JPS61261270A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS61261270A
JPS61261270A JP60102924A JP10292485A JPS61261270A JP S61261270 A JPS61261270 A JP S61261270A JP 60102924 A JP60102924 A JP 60102924A JP 10292485 A JP10292485 A JP 10292485A JP S61261270 A JPS61261270 A JP S61261270A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
sintering
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60102924A
Other languages
Japanese (ja)
Inventor
泰弘 黒川
和明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60102924A priority Critical patent/JPS61261270A/en
Publication of JPS61261270A publication Critical patent/JPS61261270A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化アルミニウム焼結体の製造方法に関する口 (従来技術とその問題点) 近年、半導体工業の急速な技術革新によfi 、IC。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing an aluminum nitride sintered body. (Prior art and its problems) In recent years, due to rapid technological innovation in the semiconductor industry, fi, IC.

L8Iをはじめとする大規模集積回路は高集積化。Large-scale integrated circuits such as L8I are highly integrated.

高出力化が行われ、これに伴うシリコン素子の単位面積
当シの発熱量が大幅に増加してきた。そこでシリコン素
子の通電動作による発熱のためシリコン素子の正常な動
作を妨げる問題が生じ始めている。それに伴って熱伝導
性の良い絶縁性基板材料が要求されている。
As power output has been increased, the amount of heat generated per unit area of silicon devices has increased significantly. Therefore, a problem has begun to arise that disturbs the normal operation of the silicon element due to heat generated by the energizing operation of the silicon element. Accordingly, insulating substrate materials with good thermal conductivity are required.

従来、絶縁性基板材料としては一般にアルミナ焼結体が
最も多く使用されている口しかしながら、最近ではアル
ミナ基板は熱放散に関しては満足しているとは言えず、
さらに熱放散性(熱伝導性)の優れた絶縁性基板材料の
開発が要求されるようになってきたOこのような絶縁基
板材料としては熱伝導性が良い(熱伝導率が大きい)、
電気絶縁性である、熱膨張率がシリコン単結晶の値に近
い、機械的強度が大きい等の特性が要求される。
Traditionally, alumina sintered bodies have been the most commonly used insulating substrate material, but recently, alumina substrates have not been satisfactory in terms of heat dissipation.
Furthermore, there has been a demand for the development of insulating substrate materials with excellent heat dissipation (thermal conductivity).
It is required to have properties such as electrical insulation, a coefficient of thermal expansion close to that of silicon single crystal, and high mechanical strength.

ところで良好な熱伝導性を有することが知られている窒
化アルミニウムは熱膨張率が約4.3X10 /℃(室
温から400℃の平均値)でアルミナ焼結体の約7X1
0=/℃に比べて小さく、シリコン素子の熱膨張率3.
5〜4.OX 10”’/l?:に近い0また機械的強
度も曲げ強さで約50に9/mm2程度を有し。
By the way, aluminum nitride, which is known to have good thermal conductivity, has a coefficient of thermal expansion of about 4.3X10/℃ (average value from room temperature to 400℃), which is about 7X1 of alumina sintered body.
It is smaller than 0=/℃, and the thermal expansion coefficient of the silicon element is 3.
5-4. OX 10''/l?: Close to 0, and the mechanical strength is approximately 50/9/mm2 in terms of bending strength.

アルミナ焼結体の値20〜30 Kg/ mm2に比べ
高強度である電気絶縁性に優れた材料である。
It is a material with high strength and excellent electrical insulation properties compared to the value of 20 to 30 Kg/mm2 for alumina sintered bodies.

従来、窒化アルミニウム(A/N )焼結体は窒化アル
ミニウムの粉末を成形、焼結して得られるのであるが、
窒化アルミニウムは難焼結性物質であるため、緻密な焼
結体を得ることが困難である。
Conventionally, aluminum nitride (A/N) sintered bodies are obtained by molding and sintering aluminum nitride powder.
Since aluminum nitride is a difficult-to-sinter substance, it is difficult to obtain a dense sintered body.

そして現在までに焼結助剤を加え、常圧焼結法やホット
プレス法によシ緻密な窒化アルミニウム焼結体を得る試
みがなされている◎昭和59年窯業協会年会予稿集のP
2O3には酸化イツトリウム(yt O,)を焼結助剤
として加える窒化アルミニウム焼結体の製造方法が示さ
れている口この方法によると熱伝導率が100W/mk
(室温)の窒化アルミニウム焼結体が得られている。
Up to now, attempts have been made to obtain dense aluminum nitride sintered bodies by adding sintering aids and using pressureless sintering or hot pressing.
2O3 shows a method for producing an aluminum nitride sintered body in which yttrium oxide (ytO,) is added as a sintering agent. According to this method, the thermal conductivity is 100 W/mk.
(room temperature) aluminum nitride sintered body was obtained.

しかしながら、近年の集積回路技術の発達に伴い、さら
に高熱伝導性を有する熱放散用基板材料が求められてい
る口 本発&上記実情に対処すべく鋭意研究を重ねた結果、ア
ルカリ土類金属のアセチリド化合物である炭化カルシウ
ム(CaC2) 、炭化ストロンチウム(8rC1) 
、炭化バリウム(Bad、 )の一種以上と酸化イツト
リウム(YtOs )をそれぞれ適量複合使用すること
により室温での熱伝導率が120W/mk以上と従来の
窒化アルミニウム焼結体よシ大きな値が得られるとの知
見を得、本発明を完成するに到った。
However, with the recent development of integrated circuit technology, there is a demand for heat dissipating substrate materials with even higher thermal conductivity.As a result of intensive research to address the above-mentioned situation, we have found that alkaline earth metal Calcium carbide (CaC2), strontium carbide (8rC1), which are acetylide compounds
By using a combination of one or more types of barium carbide (Bad, ) and yttrium oxide (YtOs) in appropriate amounts, a thermal conductivity at room temperature of 120 W/mk or higher, which is higher than that of conventional aluminum nitride sintered bodies, can be obtained. Based on this knowledge, we have completed the present invention.

(発明の目的) 本発明の目的は高熱伝導性を有し、さらに種々の有用な
性質を有する窒化アルミニウム焼結体の製造方法を提供
することにある。
(Objective of the Invention) An object of the present invention is to provide a method for producing an aluminum nitride sintered body having high thermal conductivity and various useful properties.

(発明の構成) 本発明は窒化アルミニウム粉末に添加剤としてアルカリ
土類金属のアセチリド化合物の一種以上と酸化イツトリ
ウムを配合した混合粉末を成形後。
(Structure of the Invention) The present invention is produced by molding a mixed powder in which aluminum nitride powder is blended with one or more types of alkaline earth metal acetylide compounds and yttrium oxide as additives.

非酸化性雰囲気で焼成することを特徴とする窒化アルミ
ニウム焼結体の製造方法である〇(構成の詳細な説明) 以下本発明について具体的に説明する。
A method for manufacturing an aluminum nitride sintered body characterized by firing in a non-oxidizing atmosphere (Detailed description of structure) The present invention will be specifically described below.

まず、窒化アルミニウム原料は純度として高純度のもの
1例えば98−以上のものが好ましいが、95〜98%
程度のものも使用可能である。平均粒径は10μm以下
、好ましくは2μm以下のものが良い。
First, the aluminum nitride raw material has a high purity, for example, preferably 98 or higher, but 95 to 98%.
It is also possible to use a medium-sized one. The average particle size is preferably 10 μm or less, preferably 2 μm or less.

本発明では添加剤としてはアルカリ土類金属のアセチリ
ド化合物を少くとも一種以上とY、0.を両方加えるこ
とが必要である。すなわち、アルカリ土類金属のアセチ
リド化合物とY、O,を適量複合使用することによりf
fi伝導率を著しく増大させることができる◎特にアル
カリ土類金属のアセチリド化合物の合計を0.02〜1
0重量−およびY、0゜を0.1−1On量優にするこ
とによシ熱伝導率が120W/mk(室温)以上従来の
窒化アルミニウム焼結体より大きな値が得られる。アセ
チリド化合物は酸素、水分等と活発に反応しゃすいもの
が1)、中には爆発性のものがあるため混合はアルコー
ル等の非水溶媒を用い、加熱乾燥は窒素ガス等の非酸化
性雰囲気で行ない、またあまシ高温に保持しない等、粉
末処理工程において注意が必要でらる0またアセチリド
化合物はCaC2g 8rC@ @BaC2が望ましい
In the present invention, the additives include at least one acetylide compound of an alkaline earth metal, Y, 0. It is necessary to add both. That is, by using a suitable amount of alkaline earth metal acetylide compound in combination with Y, O,
Fi conductivity can be significantly increased ◎ Especially when the total amount of alkaline earth metal acetylide compounds is 0.02 to 1
By setting 0 weight - and Y and 0° to a predominant amount of 0.1-1 On, a thermal conductivity of 120 W/mk (room temperature) or more can be obtained, which is larger than that of conventional aluminum nitride sintered bodies. Acetylide compounds react actively with oxygen, moisture, etc.1), and some of them are explosive, so use a non-aqueous solvent such as alcohol for mixing, and use a non-oxidizing atmosphere such as nitrogen gas for heating and drying. In addition, the acetylide compound is preferably CaC2g 8rC@@BaC2, which requires caution in the powder processing step, such as not maintaining the powder at a high temperature.

次に、焼結は非酸化性雰囲気中で高温焼結することが必
要である。酸化性雰囲気中で焼結すると窒化アルミニウ
ムが酸化してしまい緻密な焼結体が得られない◎非酸化
性雰囲気としては窯素ガス。
Next, sintering requires high temperature sintering in a non-oxidizing atmosphere. If sintered in an oxidizing atmosphere, aluminum nitride will oxidize and a dense sintered body cannot be obtained. ◎Kiln gas is used as a non-oxidizing atmosphere.

ヘリウムガス、アルゴンガス、−酸化炭素ガス。Helium gas, argon gas, -carbon oxide gas.

水素ガス、真空雰囲気などが使用できるが、中でも窯素
ガス、アルゴンガス、ヘリウムガス、真空雰囲気が便利
で好ましい。焼結は1500〜2000℃で行われ、特
に1600−1900℃が有効であるが、特にこれらの
温度範囲に限定されるものでは無い。また焼結は常圧焼
結法でも成いし、加圧焼結法によっても良い◎加圧焼結
法としてはホットプレス法(−軸加圧焼結法)とHIP
法(熱間静水圧加圧焼結法)のどちらでも可能である◎
特にホットプレス法により焼結した場合に高熱伝導性窯
化アルミニウム焼結体が得られる〇 次に実施例によって本発明を具体的に説明する0(実施
例1) 平均粒径が2μmの窒化アルミニウム粉末に第1表に示
す種々の添加剤を加え1次いでこの混合粉末を室温で2
000h/es2の圧力を加えて成形体とした。この成
形体を焼結炉において窒素ガス雰囲気下で1800℃で
2時間常圧焼結した窯化アルミニウム焼結体の室温での
相対密度、熱伝導率を第1表に示す。本発明の製造方法
によシ室温での熱伝導率が120W/mk以上の高熱伝
導性窯化アルミニウム焼結体が得られた。
Hydrogen gas, vacuum atmosphere, etc. can be used, and among them, kiln gas, argon gas, helium gas, and vacuum atmosphere are convenient and preferable. Sintering is performed at a temperature of 1500 to 2000°C, and 1600 to 1900°C is particularly effective, but the temperature range is not particularly limited. Also, sintering can be done by normal pressure sintering method or pressure sintering method ◎ Pressure sintering methods include hot press method (-axis pressure sintering method) and HIP method.
Either method (hot isostatic pressing sintering method) is possible◎
In particular, when sintered by the hot press method, a highly thermally conductive sintered aluminum sintered body can be obtained〇The present invention will be specifically explained with reference to Examples 0 (Example 1) Aluminum nitride with an average particle size of 2 μm Various additives shown in Table 1 were added to the powder, and then the mixed powder was heated at room temperature.
A pressure of 000 h/es2 was applied to form a molded body. Table 1 shows the relative density and thermal conductivity at room temperature of the sintered aluminum sintered body obtained by sintering this compact at room temperature at 1800° C. for 2 hours in a nitrogen gas atmosphere in a sintering furnace. By the manufacturing method of the present invention, a highly thermally conductive sintered aluminum body having a thermal conductivity of 120 W/mK or more at room temperature was obtained.

以下余白 (実施例2) 平均粒径が2μmの窯化アルミニウム粉末に第2表に示
す種々の添加剤を加え、次いでこの混合粉末を室温で2
000 Kg/cxa2の圧力を加えて成形体とした。
The following margin (Example 2) Various additives shown in Table 2 were added to the silica aluminum powder having an average particle size of 2 μm, and then the mixed powder was mixed with 2 μm at room temperature.
A pressure of 000 Kg/cxa2 was applied to form a molded body.

この成形体を焼結炉において窯素ガス雰囲気下で第2表
に示す条件で焼成した窯化アルミニウム焼結体の相対密
度および室温での熱伝導率を第2表に示す0本発明の製
造方法によシ室温での熱伝導率が120 W/ mk以
上の高熱伝導性窒化アルS +クム焼結体が得られた。
This molded body was sintered in a sintering furnace in a kiln gas atmosphere under the conditions shown in Table 2.The relative density and thermal conductivity at room temperature of the sintered aluminum body are shown in Table 2.Production of the present invention By this method, a highly thermally conductive aluminum nitride S + cum sintered body with a thermal conductivity of 120 W/mk or more at room temperature was obtained.

(実施例3) 平均粒径が0.6μm、純度99%(金属不純物の合計
が300 ppm以下)の窒化アルミニウム粉末に炭化
カルシウム(CaC,)を2重量%および酸化イツトリ
ウム(Y、O,)を2重量%添加し、キシレン中で混合
後、ろ過した粉末を真空中で加熱乾燥した0次いでこの
混合粉末を室温で2000 K97cm2の圧力を加え
成形体とした。この成形体を黒鉛製のホットプレス型に
入れ、1800℃400に97cm2窒累雰囲気下で2
時間ホットプレスして窒化アルミニウム焼結体を得た。
(Example 3) 2% by weight of calcium carbide (CaC,) and yttrium oxide (Y, O,) were added to aluminum nitride powder with an average particle size of 0.6 μm and a purity of 99% (total of metal impurities of 300 ppm or less). After mixing in xylene, the filtered powder was heated and dried in a vacuum.Then, this mixed powder was applied a pressure of 2000K97cm2 at room temperature to form a molded body. This molded body was placed in a hot press mold made of graphite, and heated to 400°C at 1800°C for 2 hours in a 97cm2 nitrogen atmosphere.
An aluminum nitride sintered body was obtained by hot pressing for hours.

この窒化アルミニウム焼結体は室温で相対密度log’
s、7%伝導車180W/mk、熱膨張率4.3×10
−6/’C,比抵抗4X10”Ωm9曲げ強度60Kt
/mm2の特性を示し、さらに透光性を有してい九〇例
えば4〜6μmの波長の元に対する透過率は厚さが0.
5mmの試料に対して約45%であり、また0、2〜6
.5μmの範囲の波長で10%以上の透過率を示した。
This aluminum nitride sintered body has a relative density log' at room temperature.
s, 7% conduction wheel 180W/mk, thermal expansion coefficient 4.3×10
-6/'C, specific resistance 4X10"Ωm9 bending strength 60Kt
/mm2, and also has translucency, and the transmittance for wavelengths of 4 to 6 μm, for example, is 0.2 μm.
It is about 45% for a 5 mm sample, and 0, 2 to 6
.. It showed a transmittance of 10% or more at a wavelength in the 5 μm range.

(発明の効果) 本発明の製造方法で製造した窒化アルミニウム焼結体は
高密度で需伝導性に優れ、熱的特性、電気的特性1機械
的特性、さらに光学的特性にも良好であったため、半導
体工業等の放熱材料としての応用以外にルツボ、蒸着容
器、耐熱ジグ高温部材等の高温材料としての応用も可能
であゆ、さらに透光性であるといつた光学的性質を利用
した窓材等の光学材料としての応用も可能であるなど。
(Effects of the invention) The aluminum nitride sintered body produced by the production method of the present invention had high density, excellent conductivity, and good thermal properties, electrical properties, mechanical properties, and optical properties. In addition to its application as a heat dissipation material in the semiconductor industry, it can also be used as a high-temperature material for crucibles, vapor deposition containers, heat-resistant jigs, and other high-temperature components.It is also a window material that utilizes optical properties such as translucency. It is also possible to apply it as an optical material.

工業的に多くの利点を有するものである。It has many industrial advantages.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末に添加剤としてアルカリ土
類金属のアセチリド化合物の一種以上と酸化イットリウ
ムを配合した混合粉末を成形後、非酸化性雰囲気で焼成
することを特徴とする窒化アルミニウム焼結体の製造方
法。
(1) An aluminum nitride sintered body is produced by molding a mixed powder of aluminum nitride powder with one or more alkaline earth metal acetylide compounds and yttrium oxide as additives, and then firing it in a non-oxidizing atmosphere. Production method.
(2)アルカリ土類金属のアセチリド化合物はCaC_
2、SrC_2、BaC_2である特許請求の範囲第1
項記載の窒化アルミニウム焼結体の製造方法。
(2) The acetylide compound of alkaline earth metal is CaC_
2, SrC_2, BaC_2
A method for producing an aluminum nitride sintered body as described in 1.
JP60102924A 1985-05-15 1985-05-15 Manufacture of aluminum nitride sintered body Pending JPS61261270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60102924A JPS61261270A (en) 1985-05-15 1985-05-15 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60102924A JPS61261270A (en) 1985-05-15 1985-05-15 Manufacture of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61261270A true JPS61261270A (en) 1986-11-19

Family

ID=14340398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60102924A Pending JPS61261270A (en) 1985-05-15 1985-05-15 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61261270A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236765A (en) * 1987-03-26 1988-10-03 品川白煉瓦株式会社 Aluminum nitride sintered body
US5077245A (en) * 1987-01-30 1991-12-31 Kyocera Corporation Aluminum nitride-based sintered body and process for the production thereof
CN1081178C (en) * 1998-07-08 2002-03-20 中国科学院上海硅酸盐研究所 Method for preparing high thermal-conductivity aluminum nitride ceramics
CN1092165C (en) * 1998-07-08 2002-10-09 中国科学院上海硅酸盐研究所 Low temp. sintering of aluminum nitride ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077245A (en) * 1987-01-30 1991-12-31 Kyocera Corporation Aluminum nitride-based sintered body and process for the production thereof
JPS63236765A (en) * 1987-03-26 1988-10-03 品川白煉瓦株式会社 Aluminum nitride sintered body
CN1081178C (en) * 1998-07-08 2002-03-20 中国科学院上海硅酸盐研究所 Method for preparing high thermal-conductivity aluminum nitride ceramics
CN1092165C (en) * 1998-07-08 2002-10-09 中国科学院上海硅酸盐研究所 Low temp. sintering of aluminum nitride ceramics

Similar Documents

Publication Publication Date Title
JPS6353151B2 (en)
JPS6331434B2 (en)
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS60255677A (en) Manufacture of aluminum nitride sintered body
JPH0196067A (en) Production of aluminum nitride sintered body
JPS60239367A (en) Manufacture of aluminum nitride sintered body
JPH01188472A (en) Production of aluminum nitride sintered body
JPS61270264A (en) Manufacture of aluminum nitride sintered body
JPS63176368A (en) Manufacture of aluminum nitride sintered body
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPS61232273A (en) Manufacture of aluminum nitride sintered body
JPS60151279A (en) Aluminum nitride powder composition
JPS61232274A (en) Manufacture of aluminum nitride sintered body
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPH01138174A (en) Production of sintered aluminum nitride
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPS63274668A (en) Production of aluminum nitride sintered body
JPH01301564A (en) Sintered material of aluminum nitride and production thereof
JPH02149469A (en) Production of aluminum nitride sintered body
JPH02129073A (en) Production of sintered aluminum nitride
JPH0328174A (en) Aluminum nitride sintered material
JPH04275980A (en) Production of aluminum nitride sintered body
JPS6374966A (en) Manufacture of aluminum nitride sintered body
JPH02204368A (en) Aluminum nitride sintered body and production thereof
JPH02107569A (en) Production of aluminum nitride sintered body