JPS61270264A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS61270264A
JPS61270264A JP60113507A JP11350785A JPS61270264A JP S61270264 A JPS61270264 A JP S61270264A JP 60113507 A JP60113507 A JP 60113507A JP 11350785 A JP11350785 A JP 11350785A JP S61270264 A JPS61270264 A JP S61270264A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
thermal conductivity
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60113507A
Other languages
Japanese (ja)
Inventor
泰弘 黒川
和明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60113507A priority Critical patent/JPS61270264A/en
Publication of JPS61270264A publication Critical patent/JPS61270264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化アルミニウム焼結体の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing an aluminum nitride sintered body.

(従来技術とその問題点) 近年、半導体工業の急速な技術革新によシ、IC,LS
Iをはじめとする大規模集積回路は高集積化、高出力が
行われ、これに伴うシリコン素子の単位面積当りの発熱
量が大幅に増加してきた。
(Prior art and its problems) In recent years, due to rapid technological innovation in the semiconductor industry, IC, LS
Large-scale integrated circuits such as I have become highly integrated and have high output, and as a result, the amount of heat generated per unit area of silicon elements has increased significantly.

そこでシリコン素子の通電動作による発熱のためシリコ
ン素子の正常な動作を妨げる問題が生じ始めている。そ
れに伴って熱伝導性の良い絶縁性基板材料が要求されて
いる。
Therefore, a problem has begun to arise that disturbs the normal operation of the silicon element due to heat generated by the energizing operation of the silicon element. Accordingly, insulating substrate materials with good thermal conductivity are required.

従来、絶縁性基板材料としては一般にアルミナ焼結体が
最も多く使用されている。しかしながら、最近ではアル
ミナ基板は熱放散に関しては満足しているとは言えず、
さらに熱放散性(熱伝導性)の優れた絶縁性基板材料の
開発が要求されるようになってきた。このような絶縁基
板材料としては熱伝導性が良い(熱伝導率が大きい)、
電気絶縁性である、熱膨張率がシリコン単結晶の値に近
い、機械的強度が大きい等の特性が要求される。
Conventionally, alumina sintered bodies have been most commonly used as insulating substrate materials. However, recently, alumina substrates cannot be said to be satisfactory in terms of heat dissipation.
Furthermore, there has been a demand for the development of insulating substrate materials with excellent heat dissipation (thermal conductivity). As such an insulating substrate material, it has good thermal conductivity (high thermal conductivity).
It is required to have properties such as electrical insulation, a coefficient of thermal expansion close to that of silicon single crystal, and high mechanical strength.

ところで良好な熱伝導性を有することが知られている窒
化アルミニウムは熱膨張率が約4.3X 104/C(
室温から400℃の平均値)でアルミナ焼結体の約7 
X 10−’/lに比べて小さく、シリコン素子の熱膨
張率3.5〜4.OX 10−’/lに近い。また機械
的強度も曲げ強さで約50に9/−程度を有し、アルミ
ナ焼結体の値20〜30kg/−に比べ高強度である電
気絶縁性に優れた材料である。
By the way, aluminum nitride, which is known to have good thermal conductivity, has a coefficient of thermal expansion of approximately 4.3X 104/C (
(average value from room temperature to 400℃) of the alumina sintered body.
X 10-'/l, and the thermal expansion coefficient of the silicon element is 3.5-4. Close to OX 10-'/l. It also has a mechanical strength of about 50 to 9/- in terms of bending strength, which is higher than that of alumina sintered body, which is 20 to 30 kg/-, and is a material with excellent electrical insulation properties.

従来、窒化アルミニウムCAIN)焼結体は窒化アルミ
ニウムの粉末を成形、焼結して得られるのであるが、窒
化アルミニウムは難焼結性物質であるため、緻密な焼結
体を得ることが困難である。
Conventionally, aluminum nitride (CAIN) sintered bodies are obtained by molding and sintering aluminum nitride powder, but since aluminum nitride is a difficult-to-sinter substance, it is difficult to obtain dense sintered bodies. be.

そして現在までに焼結助剤を加え、常圧焼結法やホット
プレス法によシ緻密な窒化アルミニウム焼結体を得る試
みがなされている。昭和59年窯業協会年会予稿集のP
2O3には酸化イツ) IJウム(YIOI)を焼結助
剤として加える窒化アルミニウム焼結体の製造方法が示
されている。この方法によると熱伝導率が100w/m
k (室温)の窒化アルミニウム焼結体が得られている
Up to now, attempts have been made to obtain a dense aluminum nitride sintered body by adding a sintering aid and using an atmospheric sintering method or a hot pressing method. P of the Proceedings of the 1981 Ceramics Association Annual Meeting
A method for producing an aluminum nitride sintered body is disclosed in which 2O3 (IJOI) is added as a sintering aid. According to this method, the thermal conductivity is 100w/m
k (room temperature) aluminum nitride sintered body was obtained.

しかしながら、近年の集積回路技術の発達に伴い、さら
に高熱伝導性を有する熱放散用基板材料が求められてい
る。
However, with the recent development of integrated circuit technology, there is a demand for heat dissipation substrate materials having even higher thermal conductivity.

本発明者は上記実情に対処すぺ〈鋭意研究を重ねた結果
、アルカリ土類金属のアセチリド化合物である炭化カル
シウム(CaC,) 、炭化ストロンチウム(SrC,
) 、炭化バリウム(Back)の一種以上と酸化カル
シウム(Cab)をそれぞれ適量複合使用することによ
シ室温での熱伝導率が120 w/mk以上と従来の窒
化アルミニウム焼結体より大きな値が得られるとの知見
を得、本発明を完成するに到った。
The present inventor has attempted to address the above-mentioned situation.As a result of extensive research, the present inventors have found that calcium carbide (CaC,), strontium carbide (SrC,
), by using a combination of one or more types of barium carbide (Back) and calcium oxide (Cab) in appropriate amounts, the thermal conductivity at room temperature is 120 w/mk or more, which is higher than the conventional aluminum nitride sintered body. Based on this finding, we have completed the present invention.

(発明の目的) 本発明の目的は高熱伝導性を有し、さらに種々の有用な
性質を有する窒化アルミニウム焼結体の製造方法を提供
することにある。
(Objective of the Invention) An object of the present invention is to provide a method for producing an aluminum nitride sintered body having high thermal conductivity and various useful properties.

(発明の構成) 本発明は窒化アルミニウム粉末に添加剤としてアルカリ
土類金属のアセチリド化合物の一種以上と酸化カルシウ
ムを配合した混合粉末を成形後、非酸化性雰囲気で焼成
することを特徴とする窒化アルミニウム焼結体の製造方
法である。
(Structure of the Invention) The present invention is a nitriding process characterized in that a mixed powder of aluminum nitride powder mixed with at least one kind of alkaline earth metal acetylide compound and calcium oxide as additives is molded and then fired in a non-oxidizing atmosphere. This is a method for manufacturing an aluminum sintered body.

(構成の詳細な説明) 以下本発明について具体的に説明する。(Detailed explanation of configuration) The present invention will be specifically explained below.

まず、窒化アルミニウム原料は純度として高純度のもの
、例えば98%以上のものが好ましいが、95〜98%
程度のものも使用可能である。平均粒径は10pm以下
、好ましくは2pm以下のものが良い。
First, the aluminum nitride raw material has a high purity, for example, preferably 98% or more, but 95 to 98%
It is also possible to use a medium-sized one. The average particle size is preferably 10 pm or less, preferably 2 pm or less.

本発明では添加剤としてはアルカリ土類金属のアセチリ
ド化合物であるCthC,、SrC,、BaC,を少く
とも一種以上とCaOを両方加えることが必要である。
In the present invention, it is necessary to add at least one kind of alkaline earth metal acetylide compounds such as CthC, SrC, and BaC, and both CaO and CaO.

すなわち、アルカリ土類金属のアセチリド化合物とCa
Oを適量複合使用することにより熱伝導率を著しく増大
させることができる。特にアルカリ土類金属の7セチリ
ド化合物の合計を0.02〜10重量%およびCaOを
0,1〜5重量優にすることによシ熱伝導率がt2ow
/mk(室温)以上従来の窒化アルミニウム焼結体よ)
大きな値が得られる。アセチリド化合物は酸素、水分等
と活発に反応しやすいものかあシ、中には爆発性のもの
があるため混合はアルコール等の非水溶媒を用い、加熱
乾燥は窒素ガス等の非酸化性雰囲気で行ない、またあま
り高温に保持しない等、粉末処理工程において注意が必
要である。
That is, alkaline earth metal acetylide compounds and Ca
By using an appropriate amount of O in combination, thermal conductivity can be significantly increased. In particular, by adjusting the total amount of alkaline earth metal 7 cetylide compounds to 0.02 to 10% by weight and CaO to 0.1 to 5% by weight, the thermal conductivity can be reduced to t2ow.
/mk (room temperature) or higher than conventional aluminum nitride sintered body)
A large value can be obtained. Acetylide compounds tend to react actively with oxygen, moisture, etc., and some of them are explosive, so use a non-aqueous solvent such as alcohol when mixing, and dry under heat in a non-oxidizing atmosphere such as nitrogen gas. Care must be taken in the powder processing process, such as not holding the powder at too high a temperature.

次に、焼結は非酸化性雰囲気中で高温焼結することが必
要である。酸化性雰囲気中で焼結すると窒化アルミニウ
ムが酸化してしまい緻密な焼結体が得られない。非酸化
性雰囲気としては窒素ガス、ヘリウムガス、アルゴンガ
ス、−酸化炭素ガス、水素ガス、真空雰囲気などが使用
できるが、中でも窒素ガス、アルゴンガス、ヘリウムガ
ス、真空雰囲気が便利で好ましい。焼結は1500〜2
000℃で行われ、特に1600〜1900℃が有効で
あるが、特にこれらの温度範囲に限定されるものでは無
い。
Next, sintering requires high temperature sintering in a non-oxidizing atmosphere. If sintered in an oxidizing atmosphere, aluminum nitride will be oxidized and a dense sintered body will not be obtained. As the non-oxidizing atmosphere, nitrogen gas, helium gas, argon gas, -carbon oxide gas, hydrogen gas, vacuum atmosphere, etc. can be used, and among them, nitrogen gas, argon gas, helium gas, and vacuum atmosphere are convenient and preferred. Sintering is 1500-2
000°C, and 1600 to 1900°C is particularly effective, but is not particularly limited to these temperature ranges.

また焼結は常圧焼結法でも良いし、加圧焼結法によって
も良い。加圧焼結法としてはホットプレス法(−軸加工
焼結法)とHIP法(熱間静水圧加圧焼結法)のどちら
でも可能である。特にホットプレス法によシ焼結した場
合に高熱伝導性窒化アルミニウム焼結体が得られる。
Further, the sintering may be performed by a pressureless sintering method or a pressure sintering method. As the pressure sintering method, either the hot press method (-axis processing sintering method) or the HIP method (hot isostatic pressing sintering method) is possible. In particular, when sintered by hot pressing, a highly thermally conductive aluminum nitride sintered body can be obtained.

次に実施例によって本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

(実施例1.) 平均粒径が2μmの窒化アルミニウム粉末に第1表に示
す種々の添加剤を加え、次いでこの混合粉末を室温で2
000#/c−jの圧力を加えて成形体とした。この成
形体を焼結炉において窒素ガス雰囲気下で1800℃で
10時間常圧焼結した窒化アルミニウム焼結体の室温で
の相対密度、熱伝導率を第1表に示す。本発明の製造方
法により室温での熱伝導率が120 w/m k以上の
高熱伝導性窒化アル1“(1″釘・15白 (実施例2.) 平均粒径が2μmの窒化アルミニウム粉末に第2表に示
す種々の添加剤を加え、次いでこの混合粉末を室温で2
000#/dの圧力を加えて成形体とした。この成形体
を焼結炉において窒素ガス雰囲気下で第2表に示す条件
で焼成した窒化アルミニウム焼結体の相対密度および室
温での熱伝導率を第2表に示す。本発明の製造方法によ
シ室温での熱伝導率が120w/mk以上の高熱伝導性
窒化アルミニウム焼結体が得られた。
(Example 1.) Various additives shown in Table 1 were added to aluminum nitride powder with an average particle size of 2 μm, and then this mixed powder was heated at room temperature for 2 μm.
A pressure of 000 #/c-j was applied to form a molded product. Table 1 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body obtained by sintering this compact in a sintering furnace at 1800° C. for 10 hours under normal pressure in a nitrogen gas atmosphere. By the production method of the present invention, a highly thermally conductive aluminum nitride powder with a thermal conductivity of 120 w/m k or more at room temperature (1" nail, 15 white (Example 2)) and an average particle size of 2 μm is produced. Add various additives shown in Table 2, and then mix the powder mixture at room temperature for 2 hours.
A pressure of 000 #/d was applied to form a molded body. Table 2 shows the relative density and thermal conductivity at room temperature of the aluminum nitride sintered body obtained by firing this compact in a sintering furnace in a nitrogen gas atmosphere under the conditions shown in Table 2. By the manufacturing method of the present invention, a highly thermally conductive aluminum nitride sintered body having a thermal conductivity of 120 W/mK or more at room temperature was obtained.

(実施例3.) 平均粒径が0.6μm、純度99g6(金属不純物の合
計が300ppm以下)の窒化アルミニウム粉末に炭化
カルシウム(CaC,)を2重量%および酸化カルシウ
ム(Cab)を1重量%添加し、キシレン中で混合後ろ
過した粉末を真空中で加熱乾燥した。
(Example 3.) 2% by weight of calcium carbide (CaC) and 1% by weight of calcium oxide (Cab) were added to aluminum nitride powder with an average particle size of 0.6 μm and a purity of 99g6 (total of metal impurities of 300 ppm or less). The powder, which was added and mixed in xylene and filtered, was heated and dried in vacuo.

次いでこの混合粉末を室温で2000#、にj の圧力
を加え成形体とした。この成形体を黒鉛製のホットプレ
ス型に入れ、1800℃400&9Δ 、窒素雰囲気下
で2時間ホットプレスして窒化アルミニウム焼結体を得
た。
Next, a pressure of 2,000 #j was applied to this mixed powder at room temperature to form a compact. This molded body was placed in a hot press mold made of graphite, and hot pressed at 1800°C at 400°C and 9Δ for 2 hours in a nitrogen atmosphere to obtain an aluminum nitride sintered body.

この窒化アルミニウム焼結体は室温で相対密度1004
Ji、熱伝導率180w/mk、熱膨張率4.3X10
″4//℃、比抵抗4X10”Ω11曲げ強度60絨−
の特性を示し、さらに透光性を有していた。例えば4〜
6μmの波長の光に対する透過率は厚さが0.5ffの
試料に対して約45%であシ、また0、2〜6.5pW
Iの範囲の波長で10g6以上の透過率を示した。
This aluminum nitride sintered body has a relative density of 1004 at room temperature.
Ji, thermal conductivity 180w/mk, thermal expansion coefficient 4.3X10
″4//℃, specific resistance 4×10″Ω11 bending strength 60 絨-
It exhibited the following characteristics and also had translucency. For example 4~
The transmittance for light with a wavelength of 6 μm is approximately 45% for a sample with a thickness of 0.5 ff, and the transmittance is 0.2 to 6.5 pW.
It exhibited a transmittance of 10g6 or more at wavelengths in the range of I.

(発明の効果) 本発明の製造方法で製造した窒化アルミニウム焼結体は
高密度で熱伝導性に優れ、熱的特性、電気的特性9機械
的特性、さらに光学的特性にも良好であったため、半導
体工業等の放熱材料としての応用以外にルツボ、蒸着容
器、耐熱ジグ高温部材等の高温材料としての応用も可能
であり、さらに透光性であるといった光学的性質を利用
した窓材等の光学材料としての応用も可能であるなど、
工業的に多くの利点を有するものである。
(Effects of the invention) The aluminum nitride sintered body produced by the production method of the present invention had high density and excellent thermal conductivity, and had good thermal properties, electrical properties9 mechanical properties, and also good optical properties. In addition to being used as a heat dissipation material in the semiconductor industry, it can also be used as a high-temperature material for crucibles, vapor deposition containers, heat-resistant jigs, and other high-temperature materials.Furthermore, it can be used as a window material that utilizes optical properties such as translucency. It can also be used as an optical material, etc.
It has many industrial advantages.

代J+へA」!!内原  曽ご 、f``A to J+''! ! Sogo Uchihara , f

Claims (2)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末に添加剤としてアルカリ土
類金属のアセチリド化合物の一種以上と、酸化カルシウ
ムを配合した混合粉末を成形後、非酸化性雰囲気で焼成
することを特徴とする窒化アルミニウム焼結体の製造方
法。
(1) Aluminum nitride sintered body characterized by molding a mixed powder of aluminum nitride powder, blending one or more alkaline earth metal acetylide compounds and calcium oxide as additives, and then firing it in a non-oxidizing atmosphere. manufacturing method.
(2)アルカリ土類金属のアセチリド化合物はCaC_
2、SrC_2、BaC_2である特許請求の範囲第1
項記載の窒化アルミニウム焼結体の製造方法。
(2) The acetylide compound of alkaline earth metal is CaC_
2, SrC_2, BaC_2
A method for producing an aluminum nitride sintered body as described in 1.
JP60113507A 1985-05-27 1985-05-27 Manufacture of aluminum nitride sintered body Pending JPS61270264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113507A JPS61270264A (en) 1985-05-27 1985-05-27 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113507A JPS61270264A (en) 1985-05-27 1985-05-27 Manufacture of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61270264A true JPS61270264A (en) 1986-11-29

Family

ID=14614078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113507A Pending JPS61270264A (en) 1985-05-27 1985-05-27 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61270264A (en)

Similar Documents

Publication Publication Date Title
JPS6353151B2 (en)
JPS6331434B2 (en)
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPH0196067A (en) Production of aluminum nitride sintered body
EP0267623A2 (en) Black sintered body of aluminum nitride and process for producing the same
JPS61270264A (en) Manufacture of aluminum nitride sintered body
JPS60255677A (en) Manufacture of aluminum nitride sintered body
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPS63176368A (en) Manufacture of aluminum nitride sintered body
JPS63274668A (en) Production of aluminum nitride sintered body
JPS61232273A (en) Manufacture of aluminum nitride sintered body
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH02149469A (en) Production of aluminum nitride sintered body
JPH01188472A (en) Production of aluminum nitride sintered body
JPS60239367A (en) Manufacture of aluminum nitride sintered body
JPS63233079A (en) Black aluminum nitride sintered body and manufacture
JPS60151279A (en) Aluminum nitride powder composition
JPS63274667A (en) Production of aluminum nitride sintered body
JPS61232274A (en) Manufacture of aluminum nitride sintered body
JPH02129073A (en) Production of sintered aluminum nitride
JPH02107569A (en) Production of aluminum nitride sintered body
JPH01215760A (en) Production of aluminum nitride sintered form
JPS63230574A (en) Manufacture of aluminum nitride sintered body
JPH01301564A (en) Sintered material of aluminum nitride and production thereof