JPH03279264A - Production of sintered aluminum nitride having high thermal conductivity - Google Patents

Production of sintered aluminum nitride having high thermal conductivity

Info

Publication number
JPH03279264A
JPH03279264A JP2078821A JP7882190A JPH03279264A JP H03279264 A JPH03279264 A JP H03279264A JP 2078821 A JP2078821 A JP 2078821A JP 7882190 A JP7882190 A JP 7882190A JP H03279264 A JPH03279264 A JP H03279264A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
sintered
thermal conductivity
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078821A
Other languages
Japanese (ja)
Inventor
Yoshiko Itsudo
五戸 佳子
Fumio Ueno
文雄 上野
Mitsuo Kasori
加曽利 光男
Akihiro Horiguchi
堀口 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2078821A priority Critical patent/JPH03279264A/en
Publication of JPH03279264A publication Critical patent/JPH03279264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered aluminum nitride having dense texture and high thermal conductivity by sintering formed aluminum nitride powder without using an assistant and baking the sintered product in reducing atmosphere under reduced pressure. CONSTITUTION:The objective sintered material can be produced by forming aluminum nitride powder, sintering without using an assistant and baking the sintered product in reducing atmosphere under reduced pressure, thereby decreasing the oxygen content in the aluminum nitride crystal particles. A sintered product having high purity and strength and resistant to deformation even at a high temperature can be produced by this process. Since the product lacks grain boundary phase, it has uniform color tone and is producible in improved yield and remarkably increased productivity. The sintered product is preferable to be used e.g. as a bottom plate for the baking of an aluminum nitride product.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関し、
さらに詳しくは、緻密で、高熱伝導性に有する窒化アル
ミニウム焼結体の製造方法に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a method for manufacturing an aluminum nitride sintered body,
More specifically, the present invention relates to a method for producing a dense aluminum nitride sintered body having high thermal conductivity.

(従来の技術) 窒化アルミニウム(IN)は高温で強度低下が少なく、
化学的耐性にも優れているため、耐熱材料として用いら
れる一方、熱伝導率が優れ、熱膨張率がSiと近い等を
利用して半導体装置の放熱板材料、回路基板用絶縁材料
としても有望視されている。
(Conventional technology) Aluminum nitride (IN) has little strength loss at high temperatures;
Due to its excellent chemical resistance, it is used as a heat-resistant material, while its excellent thermal conductivity and coefficient of thermal expansion are close to that of Si, making it a promising material for heat sinks in semiconductor devices and insulating materials for circuit boards. being watched.

かかる窒化アルミニウム焼結体は通常、窒化アルミニウ
ム粉末を成形し、単独でもしくは焼結助剤を添加して焼
結して得られる6超微粉(0,3m以下程度)のAQN
粉末を用いた場合には単独でもほぼ緻密な焼結体が得ら
れるが、粒径0.5−以上のAQN粉末を用いた場合に
は焼結性が良好でないために、ホットプレス法による以
外には無添加では緻密な焼結体を得ることは困難である
。ところが、ホットプレス法により作製した無添加焼結
体は、原料粉末表面の酸化層中の酸素が焼結時にAQN
格子中に固溶したり、へρ−〇−N化合物を生成し、そ
の結果無添加焼結体の熱伝導率は高々100ν/++4
程度である。しかしながら、ホットプレス法により生成
した窒化アルミニウム焼結体は、常圧焼結した焼結体よ
りも強度が高いという利点を持っている。 近年、窒化
アルミニウム原料粉末の高純変化が進み、焼結助剤無添
加の焼結体の熱伝導率は向上してはいるが、未だ十分満
足すべきものはえられていない。
Such aluminum nitride sintered bodies are usually made of AQN 6 ultrafine powder (approximately 0.3 m or less) obtained by molding aluminum nitride powder and sintering it alone or by adding a sintering aid.
When AQN powder is used alone, a nearly dense sintered body can be obtained, but when AQN powder with a particle size of 0.5- or more is used, the sinterability is not good, so it is difficult to obtain a sintered body other than by hot pressing. It is difficult to obtain a dense sintered body without additives. However, in additive-free sintered bodies produced by the hot press method, oxygen in the oxidized layer on the surface of the raw material powder forms AQN during sintering.
It forms a solid solution in the lattice or forms a ρ-〇-N compound, and as a result, the thermal conductivity of the additive-free sintered body is at most 100ν/++4.
That's about it. However, the aluminum nitride sintered body produced by the hot pressing method has the advantage of being higher in strength than the sintered body sintered under pressure. In recent years, the purity of aluminum nitride raw material powder has progressed, and the thermal conductivity of sintered bodies without the addition of sintering aids has improved, but a fully satisfactory product has not yet been obtained.

(発明が解決しようとする課題) 現在半導体搭載用の回路基板、放熱基板等ではより高い
熱伝導率を有する材料が望まれている。
(Problems to be Solved by the Invention) Currently, materials having higher thermal conductivity are desired for circuit boards for mounting semiconductors, heat dissipation boards, etc.

また、ある種の放熱基板は、強度および熱伝導率の高い
材料が要求されている。また、無添加の窒化アルミニウ
ム焼結体で熱伝導率の高いものが望まれている。
Further, certain types of heat dissipating substrates are required to be made of materials with high strength and high thermal conductivity. Additionally, an additive-free aluminum nitride sintered body with high thermal conductivity is desired.

本発明は、以上の点を考慮してなされたもので、熱伝導
性に優れた焼結助剤無添加の窒化アルミニウム焼結体を
提供することを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide an aluminum nitride sintered body that has excellent thermal conductivity and is free of sintering aids.

〔発明の構成〕[Structure of the invention]

(W題を解決するための手段及び作用)窒化アルミニウ
ム焼結体の高熱伝導率化については、すでに研究がなさ
れている(特開昭63−303863号など)。焼結助
剤をAQN粉末に添加し、窒素を含む還元焼成雰囲気中
で十分長時間焼成すると、実質的に副相がなく AQN
単相からなり、多結晶体としては非常に高い熱伝導率を
有する窒化アルミニウム焼結体が得られるという事実は
、公知のものである。この高熱伝導性窒化アルミニウム
焼結体の製造方法は、次のようなメカニズムを骨子とし
ている。焼結助剤はAQN原料粉末の不純物酸素と反応
し液相を生成し焼結体の緻密化を達成囲気は、(希土類
元素)−1−0三元系化合物等の粒界相を焼結体中より
除去する作用が働き、窒化アルミニウム焼結体はAQN
単相となり、高熱伝導性の焼結体に変化していく。
(Means and operations for solving problem W) Research has already been conducted on increasing the thermal conductivity of aluminum nitride sintered bodies (Japanese Patent Laid-Open Publication No. 303863/1983, etc.). When a sintering aid is added to AQN powder and fired for a sufficiently long time in a reducing firing atmosphere containing nitrogen, AQN is virtually free of subphases.
The fact that aluminum nitride sintered bodies consisting of a single phase and having a very high thermal conductivity for a polycrystalline body can be obtained is well known. This method of manufacturing a highly thermally conductive aluminum nitride sintered body is based on the following mechanism. The sintering aid reacts with impurity oxygen in the AQN raw material powder to generate a liquid phase and achieve densification of the sintered body.The surrounding atmosphere sinters the grain boundary phase of (rare earth element)-1-0 ternary compounds The aluminum nitride sintered body has the effect of removing it from the body, and the AQN
It becomes a single phase and transforms into a highly thermally conductive sintered body.

本発明者らは粒界相の存在しない、無添加の窒化アルミ
ニウムにつき実験・検討を進めた結果、以下に示す新規
事項を発見し、本発明を完成するに至った。
As a result of conducting experiments and studies on additive-free aluminum nitride in which no grain boundary phase exists, the present inventors discovered the following new matter and completed the present invention.

すなわち、無添加の窒化アルミニウム焼結体を還元雰囲
気中で、長時間焼成したところ、粒内に固溶している酸
素が拡散して焼結体表面で還元され、熱伝導率が向上し
た。この効果は還元雰囲気焼成前の焼結体中の酸素量が
2重量%以下の窒化アルミニウム焼結体で認められた。
That is, when an additive-free aluminum nitride sintered body was fired for a long time in a reducing atmosphere, oxygen solidly dissolved in the grains was diffused and reduced on the surface of the sintered body, improving thermal conductivity. This effect was observed in aluminum nitride sintered bodies in which the amount of oxygen in the sintered bodies before firing in a reducing atmosphere was 2% by weight or less.

また、無添加窒化アルミニウム焼結体を作成する原料粉
末に金属不純物(Fe、 Si等)が0.1重量%以上
含まれていり、不純物酸素量が7重量%以下であり、平
均粒径が0.05〜5umである窒化アルミニウム粉末
を成形し、助剤を添加しないで焼結した焼結体(この焼
結体は、酸素含有量が2重量%以下でかつFe。
In addition, the raw material powder used to create the additive-free aluminum nitride sintered body contains metal impurities (Fe, Si, etc.) of 0.1% by weight or more, the amount of impurity oxygen is 7% by weight or less, and the average particle size is A sintered body obtained by molding aluminum nitride powder with a thickness of 0.05 to 5 um and sintering it without adding any auxiliary agent (this sintered body has an oxygen content of 2% by weight or less and contains Fe.

Si等の金属不純物が0.1重量%以下であることが望
ましい。)を、還元雰囲気中で、例えば1500〜20
50℃で、4時間以上、減圧下を含む雰囲気下で焼成す
ることで焼結体中のAQN結晶粒中のW!素を低減し、
高熱伝導性窒化アルミニウム焼結体を得る製造方法であ
る。
It is desirable that the content of metal impurities such as Si is 0.1% by weight or less. ) in a reducing atmosphere, e.g. 1500-20
By firing at 50°C for 4 hours or more in an atmosphere including reduced pressure, W! reduce the amount of
This is a manufacturing method for obtaining a highly thermally conductive aluminum nitride sintered body.

ついで本発明の窒化アルミニウム焼結体の製造方法の一
例を以下に述べる。
Next, an example of the method for manufacturing the aluminum nitride sintered body of the present invention will be described below.

まず、AQN粉末にバインダーを加え、混線、造粒、整
粒を行なったのち成形する。成形法とじては、金型プレ
ス、静水圧プレスなどが適用できる。
First, a binder is added to AQN powder, and the mixture is mixed, granulated, and sized, and then molded. As the molding method, a mold press, a hydrostatic press, etc. can be applied.

続いて、成形体を非酸化性雰囲気中、例えば窒素ガス気
流中で加熱してバインダーを除去したのちホットプレス
焼結する。ホットプレスの条件は、成形体が十分に緻密
化するように、例えば1600〜1900℃、400k
g/(d程度までの圧力である。こうして生成した無添
加の窒化アルミニウム焼結体を、焼成中カーボンガス雰
囲気をつくり出す1例えばカーボン製容器を用いて常圧
焼結する。焼成温度は1550〜2050℃に、焼成時
間は4時間以上に設定することが好ましい。このような
方法によりAρNが99%以上で熱伝導率が10100
W”・K−1以上の焼成体を得ることができる。また還
元ガス源としては固体カーボンが高温で蒸発したものを
用いる以外に、炭化水素等を用いてもよい6 以上説明したように本発明によれば、無添加で高熱伝導
性の窒化アルミニウム焼結体を生成することができる。
Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example in a nitrogen gas stream to remove the binder, and then hot press sintered. The hot pressing conditions are, for example, 1600 to 1900°C and 400k so that the molded product is sufficiently densified.
g/(d). The additive-free aluminum nitride sintered body thus produced is sintered under normal pressure using, for example, a carbon container that creates a carbon gas atmosphere during firing.The firing temperature is 1550~ It is preferable to set the firing temperature to 2050°C and the firing time to 4 hours or more.By such a method, AρN is 99% or more and the thermal conductivity is 10100.
It is possible to obtain a fired body of W"・K-1 or higher. In addition to using solid carbon evaporated at high temperature as the reducing gas source, hydrocarbons etc. may also be used.6 As explained above, this method According to the invention, a highly thermally conductive aluminum nitride sintered body can be produced without additives.

この方法によれば高純度かつ高強度で、高温でも変形し
にくい焼結体が得られる。
According to this method, a sintered body with high purity and high strength, which does not easily deform even at high temperatures, can be obtained.

粒界相の存在がないため焼結体の色ムラがなく、歩留ま
りが良くなり、生産性が大幅に向上する。
Since there is no grain boundary phase, there is no color unevenness in the sintered body, which improves yield and greatly improves productivity.

窒化アルミニウム製品の焼成時に用いる敷き板などに使
用すると良い。
It is good to use it as a flooring board used when firing aluminum nitride products.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例 1 不純物としての酸素の含有が0.1重量%で。Example 1 The content of oxygen as an impurity is 0.1% by weight.

比表面積が5.3+m2/gのAffiN粉に有機系バ
インダーを5重量%添加して造粒したのち、この造粒粉
15gを500 kg / dの一軸加圧で成形して約
30 X 30 X15011の圧粉体とした。この圧
粉体を窒素ガス雰囲気中で700℃まで加熱してバイン
ダーを除去した。
After adding 5% by weight of an organic binder to AffiN powder with a specific surface area of 5.3+m2/g and granulating it, 15g of this granulated powder was molded by uniaxial pressure of 500 kg/d to about 30 x 30 x 15011. It was made into a green compact. This green compact was heated to 700° C. in a nitrogen gas atmosphere to remove the binder.

この圧粉体をホットプレスで、窒素ガス雰囲気中(1気
圧)1800℃、4時間、400kg / cd、−軸
加圧の条件で焼結した。ついで、この焼結体を!箒キ秦
≠魂カーボン製容器中にセットし、窒素ガス雰囲気中(
1気圧) 1900℃、96時間の条件で、カーボン製
ヒーター炉内で焼成してAεN焼結体を製造した。得ら
れたAn焼結体の密度および粒径を測定した。また、焼
結体から、直径10閣、厚さ3.3閣の円板を研削し、
これを試験片としてレーザーフラッシュ法により熱伝導
率を測定した。測定温度は25℃である。さらに、この
焼結体の不純物酸素量を速中性子放射化分析により分析
した。また。
This green compact was sintered in a hot press at 1800° C. in a nitrogen gas atmosphere (1 atm) for 4 hours under a −axial pressure of 400 kg/cd. Next, this sintered body! Set the broom in a Tamashii carbon container and place it in a nitrogen gas atmosphere (
An AεN sintered body was produced by firing in a carbon heater furnace at 1900° C. for 96 hours. The density and grain size of the obtained An sintered body were measured. In addition, a disk with a diameter of 10 mm and a thickness of 3.3 mm was ground from the sintered body.
This was used as a test piece and the thermal conductivity was measured by the laser flash method. The measurement temperature is 25°C. Furthermore, the amount of impurity oxygen in this sintered body was analyzed by fast neutron activation analysis. Also.

焼結体のX線回折を行なった。得られた結果を第1表に
示した。
The sintered body was subjected to X-ray diffraction. The results obtained are shown in Table 1.

失産員−主二五 常圧焼成時の焼成温度を種々に変えて上記実施例1と同
様にしてAQN焼結体を製造し、それぞれについて同様
の評価を行なった。
AQN sintered bodies were produced in the same manner as in Example 1, with various firing temperatures during normal pressure firing, and the same evaluations were conducted for each.

実施例 4 A4N原料粉末の粒径、不純物Ill電量よび常圧焼結
時の焼成温度を変えて上記実施例1と同様にしてA4N
焼結体を製造し、それぞれについて同様の評価を行なっ
た。
Example 4 A4N was produced in the same manner as in Example 1, except that the particle size of the A4N raw material powder, the coulometric amount of impurities, and the sintering temperature during pressureless sintering were changed.
Sintered bodies were manufactured and the same evaluation was performed on each.

ス】1吐−j− へ〇N原料粉末の粒径、不純物酸素量およびホットプレ
ス焼結時の焼成温度および焼成時間、常圧焼結時の焼成
温度を変えて上記実施例1と同様にしてAQN焼結体を
製造し、それぞれについて同様の評価を行なった。
〇〇N The same procedure as in Example 1 was carried out by changing the particle size of the raw powder, the amount of impurity oxygen, the firing temperature and time during hot press sintering, and the firing temperature during pressureless sintering. AQN sintered bodies were manufactured using the same method, and the same evaluations were performed on each of them.

ス1]L−影ごツー 常圧焼結時の焼成時間を種々に変えて上記実施例1と同
様にしてAQN焼結体を製造し、それぞれについて同様
の評価を行なった。
AQN sintered bodies were produced in the same manner as in Example 1 above, with various firing times during pressureless sintering, and the same evaluations were conducted for each.

(以下余白) 〔発明の効果〕 以上詳述してきたように、本発明の窒化アルミニウム焼
結体は、無添加で、AQN単相、高純度かつ、高熱伝導
を示す優れた性質を有するものである。助剤を用いるこ
となしに、熱伝導率が1701m−1に−”以上のAf
fiN焼結体が、高い歩留まりで製造することが可能で
あり、その工業的価値はきわめて大きい。
(The following is a blank space) [Effects of the Invention] As detailed above, the aluminum nitride sintered body of the present invention is additive-free, AQN single phase, has high purity, and has excellent properties showing high thermal conductivity. be. Af with a thermal conductivity of 1701m-1 or more without using an auxiliary agent
The fiN sintered body can be manufactured with high yield, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム粉末を成形し、助剤を添加しないで焼
結した焼結体を、還元雰囲気中の減圧下を含む雰囲気圧
下で焼成し、窒化アルミニウム結晶粒中の酸素量を低減
することを特徴とした高熱伝導性窒化アルミニウム焼結
体の製造方法。
A sintered body formed by molding aluminum nitride powder and sintering without adding any auxiliary agent is fired under atmospheric pressure including reduced pressure in a reducing atmosphere to reduce the amount of oxygen in aluminum nitride crystal grains. A method for producing a highly thermally conductive aluminum nitride sintered body.
JP2078821A 1990-03-29 1990-03-29 Production of sintered aluminum nitride having high thermal conductivity Pending JPH03279264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078821A JPH03279264A (en) 1990-03-29 1990-03-29 Production of sintered aluminum nitride having high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078821A JPH03279264A (en) 1990-03-29 1990-03-29 Production of sintered aluminum nitride having high thermal conductivity

Publications (1)

Publication Number Publication Date
JPH03279264A true JPH03279264A (en) 1991-12-10

Family

ID=13672498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078821A Pending JPH03279264A (en) 1990-03-29 1990-03-29 Production of sintered aluminum nitride having high thermal conductivity

Country Status (1)

Country Link
JP (1) JPH03279264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020918A (en) * 2009-07-15 2011-02-03 Schott Ag Method and apparatus for continuously melting or refining melt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020918A (en) * 2009-07-15 2011-02-03 Schott Ag Method and apparatus for continuously melting or refining melt

Similar Documents

Publication Publication Date Title
EP0219933A2 (en) Sintered silicon carbide ceramic body of high electrical resistivity
JPS63277567A (en) Sintered aluminum nitride having high thermal conductivity
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
JPH03279264A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS5969473A (en) Sintering silicon carbide powder composition
EP0885858B1 (en) Recrystallized silicon carbide sintered material and manufacturing method thereof
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JPS6246512B2 (en)
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPH0648839A (en) Production of boron nitride sintered body
JPH0522670B2 (en)
JPS6121977A (en) Manufacture of aluminum nitride sintered body
JPH1081569A (en) Highly heat-conductive aluminum nitride sintered product and its production
JPS5891059A (en) Composite ceramic sintered body and manufacture
JPH0512300B2 (en)
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS61183174A (en) Aluminum nitride aintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JPH11180772A (en) Hexagonal boron nitride sintered compact and its production
JP2536448B2 (en) Aluminum nitride sintered body
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH04130061A (en) Silicon carbide electrode and its production
JPS61205665A (en) Electrically insulating substrate and manufacture
JP2003246675A (en) Setter material for firing aluminum nitride, production method thereof and setter