method of obtaining an aluminum nitride sintered body in a state in which the above-mentioned sintering aid is added, the sintering aid itself is easily evaporated, so that It was not possible to obtain a sintered body, and furthermore, it was not possible to reduce the oxygen content in the sintered body.

このため、特開昭59−207883号公報には、窒化
アルミニウム成形体に含有されている焼結助剤の蒸発を
防止するため、該成形体を焼成するときに、成形体と同
じ組成の粉末で被覆し、この状態で焼成する方法が提案
されている。しかしながら、この方法では得られた焼結
体の密度を向上きせることかできるが、この焼結体に含
有されている酸素量を少なくすることが困難であり、結
果として熱伝導率を高めることができなかった。
For this reason, Japanese Patent Application Laid-Open No. 59-207883 discloses that in order to prevent the sintering aid contained in the aluminum nitride compact from evaporating, powder having the same composition as the compact is used when the compact is fired. A method has been proposed in which the material is coated with aluminum and fired in this state. However, although this method can improve the density of the obtained sintered body, it is difficult to reduce the amount of oxygen contained in this sintered body, and as a result, it is difficult to increase the thermal conductivity. could not.

(発明の目的) したがって、この発明は、繊密で良好な熱伝導率を示す
窒化アルミニウム焼結体の製造方法を方法を提供するこ
とを目的とする。
(Objective of the Invention) Therefore, an object of the present invention is to provide a method for manufacturing an aluminum nitride sintered body that is dense and exhibits good thermal conductivity.

(発明の構成) この発明によれば、あらかじめ直接窒化法、還元窒化法
などによって得られた窒化アルミニウム粉末を用いる。
(Structure of the Invention) According to the present invention, aluminum nitride powder obtained in advance by a direct nitriding method, a reductive nitriding method, or the like is used.

そして、窒化アルミニウム粉末と、焼結助剤である希土
類金属化合物粉末またはアルカリ土類金属化合物粉末の
1種または2種以上とを混合する工程と、得られた混合
粉末を成形して成形体4!得る工程と、前記成形体を、
前記混合粉末と同じ成分の粉末とカーボン粉末とを混合
した被覆材で被覆するか、または焼結助剤を過剰に含有
させた前記混合粉末と同じ成分の粉末とカーボン粉末と
を混合した被覆材で被覆する工程と、前記被覆材で被覆
された成形体を窒素または不活性雰囲気中で常圧焼結す
る工程と、からなる。
Then, a step of mixing the aluminum nitride powder with one or more kinds of rare earth metal compound powder or alkaline earth metal compound powder as a sintering aid, and molding the obtained mixed powder to form a compact 4. ! a step of obtaining the molded body,
Covering with a coating material made of a mixture of powder with the same components as the mixed powder and carbon powder, or a coating material made with a mixture of powder with the same ingredients as the mixed powder and carbon powder containing an excessive amount of a sintering aid. and a step of sintering the molded body coated with the coating material under atmospheric pressure in a nitrogen or inert atmosphere.

ここで用いられる窒化アルミニウム粉末はその平均粒径
が数μm以下、より好ましくは1μm以下のものがよい
。また、希土類金属化合物としては、YSLasCes
 Nd5Er、Smなどの酸化物、弗化物が用いられる
。ざらに、アルカリ土類金属化合物としては、Ca %
 S r s B a s M gなどの酸化物、炭酸
物、弗化物などが用いられる。
The aluminum nitride powder used here has an average particle size of several μm or less, more preferably 1 μm or less. In addition, as a rare earth metal compound, YSLasCes
Oxides and fluorides such as Nd5Er and Sm are used. In general, as an alkaline earth metal compound, Ca%
Oxides such as S r s B a s M g, carbonates, fluorides, etc. are used.

これらの焼結助剤の窒化アルミニウムに対する含有量は
、AINに対して焼結助剤を酸化物に換算して0.5〜
7.0重量%の範囲で含有させればよい。
The content of these sintering aids with respect to aluminum nitride is 0.5 to 0.5 to oxide in terms of AIN.
It may be contained within a range of 7.0% by weight.

また、成形体を被覆する被覆材に含有される焼結助剤の
量は、成形体中の焼結助剤と同量でもよ(、あるいは1
0倍過剰に含有させてもよい。
Further, the amount of the sintering aid contained in the coating material that covers the compact may be the same as the sintering aid in the compact (or 1
It may be contained in 0 times excess.

さらに、成形体を被覆する被覆材に含有されるカーボン
粉末の量は、窒化アルミニウムに対して重量比で0.0
5〜1の範囲で含有させればよい。これは、0.05未
満では焼結体の酸素量が減少せず、一方、1を越えると
AINおよび焼結助剤の蒸発が著しくなるからである。
Furthermore, the amount of carbon powder contained in the coating material that covers the molded body is 0.0 in weight ratio to aluminum nitride.
What is necessary is just to make it contain in the range of 5-1. This is because if the ratio is less than 0.05, the amount of oxygen in the sintered body will not be reduced, while if it exceeds 1, the evaporation of AIN and the sintering aid will become significant.

(効果) この発明にかかる窒化アルミニウムの製造方法によれば
、焼結助剤を含有する窒化アルミニウムの成形体を、そ
の成形体と同じ成分の粉末または該粉末に焼結助剤を過
剰に含有させた粉末にカーボン粉末を加えたで被覆材で
被覆するため、焼成時に成形体からの焼結助剤の蒸発を
抑えることがで号るとともに、含有されているカーボン
粉末の存在により、焼結時に成形体中の酸素を成形体か
ら放遂し、結果として窒化アルミニウム焼結体の酸素量
を少なくすることができ、高熱伝導率のものが得られる
(Effects) According to the method for producing aluminum nitride according to the present invention, a molded body of aluminum nitride containing a sintering aid is produced using a powder having the same components as the molded body or a powder containing an excessive amount of the sintering aid. Since the powder is coated with a coating material made by adding carbon powder, it is possible to suppress the evaporation of the sintering aid from the compact during firing, and the presence of the carbon powder makes it easier to sinter. At times, the oxygen in the molded body is released from the molded body, and as a result, the amount of oxygen in the aluminum nitride sintered body can be reduced, and a high thermal conductivity can be obtained.

(実施例) 以下に、この発明を実施例に従って詳細に説明する。(Example) The present invention will be explained in detail below according to examples.

実施例 窒化アルミニウム粉末に、第1表に示すように、焼結助
剤であるY2O3、Y F 3、Ca C12、Ca 
CO3、Er2O3、CaFをそれぞれ2重量%となる
ように添加し、16時間混合した。この混合物にパラフ
ィンを10重重量添加して混合し、この混合粉末を2t
on/cm2の圧力で直径1゜lam、厚み3mmの円
板状に成形した。この成形体を窒素雰囲気中、800℃
の温度で熱処理してパラフィンを除去した。
Example Aluminum nitride powder was mixed with sintering aids Y2O3, YF3, Ca C12, Ca as shown in Table 1.
CO3, Er2O3, and CaF were added at 2% by weight each, and mixed for 16 hours. 10 weight of paraffin was added to this mixture and mixed, and 2 tons of this mixed powder was added.
It was molded into a disk shape with a diameter of 1° lam and a thickness of 3 mm using a pressure of 1.5 oz/cm 2 . This molded body was heated to 800°C in a nitrogen atmosphere.
Paraffin was removed by heat treatment at a temperature of .

一方、第1表に示した各焼結助剤を窒化アルミニウム粉
末に対して3重量%含有させた混合粉末に、カーボン粉
末を窒化アルミニウム粉末に対してそれぞれ第1表に示
した割合になるように混合し、上記した成形体の被覆材
を準備した。
On the other hand, in a mixed powder containing 3% by weight of each sintering aid shown in Table 1 based on the aluminum nitride powder, add carbon powder to the aluminum nitride powder in the proportions shown in Table 1. A coating material for the molded body described above was prepared.

この被覆材を黒鉛製の容器に充填しておき、この被覆材
の中に上記成形体を埋めこんだ。こののち、窒素ガス中
、1850℃、3時開の条件で、常圧下で焼成を行ない
、窒化アルミニウム焼結体を得た。得られた各焼結体に
ついて、相対密度、熱伝導率をそれぞれ測定し、その結
果を第1表に示した。
This coating material was filled in a container made of graphite, and the molded article was embedded in this coating material. Thereafter, sintering was performed in nitrogen gas at 1850° C. under normal pressure under conditions of opening at 3 o'clock to obtain an aluminum nitride sintered body. The relative density and thermal conductivity of each of the obtained sintered bodies were measured, and the results are shown in Table 1.

比較例1 上記した実施例で作成した窒化アルミニウムの成形体を
用いた。
Comparative Example 1 The aluminum nitride molded body produced in the above example was used.

一方、窒化アルミニウム粉末に対して2重量%のY2O
3、YF3をそれぞれ含む被覆材を黒鉛製容器に充填し
、この被覆材の中に上記成形体を埋めこんだ。そして、
実施例と同様に焼成し、窒化アルミニウム焼結体を得た
On the other hand, 2% by weight of Y2O to aluminum nitride powder
A graphite container was filled with a coating material containing 3 and YF3, and the molded body was embedded in the coating material. and,
Firing was performed in the same manner as in the example to obtain an aluminum nitride sintered body.

この焼結体について、相対密度、熱伝導率を測定したと
ころ、Y2O3の被覆材を用いたものは、相対密度が9
8.0%、熱伝導率は50w/m・kであり、YF3の
被覆材を用いたものも、相対密度が98.0%、熱伝導
率は50w/m−にであった。
When we measured the relative density and thermal conductivity of this sintered body, we found that the one using Y2O3 coating material had a relative density of 9.
8.0%, and the thermal conductivity was 50 w/m·k, and the one using the YF3 coating also had a relative density of 98.0% and a thermal conductivity of 50 w/m−.

比較例2 上記した実施例で作成した窒化アルミニウムの成形体を
用いた。
Comparative Example 2 The aluminum nitride molded body produced in the above example was used.

一方、カーボンのみからなる被覆材を黒鉛製容器に充填
し、この被覆材の中に上記成形体を埋めこんだ。そして
、実施例と同様に焼成し、窒化アルミニウム焼結体を得
た。
On the other hand, a graphite container was filled with a coating material consisting only of carbon, and the molded body was embedded in this coating material. Then, it was fired in the same manner as in the example to obtain an aluminum nitride sintered body.

この焼結体について、相対密度、熱伝導率を測定したと
ころ、相対密度は94.0%、熱伝導率は40w/m−
にであった。
When the relative density and thermal conductivity of this sintered body were measured, the relative density was 94.0% and the thermal conductivity was 40w/m-
It was.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末と、焼結助剤である希土類
金属化合物粉末またはアルカリ土類金属化合物粉末の1
種または2種以上とを混合する工程と、 得られた混合粉末を成形して成形体を得る工程と、 前記成形体を、前記混合粉末と同じ成分の粉末とカーボ
ン粉末とを混合した被覆材で被覆するか、または焼結助
剤を過剰に含有させた前記混合粉末と同じ成分の粉末と
カーボン粉末とを混合した被覆材で被覆する工程と、 前記被覆材で被覆された成形体を窒素または不活性雰囲
気中で常圧焼結する工程と、 からなることを特徴とする窒化アルミニウム焼結体の製
造方法。
(1) 1 of aluminum nitride powder and rare earth metal compound powder or alkaline earth metal compound powder that is a sintering aid
a step of mixing the seed or two or more kinds; a step of molding the obtained mixed powder to obtain a molded body; or coating with a coating material that is a mixture of carbon powder and a powder having the same components as the mixed powder containing an excessive amount of a sintering aid; or a step of normal pressure sintering in an inert atmosphere; and a method for producing an aluminum nitride sintered body.
JP61096112A 1986-04-24 1986-04-24 Manufacture of aluminum nitride sintered body Pending JPS62252374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096112A JPS62252374A (en) 1986-04-24 1986-04-24 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096112A JPS62252374A (en) 1986-04-24 1986-04-24 Manufacture of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPS62252374A true JPS62252374A (en) 1987-11-04

Family

ID=14156306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096112A Pending JPS62252374A (en) 1986-04-24 1986-04-24 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS62252374A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182260A (en) * 1987-01-20 1988-07-27 株式会社東芝 High heat conductive aluminum nitride sintered body
JPS63270361A (en) * 1987-04-28 1988-11-08 Toshiba Corp Sintered aluminum nitride of high thermal conductivity
JPS63277567A (en) * 1987-05-08 1988-11-15 Toshiba Corp Sintered aluminum nitride having high thermal conductivity
JPH01230481A (en) * 1988-03-11 1989-09-13 Asahi Glass Co Ltd Production of sintered aluminum nitride
EP0393524A2 (en) * 1989-04-17 1990-10-24 Kawasaki Steel Corporation Method of making a sintered body of aluminium nitride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182260A (en) * 1987-01-20 1988-07-27 株式会社東芝 High heat conductive aluminum nitride sintered body
JPS63270361A (en) * 1987-04-28 1988-11-08 Toshiba Corp Sintered aluminum nitride of high thermal conductivity
JPS63277567A (en) * 1987-05-08 1988-11-15 Toshiba Corp Sintered aluminum nitride having high thermal conductivity
JPH01230481A (en) * 1988-03-11 1989-09-13 Asahi Glass Co Ltd Production of sintered aluminum nitride
EP0393524A2 (en) * 1989-04-17 1990-10-24 Kawasaki Steel Corporation Method of making a sintered body of aluminium nitride

Similar Documents

Publication Publication Date Title
US3903230A (en) Method for producing ceramics of silicon nitride
US4698320A (en) Aluminum nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2977070B2 (en) Aluminum nitride body and method of forming the same
JPH0336782B2 (en)
EP0267623A2 (en) Black sintered body of aluminum nitride and process for producing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH06279124A (en) Production of silicon nitride sintered compact
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPH0684265B2 (en) Aluminum nitride sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JP2704194B2 (en) Black aluminum nitride sintered body
JPS5895660A (en) Silicon nitride sintered body and manufacture
JPS63195175A (en) Composition for sintering aluminum nitride
JP2901135B2 (en) Semiconductor device
KR910005542B1 (en) The make method of aln powder
JPS63233081A (en) Manufacture of aluminum nitride sintered body
JPS5930768A (en) Manufacture of high corrosion resistance silicon nitride reaction sintered body
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JPS63185868A (en) Manufacture of aluminum nitride sintered body
JPH02107569A (en) Production of aluminum nitride sintered body
JPH0545553B2 (en)
JPS6158864A (en) Manufacture of high melting point metal disilicate base sintered body