JPH0196067A - Production of aluminum nitride sintered body - Google Patents
Production of aluminum nitride sintered bodyInfo
- Publication number
- JPH0196067A JPH0196067A JP62255899A JP25589987A JPH0196067A JP H0196067 A JPH0196067 A JP H0196067A JP 62255899 A JP62255899 A JP 62255899A JP 25589987 A JP25589987 A JP 25589987A JP H0196067 A JPH0196067 A JP H0196067A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- sintered body
- nitride sintered
- thermal conductivity
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 16
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000654 additive Substances 0.000 claims abstract description 10
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- 230000000996 additive effect Effects 0.000 claims abstract description 7
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(III) oxide Inorganic materials O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 claims abstract description 6
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000000919 ceramic Substances 0.000 claims abstract description 3
- 229910003440 dysprosium oxide Inorganic materials 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910001954 samarium oxide Inorganic materials 0.000 claims description 5
- 229940075630 samarium oxide Drugs 0.000 claims description 5
- 238000005245 sintering Methods 0.000 abstract description 16
- 239000002245 particle Substances 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910000487 osmium oxide Inorganic materials 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化アルミニウム焼結体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an aluminum nitride sintered body.
近年、半導体工業の急速な技術革新によfi、IC1お
よびL8Iをはじめとする大規模集積回路は高集積化、
高出力化が行われ、これに伴うシリコン素子の単位面積
当りの発熱量が大幅に増加してきた。そこでシリコン素
子の通電動作による発熱のためシリコン素子の正常な動
作を妨げる問題が生じ始めている。それに伴って熱伝導
性の良い絶縁性基板材料が要求されている。In recent years, due to rapid technological innovation in the semiconductor industry, large-scale integrated circuits such as fi, IC1, and L8I have become highly integrated.
As power output has been increased, the amount of heat generated per unit area of silicon devices has increased significantly. Therefore, a problem has begun to arise that disturbs the normal operation of the silicon element due to heat generated by the energizing operation of the silicon element. Accordingly, insulating substrate materials with good thermal conductivity are required.
従来、絶縁性基板材料としては一般にアルミナ焼結体が
最も多く使用されている。しかしながら、最近ではアル
ミナ基板は熱放散に関しては満足しているとは言えず、
さらに熱放散性(熱伝導性)の優れた絶縁性基板材料の
開発が要求されるようになりてきた。このような絶縁性
基板材料としては熱伝導性が良い(熱伝導率が大きい)
、電気絶縁性である、熱膨張率がシリコン単結晶の値に
近い、機械的強度が大きい等の特性が要求される。Conventionally, alumina sintered bodies have been most commonly used as insulating substrate materials. However, recently, alumina substrates cannot be said to be satisfactory in terms of heat dissipation.
Furthermore, there has been a demand for the development of insulating substrate materials with excellent heat dissipation (thermal conductivity). Good thermal conductivity for such an insulating substrate material (high thermal conductivity)
It is required to have properties such as electrical insulation, a coefficient of thermal expansion close to that of a silicon single crystal, and high mechanical strength.
ところで良好な熱伝導性を有することが知られている窒
化アルミニウムは熱膨張率が約4.3xlo−’/℃(
室温から400℃の平均値)でアルミナ焼結体の約7X
10−@/’Cに比べて小さく、シリコン素子の熱膨張
率3.5〜4.OX l O−/℃に近い。By the way, aluminum nitride, which is known to have good thermal conductivity, has a coefficient of thermal expansion of approximately 4.3xlo-'/°C (
Approximately 7X of alumina sintered body (average value from room temperature to 400℃)
10-@/'C, and the thermal expansion coefficient of silicon elements is 3.5 to 4. Close to OX l O-/°C.
また機械的強度も曲げ強さで50 kg/mm”程度を
有し、アルミナ焼結体の値20〜3 Q kg/mm”
に比べ高強度でおる電気絶縁性に優れた材料である。In addition, the mechanical strength is approximately 50 kg/mm" in terms of bending strength, which is the value of alumina sintered body of 20 to 3 Q kg/mm".
It is a material with high strength and excellent electrical insulation properties compared to other materials.
従来、窒化アルミニウムCiN)焼結体は窒化アルミニ
ウムの粉末を成形、焼結して得られるのであるが、窒化
アルミニウムは難焼結性物質であるため、緻密人焼結体
を得ることが困難である。Conventionally, aluminum nitride (CiN) sintered bodies are obtained by molding and sintering aluminum nitride powder, but since aluminum nitride is a difficult-to-sinter substance, it is difficult to obtain dense sintered bodies. be.
そこで現在では焼結助剤を加え、常圧焼結法やホットプ
レス法によシ緻密な窒化アルミニウム焼結体を得る試み
がなされている。1986年の第6回電子材料研究討論
会予稿集p50には酸化ホルミクム(Ho20りを焼結
助剤として加える窒化アルミニウム焼結体の製造方法が
示され°Cいる。この方法によると熱伝導率がt7oW
/mk(室温)ノ窒化アルミニウム焼結体が得られてい
る。Therefore, attempts are currently being made to obtain a dense aluminum nitride sintered body by adding a sintering aid and using an atmospheric pressure sintering method or a hot pressing method. Proceedings of the 6th Electronic Materials Research Conference in 1986, page 50, describes a method for producing aluminum nitride sintered bodies in which holmicum oxide (Ho20) is added as a sintering agent. According to this method, the thermal conductivity is t7oW
/mk (room temperature) aluminum nitride sintered body was obtained.
しかしながら、近年の集積回路技術の発達に伴い、さら
に高熱伝導性を有する熱放散用基板材料が求められてい
る。However, with the recent development of integrated circuit technology, there is a demand for heat dissipation substrate materials having even higher thermal conductivity.
そこで本発明者は上記実情に対処すべく鋭意研究を重ね
た結果、酸化サマリウム(Smz Os)、酸化ジスプ
ロシウム(DytOs)、酸化ネオジウム(Nch03
)の粉末の少なくとも一種以上を添加することにより熱
伝導率を著しく増大させることができるとの知見を得、
本発明を完成するに到った。Therefore, as a result of intensive research in order to deal with the above situation, the present inventors found that samarium oxide (SmzOs), dysprosium oxide (DytOs), neodymium oxide (Nch03
), it was found that the thermal conductivity can be significantly increased by adding at least one kind of powder.
The present invention has now been completed.
本発明の目的は高熱伝導性を有し、さらに種々の有用な
性質を有する窒化アルミニウム焼結体の製造方法を提供
することにある。An object of the present invention is to provide a method for producing an aluminum nitride sintered body having high thermal conductivity and various useful properties.
本発明は窒化アルミニクム粉末に、添加剤とし7て酸化
サマリウム、酸化ジスプロシウム、酸化ネオジウムの粉
末から選ばれる少なくとも一種以上を添加したセラミッ
ク混合物を成形後、真空中もしくは非酸化性雰囲気中で
焼成することを特徴とする窒化アルミニウム焼結体の製
造方法である。The present invention involves molding a ceramic mixture in which aluminum nitride powder is added with at least one kind of additive selected from powders of samarium oxide, dysprosium oxide, and neodymium oxide, and then firing the mixture in vacuum or in a non-oxidizing atmosphere. A method for manufacturing an aluminum nitride sintered body, characterized by:
以下本発明について具体的に説明する。The present invention will be specifically explained below.
まず、窒化アルミニウム原料は純度として高純度のもの
、例えば98%以上のものが好ましいが、95〜98%
程度のものも使用可能である。平均粒径は10μm以下
、好ましくは2μm以下のものが良い。First, the aluminum nitride raw material has a high purity, for example, preferably 98% or more, but 95 to 98%
It is also possible to use a medium-sized one. The average particle size is preferably 10 μm or less, preferably 2 μm or less.
本発明に工れば添加剤として酸化サマリウム(Smz0
コ) 、b化ジスプCIシウム(Dyz Os)、酸化
ネオジウム(NdiOs)の粉末の少なくとも一徨以上
を直接、あるいは焼成によってMfJ記酸化物となる炭
酸塩、硝酸塩、硫酸塩等として窒化アルミニウム粉末に
対して含ませることによ#)熱伝導率を著しく増大させ
ることができる。特に添加−m’tO,5〜15重ψ%
にすることにニジ熱伝導率が200W/mk (室温
)よシ大きくでき、近来の窒化アルミニウム焼結体よシ
大きな値が1Gられる。According to the present invention, samarium oxide (Smz0
j) At least one or more of the powders of Dyz Os and neodymium oxide (NdiOs) are converted into aluminum nitride powder as carbonates, nitrates, sulfates, etc., which become MfJ oxides, either directly or by firing. Thermal conductivity can be significantly increased by including it. Especially added - m'tO, 5 to 15 weight ψ%
As a result, the thermal conductivity can be increased to more than 200 W/mk (at room temperature), which is 1 G, which is greater than that of recent aluminum nitride sintered bodies.
次に、焼結は真空中もしくは非酸化性雰囲気中で高温焼
結することが必要である。酸化性雰囲気中で焼結すると
窒化アルミニウムが敵化しでしまい緻密な焼結体が得ら
れない。非酸化性界−気としては窒素ガス、ヘリウムガ
ス、アルゴンガス、−酸化炭素ガス、水素ガスなどが使
用できる。このうち特に窒素ガス、アルゴンガス、ヘリ
ウムガス及び真空雰囲気が好ましい。焼結は1500〜
2000℃で行われ、特に1600〜1900℃が有効
であるが、これらの温度範囲に限定されるものではない
。また焼結は常圧焼結法でも良いし、加圧焼結法によっ
ても良い。加圧焼結法としてはホットプレス法(−軸加
圧焼結法)とif I P法(熱間静水圧加圧焼結法)
のどちらも可能である。特にホットプレス法により焼結
した場合に高熱伝導性窒化アルミニウム焼結体が得られ
る。Next, sintering requires high temperature sintering in a vacuum or non-oxidizing atmosphere. If sintered in an oxidizing atmosphere, aluminum nitride becomes hostile and a dense sintered body cannot be obtained. As the non-oxidizing field, nitrogen gas, helium gas, argon gas, carbon oxide gas, hydrogen gas, etc. can be used. Among these, nitrogen gas, argon gas, helium gas and vacuum atmosphere are particularly preferred. Sintering is 1500 ~
It is carried out at 2000°C, and 1600 to 1900°C is particularly effective, but it is not limited to these temperature ranges. Further, the sintering may be performed by a pressureless sintering method or a pressure sintering method. Pressure sintering methods include hot press method (-axis pressure sintering method) and if IP method (hot isostatic pressure sintering method)
Both are possible. In particular, when sintered by hot pressing, a highly thermally conductive aluminum nitride sintered body can be obtained.
次に実施例によって本発明を具体的に説明する。 Next, the present invention will be specifically explained with reference to Examples.
実施例1〜6、比較例1
平均粒径が1μmの窒化アルミニウム粉末罠第1表に示
す種々の添加剤を合計量で7″iIL量%添訓混合した
。次いでこの混合粉末を室温で2000kg/cm2の
圧力を加えて成形体とした。この成形体を焼結炉に入れ
、窒素ガ゛ス雰囲気下、1800℃で10時間焼結して
窒化アルミニウム焼結体を得た。この窒化アルミニウム
焼結体の室温での熱伝導率を同じく第1表に示す。本発
明の添加剤を加えることによシ室温での熱伝導率が20
0W/mk以上の高熱伝導性窒化アルミニウム焼結体が
得られた。Examples 1 to 6, Comparative Example 1 Various additives shown in Table 1 were mixed in an aluminum nitride powder trap with an average particle size of 1 μm in a total amount of 7″iIL amount%. Then, 2000 kg of this mixed powder was mixed at room temperature. A pressure of /cm2 was applied to form a compact.This compact was placed in a sintering furnace and sintered at 1800°C for 10 hours in a nitrogen gas atmosphere to obtain an aluminum nitride sintered body.This aluminum nitride The thermal conductivity of the sintered body at room temperature is also shown in Table 1. By adding the additive of the present invention, the thermal conductivity at room temperature increases to 20.
An aluminum nitride sintered body with high thermal conductivity of 0 W/mk or more was obtained.
一方、比較例として添加剤を加えないほかは上記実施例
と同様にして窒化アルミニウム焼結体を製造した。その
結果もあわせて第1表に示す。On the other hand, as a comparative example, an aluminum nitride sintered body was produced in the same manner as in the above example except that no additives were added. The results are also shown in Table 1.
第1表
実施例7〜11
平均粒径が2μmの窒化アルミニクム粉末に第2表に示
す添加剤を加え、次いでこの混合粉末を室温でz o
o o kg/cm’の圧力を加えて成形体とした。こ
の成形体を焼結炉において窒素ガス雰凹気下で第2表に
示す条件で焼結した。この窒化アルミニウム焼結体の室
温での熱伝導率を第2表に示す。本発明の添加剤を加え
ることによシ、室温での熱伝導率が200W/mk以上
の高熱伝導性窒化アルミニウム焼結体が得られた。Table 1 Examples 7 to 11 The additives shown in Table 2 were added to aluminum nitride powder with an average particle size of 2 μm, and then the mixed powder was heated to z o at room temperature.
A pressure of o kg/cm' was applied to form a molded body. This compact was sintered in a sintering furnace under a nitrogen gas atmosphere under the conditions shown in Table 2. Table 2 shows the thermal conductivity of this aluminum nitride sintered body at room temperature. By adding the additive of the present invention, a highly thermally conductive aluminum nitride sintered body having a thermal conductivity of 200 W/mK or more at room temperature was obtained.
以下余白
実施例12
平均粒径が1μm、純度99%の窒化アルミニウム粉末
に酸化ジスプロシウム粉末を7重量%添加し、アルコー
ル中で混合後、ろ過した粉末を乾燥窒素雰囲気下で加熱
転線した。次いでこの混合粉末を室温で2000 k
17cm”の圧力を加え成形体とした。この成形体を黒
鉛製のホットプレス型に入れ、1800℃、400 k
g/cri”、窒素雰囲気下で2時間ホットプレスして
、窒化アルミニクム焼結体を得た。Example 12 7% by weight of dysprosium oxide powder was added to aluminum nitride powder with an average particle size of 1 μm and a purity of 99%, mixed in alcohol, and the filtered powder was heated and converted in a dry nitrogen atmosphere. This mixed powder was then heated to 2000 k at room temperature.
A pressure of 17cm" was applied to form a molded product. This molded product was placed in a graphite hot press mold and heated at 1800°C and 400k.
g/cri'' for 2 hours under a nitrogen atmosphere to obtain an aluminum nitride sintered body.
この窒化アルミニクム焼結体は室温で相対密度99%、
熱伝導率240痴菊k、熱膨張率4.3×10″′4/
/℃、比抵抗10′!Ωcm以上、曲げ強度50kg/
mm2の特性を示し、さらに透光性を有していた。例え
ば4〜6μmの波長の光に対する透過率は約20%でら
シ、また約0.2〜6.5μmの範囲の波長では約5%
以上の透過率を示した。This aluminum nitride sintered body has a relative density of 99% at room temperature.
Thermal conductivity: 240 K, thermal expansion coefficient: 4.3 x 10'''4/
/℃, resistivity 10'! Ωcm or more, bending strength 50kg/
It exhibited characteristics of mm2 and also had translucency. For example, the transmittance for light in the wavelength range of 4 to 6 μm is approximately 20%, and for wavelengths in the range of approximately 0.2 to 6.5 μm, the transmittance is approximately 5%.
The transmittance was above.
実施例13〜15
実施例1〜3の各試料を1800℃、1000kg/c
m”(アルゴンガス圧力)、2時間の条件でHIP(熱
間静水圧加圧)焼結することによシ室温での熱伝導率が
各々z4oW/mkの窒化アルミニウム焼結体を得た。Examples 13 to 15 Each sample of Examples 1 to 3 was heated at 1800°C and 1000 kg/c.
By performing HIP (hot isostatic pressing) sintering under the conditions of 2 hours of argon gas pressure, aluminum nitride sintered bodies each having a thermal conductivity of z4oW/mk at room temperature were obtained.
以上説明したよりに本発明の製造方法で製造した窒化ア
ルミニウム焼結体は高密度で熱伝導性に優れ、熱的特性
、電気的特性、機械的特性、さらに光学的持回も良好で
あるlとめ、半導体工業等の放熱材料としでの応用以外
に、ルツボ、蒸着容器、耐熱治具、高己部材等の高温材
料としての応用も可能であp、さらに透光性であるとい
った光学的性質をオリ用した窓材等の光学旧料とし7て
の応用も可能であるなど、工業的に多くの利点金有する
ものである。As explained above, the aluminum nitride sintered body produced by the production method of the present invention has high density, excellent thermal conductivity, and good thermal properties, electrical properties, mechanical properties, and optical durability. In addition to being used as a heat dissipating material in the semiconductor industry, etc., it can also be used as a high-temperature material in crucibles, vapor deposition containers, heat-resistant jigs, and high-temperature materials.In addition, it has optical properties such as translucency. It has many industrial advantages, such as being able to be used as an optical material for window materials and the like.
代理人 弁理士 内 原 晋Agent Patent Attorney Susumu Uchihara
Claims (2)
リウム、酸化ジスプロシウム、酸化ネオジウムの粉末か
ら選ばれる少なくとも一種以上を添加したセラミック混
合物を成形後、真空中もしくは非酸化性雰囲気中で焼成
することを特徴とする窒化アルミニウム焼結体の製造方
法。(1) A ceramic mixture made by adding at least one kind of additive selected from powders of samarium oxide, dysprosium oxide, and neodymium oxide to aluminum nitride powder is molded and then fired in a vacuum or in a non-oxidizing atmosphere. A method for producing an aluminum nitride sintered body.
ジウムの粉末から選ばれる少なくとも一種以上の添加物
の添加量は0.5〜15重量%である特許請求の範囲第
1項記載の窒化アルミニウム焼結体の製造方法。(2) The aluminum nitride sintered body according to claim 1, wherein the amount of at least one additive selected from powders of samarium oxide, dysprosium oxide, and neodymium oxide is 0.5 to 15% by weight. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62255899A JPH0196067A (en) | 1987-10-08 | 1987-10-08 | Production of aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62255899A JPH0196067A (en) | 1987-10-08 | 1987-10-08 | Production of aluminum nitride sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0196067A true JPH0196067A (en) | 1989-04-14 |
Family
ID=17285116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62255899A Pending JPH0196067A (en) | 1987-10-08 | 1987-10-08 | Production of aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0196067A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305863A (en) * | 1988-06-03 | 1989-12-11 | Hitachi Metals Ltd | Aluminium nitride sintered body, its production, and electronic parts using the same sintered body |
WO1998027024A1 (en) * | 1996-12-17 | 1998-06-25 | The Dow Chemical Company | Ain sintered body containing a rare earth aluminum oxynitride and method to produce said body |
JP2005294796A (en) * | 2003-12-19 | 2005-10-20 | Kyocera Corp | Package for housing light emitting element, light emitting apparatus, and lighting system |
JP2006270120A (en) * | 2003-12-19 | 2006-10-05 | Kyocera Corp | Light-emitting diode device |
KR100793679B1 (en) * | 2006-03-24 | 2008-01-10 | 니뽄 가이시 가부시키가이샤 | Electrostatic chuck and manufacturing method thereof |
CN112142475A (en) * | 2020-09-11 | 2020-12-29 | 北京理工大学 | High-density/high-thermal-conductivity AlN ceramic for electronic packaging and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60127267A (en) * | 1983-12-12 | 1985-07-06 | 株式会社東芝 | High heat conductivity aluminum nitride sintered body |
JPS62275069A (en) * | 1986-05-22 | 1987-11-30 | 日立金属株式会社 | Manufacture of aln ceramics |
-
1987
- 1987-10-08 JP JP62255899A patent/JPH0196067A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60127267A (en) * | 1983-12-12 | 1985-07-06 | 株式会社東芝 | High heat conductivity aluminum nitride sintered body |
JPS62275069A (en) * | 1986-05-22 | 1987-11-30 | 日立金属株式会社 | Manufacture of aln ceramics |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305863A (en) * | 1988-06-03 | 1989-12-11 | Hitachi Metals Ltd | Aluminium nitride sintered body, its production, and electronic parts using the same sintered body |
WO1998027024A1 (en) * | 1996-12-17 | 1998-06-25 | The Dow Chemical Company | Ain sintered body containing a rare earth aluminum oxynitride and method to produce said body |
JP2005294796A (en) * | 2003-12-19 | 2005-10-20 | Kyocera Corp | Package for housing light emitting element, light emitting apparatus, and lighting system |
JP2006270120A (en) * | 2003-12-19 | 2006-10-05 | Kyocera Corp | Light-emitting diode device |
KR100793679B1 (en) * | 2006-03-24 | 2008-01-10 | 니뽄 가이시 가부시키가이샤 | Electrostatic chuck and manufacturing method thereof |
CN112142475A (en) * | 2020-09-11 | 2020-12-29 | 北京理工大学 | High-density/high-thermal-conductivity AlN ceramic for electronic packaging and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6353151B2 (en) | ||
JPH0196067A (en) | Production of aluminum nitride sintered body | |
JPS6331434B2 (en) | ||
KR102565344B1 (en) | Aluminium nitride ceramics composition and manufacturing method thereof | |
JP2002220282A (en) | Aluminum nitride sintered compact and method of manufacture | |
JP2661113B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS61261270A (en) | Manufacture of aluminum nitride sintered body | |
JPS63274668A (en) | Production of aluminum nitride sintered body | |
JPH0522670B2 (en) | ||
JP2876521B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS62246867A (en) | Manufacture of aluminum nitride sintered body | |
JPS60255677A (en) | Manufacture of aluminum nitride sintered body | |
JPS63274667A (en) | Production of aluminum nitride sintered body | |
JPH02279568A (en) | Aluminum nitride-based sintered body and its production | |
JPS61232274A (en) | Manufacture of aluminum nitride sintered body | |
JPS63176368A (en) | Manufacture of aluminum nitride sintered body | |
JPH03252368A (en) | Production of sintered aluminum nitride compact | |
RU2032642C1 (en) | Mixture for articles of aluminium nitride having high heat conductivity and method for their production | |
JPS61270264A (en) | Manufacture of aluminum nitride sintered body | |
JPS61232273A (en) | Manufacture of aluminum nitride sintered body | |
JP3204520B2 (en) | Manufacturing method of heat sink for thyristor | |
JPH03279264A (en) | Production of sintered aluminum nitride having high thermal conductivity | |
JPH01188472A (en) | Production of aluminum nitride sintered body | |
JPH0627032B2 (en) | Method for manufacturing aluminum nitride sintered body | |
JPH01215760A (en) | Production of aluminum nitride sintered form |