JPS63185868A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS63185868A
JPS63185868A JP62015687A JP1568787A JPS63185868A JP S63185868 A JPS63185868 A JP S63185868A JP 62015687 A JP62015687 A JP 62015687A JP 1568787 A JP1568787 A JP 1568787A JP S63185868 A JPS63185868 A JP S63185868A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
sintered body
sintering aid
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62015687A
Other languages
Japanese (ja)
Inventor
孝典 曽根
良和 内海
井戸 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62015687A priority Critical patent/JPS63185868A/en
Publication of JPS63185868A publication Critical patent/JPS63185868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、常圧焼結によって窒化アルミニウム焼結体
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an aluminum nitride sintered body by pressureless sintering.

〔従来の技術〕[Conventional technology]

近年、IC,LSIをはじめとする集積回路の高集積化
、高出力化が進み、シリコン素子の放熱の問題がこれに
伴って生じてきている。このような現状に従い、従来の
アルミナ焼結体からなる絶縁性基板から、さらに高い熱
伝導性を有し、電気絶縁性が高く、シリコンとの熱膨張
の整合性にすぐれた窒化アルミニウム焼結体からなる基
板の開発が進められてきている。
In recent years, as integrated circuits such as ICs and LSIs have become more highly integrated and have higher outputs, problems with heat dissipation from silicon elements have arisen. In line with this current situation, we have developed an aluminum nitride sintered body that has even higher thermal conductivity, high electrical insulation, and excellent thermal expansion compatibility with silicon, instead of the conventional insulating substrate made of alumina sintered body. The development of substrates consisting of

ところで、常圧焼結法による窒化アルミニウム焼結体は
、焼結助剤としてイツトリア等のイツトリウム化合物、
またはカルシア等のカルシウム化合物などを添加し、1
700℃から2000℃の高温、窒−7s′#囲気中で
焼成することにより製造されている(例えば特開昭59
−207883号)。
By the way, aluminum nitride sintered bodies produced by the pressureless sintering method contain yttrium compounds such as yttrium as sintering aids,
Or add calcium compounds such as calcia,
It is manufactured by firing at a high temperature of 700°C to 2000°C in a nitrogen-7s'# atmosphere (for example, as disclosed in Japanese Patent Application Laid-Open No.
-207883).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような高温中では、イツトリウム化合
物、カルシウム化合物の蒸気圧が比較的高いため、焼結
時に粉末成形体の表面付近の焼結助剤が蒸発、飛散する
傾向がある。窒化アルミニウム焼結体の熱伝導率は焼結
助剤の添加量に依存し、例えばイツトリア3〜5重量%
の添加量に対して1重量%では約20%はど熱伝導率が
下がるため、上記のような焼結助剤の飛散は窒化アルミ
ニウム焼結体に高熱伝導性を付与することに対して好ま
しくない。
However, at such high temperatures, since the vapor pressure of the yttrium compound and calcium compound is relatively high, the sintering aid near the surface of the powder compact tends to evaporate and scatter during sintering. The thermal conductivity of the aluminum nitride sintered body depends on the amount of sintering aid added, for example, 3 to 5% by weight of ittria.
Since the thermal conductivity decreases by about 20% with respect to the added amount of 1% by weight, scattering of the sintering aid as described above is preferable for imparting high thermal conductivity to the aluminum nitride sintered body. do not have.

このような問題に対して従来は、粉末成形体を同組成の
粉末で被覆した後焼結する方法がとられているが、窒化
アルミニウムの場合は焼結中に粉末成形体と充填用粉末
とが反応、固着するため。
Conventionally, to solve this problem, the powder compact is coated with powder of the same composition and then sintered, but in the case of aluminum nitride, the powder compact and filling powder are coated during sintering. reacts and sticks.

被覆用粉末としては使用できない。It cannot be used as a coating powder.

このようなことから、窒化アルミニウムの常圧焼結法に
おいて、焼成中に焼結助剤の飛散のない焼結体の製造方
法の開発が要望されている。
For this reason, there is a demand for the development of a method for producing a sintered body in which the sintering aid does not scatter during firing in the pressureless sintering method of aluminum nitride.

この発明は、常圧焼結法において、成形体からの焼結助
剤の蒸発、飛散を防ぎ、高熱伝導性を有する窒化アルミ
ニウム焼結体を製造することができる窒化アルミニウム
焼結体の製造方法を提供することを目的とする。
This invention provides a method for producing an aluminum nitride sintered body that prevents evaporation and scattering of a sintering aid from a molded body in the pressureless sintering method, and that can produce an aluminum nitride sintered body that has high thermal conductivity. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

この発明の窒化アルミニウム焼結体の製造方法は、窒化
アルミニウム粉末に焼結助剤を添加して混合、成形し、
得られた成形体を上記焼結助剤と同種の焼結助剤を添加
した窒化ホウ素粉末で被覆した後常圧焼結する方法であ
る。
The method for producing an aluminum nitride sintered body of the present invention includes adding a sintering aid to aluminum nitride powder, mixing and shaping the mixture,
In this method, the obtained compact is coated with boron nitride powder containing a sintering aid of the same kind as the above-mentioned sintering aid, and then sintered under normal pressure.

以下、この発明について具体的に説明する。This invention will be specifically explained below.

まず、窒化アルミニウム粉末にイツトリウム化合物、あ
るいはカルシウム化合物などの焼結助剤を添加し、ボー
ルミル等によって充分に混合する。
First, a sintering aid such as an yttrium compound or a calcium compound is added to aluminum nitride powder and thoroughly mixed using a ball mill or the like.

この混合物にバインダーを加えて造粒および整粒し、金
型成形法、静水圧プレス法などにより成形を行うか、あ
るいは上記混合物に分散剤および結合剤を加え、媒液中
にて混合してスラリーとし、ドクターブレード法などに
よりシート成形を行う。
A binder is added to this mixture, granulated and sized, and molded using a molding method, isostatic pressing method, etc., or a dispersant and a binder are added to the above mixture and mixed in a medium. It is made into a slurry and formed into sheets using a doctor blade method.

一方、上記成形体と同じ焼結助剤を添加し、混合した高
純度窒化ホウ素粉末を、焼結温度においても融解1分解
する成分のない容器に充填し、上記窒化アルミニウム成
形体をその粉末中に埋め込んで被覆し、脱脂(成形時に
添加した分散剤および結合剤を除く工程)の後、常圧焼
結を行う。ここで被覆用に用いる窒化ホウ素粉末は、焼
結中に成形体へ不純物が混入するのを防ぐため、不純物
の量は成形体以下とし、望ましくは99.5%以上の高
純度窒化ホウ素粉末を使用する。さらに被覆粉末中の焼
結助剤の量は、成形体に添加した量と同程度かやや過剰
とする。焼結助剤の量が成形体に添加した量より少ない
と焼結助剤の蒸発および飛散を防ぐことはできず、また
焼結助剤の量が多すぎると焼結体表面の焼結助剤の濃度
が高くなり、均質な特性を有する焼結体は得られない。
On the other hand, high-purity boron nitride powder mixed with the same sintering aid as the above molded body is filled into a container free of components that melt and decompose even at the sintering temperature, and the aluminum nitride molded body is placed in the powder. After degreasing (a step to remove the dispersant and binder added during molding), pressureless sintering is performed. In order to prevent impurities from entering the molded body during sintering, the boron nitride powder used for the coating should contain less than the amount of impurities, preferably 99.5% or more high purity boron nitride powder. use. Further, the amount of the sintering aid in the coated powder is approximately the same as the amount added to the compact or slightly in excess. If the amount of sintering aid is less than the amount added to the compact, evaporation and scattering of the sintering aid cannot be prevented, and if the amount of sintering aid is too large, the sintering aid on the surface of the sintered compact may be prevented. The concentration of the agent becomes high, and a sintered body with homogeneous properties cannot be obtained.

具体的には、イツトリア3重量%添加した窒化アルミニ
ウム成形体については、被覆粉末に添加するイツトリア
の量は3〜7重量%とすることが望ましい。
Specifically, for an aluminum nitride molded body to which 3% by weight of yttria is added, it is desirable that the amount of yttria added to the coating powder is 3 to 7% by weight.

成形体を被覆用粉末に埋め込む時期については、成形体
を容器外、あるいは容器に被覆用粉末を敷いた上に置き
、加熱により脱脂した後、粉末に埋め込んでもよい、こ
の場合、脱脂処理の効率は良くなるが、脱脂後の成形体
はもろく、取り扱いに注意を要する必要がある。
Regarding the timing of embedding the molded body in the coating powder, the molded body may be placed outside the container or on a container spread with the coating powder, degreased by heating, and then embedded in the powder. In this case, the efficiency of the degreasing process However, the molded product after degreasing is brittle and must be handled with care.

成形体の脱脂後、N、ガス雰囲気にて1700〜200
0℃で常圧焼結して窒化アルミニウム焼結体を得る。
After degreasing the molded body, 1700 to 200 in N and gas atmosphere.
Sintering is performed at 0° C. under normal pressure to obtain an aluminum nitride sintered body.

このとき窒化アルミニウム成形体の表面が同じ焼結助剤
を添加した窒化ホウ素粉末で被覆されているため、焼結
体表面付近からの焼結助剤の蒸発および飛散は抑制され
、得られる窒化アルミニウム焼結体は均質で、熱伝導率
の高いものが得られる。
At this time, since the surface of the aluminum nitride compact is coated with boron nitride powder to which the same sintering aid has been added, evaporation and scattering of the sintering aid from near the surface of the sintered compact is suppressed, and the resulting aluminum nitride The sintered body is homogeneous and has high thermal conductivity.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 平均粒径0.5μmの窒化アルミニウム粉末に高純度の
イツトリア粉末3重量%を添加し、結合剤および可塑剤
を加え、媒液中にて混合してスラリーとし、ドクターブ
レード法によりシート状成形体とした。一方、高純度の
窒化ホウ素粉末にイツトリアを3重量%添加して混合し
、この混合粉末を被覆粉末どして耐熱性容器に充填し、
その粉末中に上記成形体を埋め込み、空気中500℃に
て脱脂を行った。脱脂終了後、窒素ガス中にて1800
’C。
Example 1 3% by weight of high-purity ittria powder was added to aluminum nitride powder with an average particle size of 0.5 μm, a binder and a plasticizer were added, the mixture was mixed in a medium to form a slurry, and a sheet was formed using a doctor blade method. It was made into a shaped molded body. On the other hand, 3% by weight of ittria was added to high-purity boron nitride powder and mixed, and this mixed powder was made into a coated powder and filled into a heat-resistant container.
The molded body was embedded in the powder and degreased in air at 500°C. After degreasing, 1800 min in nitrogen gas
'C.

2時間の常圧焼結を行って窒化アルミニウム焼結体を製
造した。
Pressureless sintering was performed for 2 hours to produce an aluminum nitride sintered body.

比較例1 実施例1と同じ成形体を、焼結助剤の添加していない窒
化ホウ素粉末を充填した容器の中に埋め込み、脱脂終了
後、実施例1と同様の条件で常圧焼結を行って窒化アル
ミニウム焼結体を製造した。
Comparative Example 1 The same molded body as in Example 1 was embedded in a container filled with boron nitride powder to which no sintering aid was added, and after degreasing, pressureless sintering was performed under the same conditions as in Example 1. An aluminum nitride sintered body was produced.

比較例2 実施例1と同じ成形体を空の容器の中に置き。Comparative example 2 The same molded body as in Example 1 was placed in an empty container.

脱脂終了後、実施例1と同様の条件で常圧焼結を行って
窒化アルミニウム焼結体を製造した。
After degreasing, pressureless sintering was performed under the same conditions as in Example 1 to produce an aluminum nitride sintered body.

上記実施例1および比較例1,2により得た焼結体の室
温での熱伝導率をレーザーフラッシュ法により求めた結
果を表1に示す。
Table 1 shows the thermal conductivity at room temperature of the sintered bodies obtained in Example 1 and Comparative Examples 1 and 2, determined by a laser flash method.

表1 表1より明らかなように、焼結助剤を添加した窒化ホウ
素粉末で被覆し、焼結した実施例1の窒化アルミニウム
焼結体は、焼結助剤を添加していない窒化ホウ素粉末で
被覆し、焼結した比較例1゜あるいは窒化ホウ素粉末で
被覆せずに焼結した比較例2に比べ、高い熱伝導性を有
している。
Table 1 As is clear from Table 1, the aluminum nitride sintered body of Example 1 coated with boron nitride powder to which a sintering aid was added and sintered was coated with boron nitride powder to which no sintering aid was added. It has higher thermal conductivity than Comparative Example 1, which was coated with boron nitride powder and sintered, or Comparative Example 2, which was sintered without being coated with boron nitride powder.

実施例2 平均粒径0.5μmの窒化アルミニウム粉末に高純度の
炭酸カルシウム粉末を2重量%添加し、実施例1と同様
の方法にてシート状成形体を得た。一方、高純度の窒化
ホウ素粉末に炭酸カルシウムを2重量%添加して混合し
、この混合粉末を被覆粉末として耐熱性容器に充填し、
その粉末中に上記成形体を埋め込み、脱脂終了後、実施
例1と同様の条件で常圧焼結を行い、窒化アルミニウム
焼結体を製造した。
Example 2 A sheet-shaped molded body was obtained in the same manner as in Example 1 by adding 2% by weight of high-purity calcium carbonate powder to aluminum nitride powder having an average particle size of 0.5 μm. On the other hand, 2% by weight of calcium carbonate is added to high-purity boron nitride powder and mixed, and this mixed powder is filled into a heat-resistant container as a coated powder.
The compact was embedded in the powder, and after degreasing, pressureless sintering was performed under the same conditions as in Example 1 to produce an aluminum nitride sintered body.

比較例3 実施例2と同じ成形体を、焼結助剤の添加していない窒
化ホウ素粉末を充填した容器の中に埋め込み、脱脂終了
後、実施例1と同様の条件で常圧焼結を行って窒化アル
ミニウム焼結体を製造した。
Comparative Example 3 The same compact as in Example 2 was embedded in a container filled with boron nitride powder to which no sintering aid was added, and after degreasing, pressureless sintering was performed under the same conditions as in Example 1. An aluminum nitride sintered body was produced.

比較例4 実施例2と同じ成形体を空の容器の中に置き、脱脂終了
後、実施例1と同様の条件で常圧焼結を行って窒化アル
ミニウム焼結体を製造した。
Comparative Example 4 The same molded body as in Example 2 was placed in an empty container, and after completion of degreasing, pressureless sintering was performed under the same conditions as in Example 1 to produce an aluminum nitride sintered body.

上記実施例2および比較例3,4により得た焼結体の室
温での熱伝導率をレーザーフラッシュ法により求めた結
果を表2に示す。
Table 2 shows the thermal conductivity at room temperature of the sintered bodies obtained in Example 2 and Comparative Examples 3 and 4, determined by the laser flash method.

表2 表2より明らかなように、焼結助剤を添加した窒化ホウ
素粉末で被覆し、焼結した実施例2の窒化アルミニウム
焼結体は、焼結助剤を添加していない窒化ホウ素粉末で
被覆し、焼結した比較例3、あるいは窒化ホウ素粉末で
被覆せずに焼結した比較例4に比べ、高い熱伝導性を有
している。
Table 2 As is clear from Table 2, the aluminum nitride sintered body of Example 2 coated with boron nitride powder to which a sintering aid was added and sintered was coated with boron nitride powder to which no sintering aid was added. It has higher thermal conductivity than Comparative Example 3, which was coated with boron nitride powder and sintered, or Comparative Example 4, which was sintered without being coated with boron nitride powder.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、窒化アルミニウム成形体を、同成形
体と同じ焼結助剤を添加した窒化ホウ素粉末で被覆し、
焼結することにより、焼結体表面付近からの焼結助剤の
蒸発および飛散を抑制でき、このため均質で熱伝導率が
高い窒化アルミニウム焼結体が得られる効果がある。
According to this invention, an aluminum nitride molded body is coated with boron nitride powder added with the same sintering aid as the molded body,
By sintering, evaporation and scattering of the sintering aid from near the surface of the sintered body can be suppressed, which has the effect of obtaining a homogeneous aluminum nitride sintered body with high thermal conductivity.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末に焼結助剤を添加して混合
、成形し、得られた成形体を上記焼結助剤と同種の焼結
助剤を添加した窒化ホウ素粉末で被覆した後常圧焼結す
ることを特徴とする窒化アルミニウム焼結体の製造方法
(1) A sintering aid is added to aluminum nitride powder, mixed and molded, and the resulting molded body is coated with boron nitride powder containing the same kind of sintering aid as the above-mentioned sintering aid, and then under normal pressure. A method for producing an aluminum nitride sintered body, the method comprising sintering the aluminum nitride sintered body.
(2)焼結助剤がカルシウム化合物およびイットリウム
化合物から選ばれる1種または2種以上の混合物である
ことを特徴とする特許請求の範囲第1項記載の窒化アル
ミニウム焼結体の製造方法。
(2) The method for producing an aluminum nitride sintered body according to claim 1, wherein the sintering aid is one or a mixture of two or more selected from calcium compounds and yttrium compounds.
JP62015687A 1987-01-26 1987-01-26 Manufacture of aluminum nitride sintered body Pending JPS63185868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015687A JPS63185868A (en) 1987-01-26 1987-01-26 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015687A JPS63185868A (en) 1987-01-26 1987-01-26 Manufacture of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPS63185868A true JPS63185868A (en) 1988-08-01

Family

ID=11895665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015687A Pending JPS63185868A (en) 1987-01-26 1987-01-26 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS63185868A (en)

Similar Documents

Publication Publication Date Title
JPS63190761A (en) Aluminum nitride-base sintered body
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JP2977070B2 (en) Aluminum nitride body and method of forming the same
JPS63185868A (en) Manufacture of aluminum nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS62246866A (en) Manufacture of aluminum nitride sintered body
JPS6128629B2 (en)
JPS63233081A (en) Manufacture of aluminum nitride sintered body
JP2005335992A (en) Method of manufacturing aluminum nitride sintered compact
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPH01230481A (en) Production of sintered aluminum nitride
JPH03218977A (en) Production of aluminum nitride sintered body
JPS63233079A (en) Black aluminum nitride sintered body and manufacture
JPS6217075A (en) Aluminum nitride sintered body and manufacture
JPH01138174A (en) Production of sintered aluminum nitride
JPS63222074A (en) Manufacture of aluminum nitride sintered body
JPH068220B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0678195B2 (en) Aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPS6374966A (en) Manufacture of aluminum nitride sintered body
JPS6360166A (en) Aluminum nitride base sintered body and manufacture
JPS6369759A (en) Manufacture of silicon nitride sintered body