JP3150606B2 - Method for controlling specific resistance of silicon carbide sintered body - Google Patents

Method for controlling specific resistance of silicon carbide sintered body

Info

Publication number
JP3150606B2
JP3150606B2 JP06350596A JP6350596A JP3150606B2 JP 3150606 B2 JP3150606 B2 JP 3150606B2 JP 06350596 A JP06350596 A JP 06350596A JP 6350596 A JP6350596 A JP 6350596A JP 3150606 B2 JP3150606 B2 JP 3150606B2
Authority
JP
Japan
Prior art keywords
powder
sic
silicon carbide
sintered body
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06350596A
Other languages
Japanese (ja)
Other versions
JPH09255428A (en
Inventor
浩 稲妻地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP06350596A priority Critical patent/JP3150606B2/en
Publication of JPH09255428A publication Critical patent/JPH09255428A/en
Application granted granted Critical
Publication of JP3150606B2 publication Critical patent/JP3150606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素焼結体の
比抵抗を所望の値に調整し得る炭化珪素焼結体の比抵抗
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the specific resistance of a silicon carbide sintered body that can adjust the specific resistance of the silicon carbide sintered body to a desired value.

【0002】[0002]

【従来の技術】従来、炭化珪素粉末を所定形状に成形
し、これを焼結した炭化珪素焼結体は古くから製造され
ており、そのセラミックスとしての材質ならびに電気的
な抵抗発熱特性を利用して化学的に安定な高温発熱体と
して多様の産業分野で利用されている。このため、炭化
珪素発熱体の性能向上を目的とした改良研究も盛んに行
われているが、このうちその比抵抗値の調整に関するも
のとしては以下のようなものがある。
2. Description of the Related Art Conventionally, a silicon carbide sintered body formed by molding silicon carbide powder into a predetermined shape and sintering the same has been manufactured for a long time. It is used in various industrial fields as a chemically stable high-temperature heating element. For this reason, improvement studies for the purpose of improving the performance of the silicon carbide heating element have been actively conducted. Among them, the following are related to the adjustment of the specific resistance value.

【0003】すなわち、特開昭52−110499号公
報においては、比抵抗値を低下させるために第三元素成
分を添和する方法、例えば、炭化珪素粉末を焼結する際
にN、P、As、Sb、Biなどを固相または気相でド
ープさせる方法が開示されている。また、特開昭57−
9090号公報には、粒径1μm以下のα−SiCを5
重量%以上を含み、その残部がβ−SiC、ホウ素、炭
素などからなる混合粉末を成形し、真空または不活性雰
囲気中で所定密度に一次焼結する方法、またはこの一次
焼結に引き続き加圧窒素雰囲気中、所定温度下で二次焼
結する方法が開示されている。
[0003] In other words, Japanese Patent Application Laid-Open No. Sho 52-110499 discloses a method of adding a third element component to lower the specific resistance value, for example, N, P, As when sintering silicon carbide powder. , Sb, Bi, etc., in a solid phase or a gas phase are disclosed. Also, Japanese Patent Application Laid-Open No.
No. 9090 discloses that α-SiC having a particle diameter of 1 μm or less
A method of molding a mixed powder containing β-SiC, boron, carbon, or the like, and sintering to a predetermined density in a vacuum or an inert atmosphere, or pressurizing subsequent to the sintering. A method of performing secondary sintering at a predetermined temperature in a nitrogen atmosphere is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
開昭52−110499号公報に開示された方法におい
ては、分散組成の均質化が困難であるため工業化が難し
く、また、例えば半導体製造装置などの真空装置用発熱
体として炭化珪素焼結体を使用する場合には、これら第
三元素成分が発熱体表面から揮発して汚染源となるとい
う問題点を有している。一方、特開昭57−9090号
公報に開示された方法においては、一次焼結のみでは比
抵抗値の制御可能範囲が数Ω・cm〜数10Ω・cmと
狭く、実用性に乏しく、また比抵抗値が大きいので炭化
珪素焼結体を発熱体としての使用する場合は小型化が困
難となるといった設計上の問題が生じる。また、2段階
焼結する際には窒素ガスの導入保持が必要であるために
製造設備の大型化、複雑化が避けられず、さらに、炭化
珪素焼結体を真空装置用発熱体として使用する場合に
は、ホウ素、炭素などの添加成分が発熱体表面から揮発
して汚染源となるという問題点を有している。本発明
は、このような従来の技術が有する問題点を解決するた
めになされたもので、炭化珪素焼結体の比抵抗の制御範
囲を大幅に拡大し、この比抵抗を小さくし得る簡便な炭
化珪素焼結体の比抵抗制御方法を提供することを目的と
する。
However, in the method disclosed in Japanese Patent Application Laid-Open No. Sho 52-110499, it is difficult to homogenize the dispersion composition, so that industrialization is difficult. When a silicon carbide sintered body is used as a heating element for a vacuum device, there is a problem that these third element components volatilize from the surface of the heating element and become a contamination source. On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 57-9090, the controllable range of the specific resistance value is as narrow as several Ω · cm to several tens Ω · cm by primary sintering alone, which is not practical. When the silicon carbide sintered body is used as a heating element because of its large resistance value, there is a problem in design that miniaturization is difficult. In addition, when performing two-stage sintering, introduction and holding of nitrogen gas are necessary, so that the production equipment is inevitably increased in size and complexity, and furthermore, a silicon carbide sintered body is used as a heating element for a vacuum device. In such a case, there is a problem that an additive component such as boron and carbon volatilizes from the surface of the heating element and becomes a contamination source. The present invention has been made in order to solve such problems of the conventional technology, and greatly expands the control range of the specific resistance of the silicon carbide sintered body, and can easily reduce the specific resistance. An object of the present invention is to provide a method for controlling the specific resistance of a silicon carbide sintered body.

【0005】[0005]

【課題を解決するための手段】かかる課題は、平均粒子
径が0.1μm以上、10μm以下のα−SiC粉末
と、平均粒子径が0.1μm以上、10μm以下のβ−
SiC粉末と、プラズマCVD法により気相合成された
平均粒子径が0.1μm未満のSiC超微粉末とを所望
の比率で混合してSiC混合粉末を得、このSiC混合
粉末を加熱焼結することによって解決できる。また、前
記SiC混合粉末中の前記α−SiC粉末の含有量は、
20重量%以下とすることができる。
The object of the present invention is to provide an α-SiC powder having an average particle size of 0.1 μm or more and 10 μm or less and a β-SiC powder having an average particle size of 0.1 μm or more and 10 μm or less.
The SiC powder and the SiC ultrafine powder having an average particle diameter of less than 0.1 μm synthesized by a plasma CVD method in a gas phase are mixed at a desired ratio to obtain a SiC mixed powder, and the SiC mixed powder is heated and sintered. Can be solved by The content of the α-SiC powder in the SiC mixed powder is
It can be 20% by weight or less.

【0006】[0006]

【発明の実施の形態】本発明の炭化珪素焼結体の比抵抗
制御方法は、例えば以下のようにして行うことができ
る。原料ガスとしてSiH4とC24とを用い、反応系
の圧力を0.08Torrに制御した高周波により励起され
たアルゴン熱プラズマ中で、プラズマCVD法により気
相合成したSiC超微粉末、α−SiC粉末およびβ−
SiC粉末を所望の比率で混合してなるSiC混合粉末
を、メタノールなどの溶媒中でボールミルにより混合し
てスラリーとする。ついで、このスラリーを噴霧乾燥さ
せて造粒粉をつくり、この造粒粉を一軸プレス機にて、
成形圧力20MPaで成形し、成形体とする。この成形体
を黒鉛製のホットプレス容器に詰め、一軸加圧40MPa、
アルゴン雰囲気中1気圧、2300℃の条件下で4時間
焼結して所望の比抵抗を有する炭化珪素焼結体とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for controlling the specific resistance of a silicon carbide sintered body according to the present invention can be performed, for example, as follows. Using SiH 4 and C 2 H 4 as raw material gases, SiC ultrafine powder synthesized in a gas phase by a plasma CVD method in an argon thermal plasma excited by a high frequency with a reaction system pressure controlled to 0.08 Torr, α -SiC powder and β-
SiC mixed powder obtained by mixing SiC powder at a desired ratio is mixed in a solvent such as methanol by a ball mill to form a slurry. Next, the slurry is spray-dried to produce granulated powder, and the granulated powder is subjected to a uniaxial pressing machine.
It is molded at a molding pressure of 20 MPa to obtain a molded body. This compact was packed in a graphite hot press container, and uniaxially pressed at 40 MPa.
Sintering is performed in an argon atmosphere at 1 atmosphere and 2300 ° C. for 4 hours to obtain a silicon carbide sintered body having a desired specific resistance.

【0007】前記SiC超微粉末の平均粒子径は0.1
μm未満、通常は0.01〜0.08μmとする。この
プラズマCVD法にて合成されるSiC超微粉末におい
ては、プラズマCVD法による気相合成条件や、その結
晶相を特に限定することはないが、特に、非酸化性雰囲
気のプラズマ中にシラン化合物またはハロゲン化珪素と
炭化水素の原料ガスを導入し、反応系の圧力を1気圧未
満から0.1Torrの範囲で制御しつつ気相反応させるこ
とによって得られるβ型(β−SiC超微粉末)、非晶
質、もしくはこれらの混合相からなるSiC超微粉末で
あると、炭化珪素焼結体の焼結性が向上し、その電気・
機械的な特性も向上するので好ましい。特にβ−SiC
超微粉末は、アスペクト比も小さく分散性に優れ、極め
て電気電導性に優れているので、前記効果が大きく、前
記SiC混合粉末に少量混合するのみで、炭化珪素焼結
体の比抵抗を低下させることができ、好ましい。
The average particle size of the SiC ultrafine powder is 0.1
It is less than μm, usually 0.01 to 0.08 μm. In the ultrafine SiC powder synthesized by the plasma CVD method, the conditions for the gas phase synthesis by the plasma CVD method and the crystal phase are not particularly limited. Alternatively, a β-type (β-SiC ultrafine powder) obtained by introducing a raw material gas of a silicon halide and a hydrocarbon and performing a gas phase reaction while controlling the pressure of the reaction system within a range of less than 1 atm to 0.1 Torr. , Amorphous or SiC ultrafine powder comprising a mixed phase thereof improves the sinterability of the silicon carbide sintered body,
This is preferable because the mechanical properties are also improved. Especially β-SiC
The ultrafine powder has a small aspect ratio and excellent dispersibility, and is extremely excellent in electric conductivity. Therefore, the effect is large, and the specific resistance of the silicon carbide sintered body is reduced only by mixing a small amount with the SiC mixed powder. And it is preferable.

【0008】前記α−SiC粉末およびβ−SiC粉末
としては、一般にシリカ還元法、アチソン法などによっ
て製造されたものを用いることができる。ただし、炭化
珪素焼結体の使用目的が、半導体などの製造において用
いられる加熱装置用発熱体などである場合には、高純度
が要求されるので、酸処理などを施した高純度のものを
使用する必要がある。また、これらの平均粒子径は0.
1〜10μmとし、さらに好ましくは0.1μm〜1μ
mとすると炭化珪素焼結体の焼結性が向上する。
As the α-SiC powder and β-SiC powder, those generally produced by a silica reduction method, an Acheson method or the like can be used. However, when the purpose of use of the silicon carbide sintered body is a heating element for a heating device used in the production of semiconductors and the like, high purity is required. Must be used. Further, their average particle size is 0.1.
1 to 10 μm, more preferably 0.1 μm to 1 μm
When m, the sinterability of the silicon carbide sintered body is improved.

【0009】前記SiC超微粉末は、好ましくは前記S
iC混合粉末中5重量%以上、より好ましくは5〜50
重量%とする。5重量%未満であると、炭化珪素焼結体
が十分に緻密化せず、その機械的強度が低下することも
ある。50重量%を越えるとコストが増加する。前記α
−SiC粉末の含有量は、前記SiC混合粉末中20重
量%以下とすると、炭化珪素焼結体の比抵抗の制御範囲
が拡大するため好ましい。通常は2〜20重量%の範囲
で用いられる。20重量%を越えると炭化珪素焼結体の
比抵抗の低下効果が小さくなり、この比抵抗の制御範囲
がせまくなる。したがって、炭化珪素焼結体を発熱体と
して使用する場合は小型化が困難となるといった設計上
の問題が生じる。β−SiC粉末の含有量は、前記Si
C超微粉末およびα−SiC粉末の残部とされ、特に限
定することはない。
The SiC ultrafine powder is preferably the S
5% by weight or more in iC mixed powder, more preferably 5 to 50%
% By weight. If the amount is less than 5% by weight, the silicon carbide sintered body may not be sufficiently densified, and the mechanical strength may be reduced. If it exceeds 50% by weight, the cost increases. The α
It is preferable that the content of the -SiC powder be 20% by weight or less in the SiC mixed powder because the control range of the specific resistance of the silicon carbide sintered body is expanded. Usually, it is used in the range of 2 to 20% by weight. If the content exceeds 20% by weight, the effect of lowering the specific resistance of the silicon carbide sintered body is reduced, and the control range of the specific resistance is reduced. Therefore, when a silicon carbide sintered body is used as a heating element, there is a problem in design that miniaturization is difficult. The content of β-SiC powder is
It is the balance of ultrafine C powder and α-SiC powder, and is not particularly limited.

【0010】前記β−SiC超微粉末、α−SiC粉末
およびβ−SiC粉末の混合方法、このSiC混合粉末
の成形方法は特に限定することはなく、公知の方法によ
って行うことができる。また、成形に際して、ポリビニ
ルアルコール、ポリビニルピロリドンなどを成形バイン
ダーを用いたり、必要に応じて、ステアリン酸塩などの
分散剤を添加してもよい。また、加熱焼結にあたって
は、前記ホットプレス焼結のみではなく、常圧焼結、H
IP焼結などの従来の方法が採用可能であるが、より高
密度の炭化珪素焼結体を得るにはホットプレス焼結など
の加圧焼結が望ましい。焼結温度は通常1900〜24
00℃程度である。また、焼結雰囲気も特に限定される
ものでなく、真空雰囲気、不活性ガス雰囲気、還元雰囲
気のいずれも採用可能である。
The method for mixing the above-mentioned ultrafine β-SiC powder, α-SiC powder and β-SiC powder, and the method for molding this mixed SiC powder are not particularly limited, and can be carried out by known methods. Further, at the time of molding, polyvinyl alcohol, polyvinylpyrrolidone or the like may be used as a molding binder, or if necessary, a dispersant such as a stearic acid salt may be added. In the heat sintering, not only the hot press sintering but also normal pressure sintering, H
Conventional methods such as IP sintering can be adopted, but pressure sintering such as hot press sintering is desirable in order to obtain a silicon carbide sintered body with higher density. The sintering temperature is usually 1900-24
It is about 00 ° C. The sintering atmosphere is not particularly limited, and any of a vacuum atmosphere, an inert gas atmosphere, and a reducing atmosphere can be employed.

【0011】前記SiC超微粉末は分散性に優れ、電気
伝導性に優れているため、このSiC超微粉末を混合す
ることによって、炭化珪素焼結体の比抵抗値を低下させ
ることができ、炭化珪素焼結体の比抵抗を制御すること
ができる。このときα−SiC粉末がSiC混合粉末中
20重量%以下であると、前記効果が大きく、この比抵
抗の制御範囲が大幅に拡大する。この結果、前記SiC
超微粉末、前記α−SiC粉体および前記β−SiC粉
末の比率を変化させることによって、炭化珪素焼結体の
比抵抗値を約1.0×10-3〜1.0×102Ω・cm
の広範囲において制御することができる。ただし、前記
比抵抗は、主に前記SiC超微粉末、α−SiC粉末お
よびβ−SiC粉末の比率によって変化するが、加熱焼
結条件などによっても左右されるので、所望の比抵抗の
炭化珪素焼結体を得るには、これらのパラメータに対す
る炭化珪素焼結体の比抵抗の関係を実験的に求めておく
必要がある。
Since the SiC ultrafine powder is excellent in dispersibility and electric conductivity, the specific resistance value of the silicon carbide sintered body can be reduced by mixing the SiC ultrafine powder, The specific resistance of the silicon carbide sintered body can be controlled. At this time, if the amount of the α-SiC powder is 20% by weight or less in the SiC mixed powder, the effect is large, and the control range of the specific resistance is greatly expanded. As a result, the SiC
By changing the ratio of the ultrafine powder, the α-SiC powder and the β-SiC powder, the specific resistance value of the silicon carbide sintered body is set to about 1.0 × 10 −3 to 1.0 × 10 2 Ω.・ Cm
Can be controlled over a wide range. However, although the specific resistance changes mainly depending on the ratio of the SiC ultrafine powder, α-SiC powder and β-SiC powder, it depends on conditions such as heating and sintering. In order to obtain a sintered body, it is necessary to experimentally determine the relationship between the specific resistance of the silicon carbide sintered body and these parameters.

【0012】また、前記SiC超微粉末を用いることに
より、焼結助剤を添加することなく高純度かつ緻密質の
炭化珪素焼結体を容易に得ることができる。したがっ
て、例えば炭化珪素焼結体を真空装置用発熱体として使
用する場合にも、従来のホウ素、炭素などの焼結助剤を
用いた炭化珪素焼結体と異なり、前記焼結助剤成分が発
熱体表面から揮発して汚染源となることはない。しか
し、炭化珪素焼結体の使用目的如何によっては、前記ホ
ウ素、炭素などの焼結助剤を必要に応じて添加しても支
障はない。また、前記SiC超微粉末は分散性が良好で
あり、均一な分散組成が容易に得られるので、この比抵
抗制御方法を工業化に適応させることが容易である。
Further, by using the ultrafine SiC powder, a high-purity and dense silicon carbide sintered body can be easily obtained without adding a sintering aid. Therefore, for example, even when a silicon carbide sintered body is used as a heating element for a vacuum device, unlike the conventional silicon carbide sintered body using a sintering aid such as boron and carbon, the sintering aid component is not used. It does not volatilize from the heating element surface and become a source of contamination. However, depending on the purpose of use of the silicon carbide sintered body, there is no problem even if the sintering aid such as boron or carbon is added as needed. Further, the SiC ultrafine powder has good dispersibility and a uniform dispersion composition can be easily obtained, so that it is easy to adapt this specific resistance control method to industrialization.

【0013】[0013]

【実施例】以下、本発明を実施例を示して詳しく説明す
る。 (実施例1〜14,比較例1〜4)原料ガスとしてSi
4とC24とを用い、反応系の圧力を0.08Torrに
制御した高周波により励起されたアルゴン熱プラズマ中
で、プラズマCVD法により気相合成したSiC超微粉
末、α−SiC粉末およびβ−SiC粉末を表1に示し
た比率で混合してなるSiC混合粉末を、メタノールな
どの溶媒中でボールミルにより混合してスラリーとし
た。ついで、このスラリーを噴霧乾燥させて造粒粉をつ
くり、この造粒粉を一軸プレス機にて、成形圧力20MP
aで成形し、直径210mm、厚み12mmの円板状の
成形体とした。この成形体を黒鉛製のホットプレス容器
に詰め、一軸加圧40MPa、アルゴン雰囲気中1気圧、2
300℃の条件下で4時間焼結して所望の比抵抗を有す
る炭化珪素焼結体とした。このとき用いた原料は以下の
とおりである。 β−SiC超微粉末:(平均粒径0.06μm; プラズマCVD法によって気相合成したもの) β−SiC粉末 :(平均粒径0.3μm;イビデン社製) α−SiC粉末 :(平均粒径0.3μm;昭和電工社製) このようにして製造した炭化珪素焼結体の比抵抗値を四
探針法により測定し、あわせて焼結密度、4点曲げ強度
を測定した。焼結密度は炭化珪素の理論密度を3.21
6g/cm3とした相対密度であり、4点曲げ強度は3
×3×40mmの試料表面を600番の砥石で鏡面研摩
した試験片を使用し、JIS−R1601に準じて測定
した。これらの結果をあわせて表1に示した。また、こ
の比抵抗値とα−SiC粉末の混合量との関係を図1の
グラフに示した。図1中曲線A,B,C,Dは、β−S
iC超微粉末の混合量がそれぞれ0(比較例1〜4),
3(実施例7〜10),5(実施例1〜6),10(実
施例11〜14)重量%の場合の結果を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. (Examples 1 to 14, Comparative Examples 1 to 4) Si as a source gas
Using the H 4 and C 2 H 4, in an argon thermal plasma excited by the high frequency was controlled pressure of the reaction system to 0.08 Torr, the vapor phase synthesized SiC ultrafine powder by a plasma CVD method, alpha-SiC powder And β-SiC powder mixed in the ratio shown in Table 1 were mixed with a ball mill in a solvent such as methanol to form a slurry. Next, the slurry is spray-dried to form granulated powder, and the granulated powder is formed with a uniaxial press at a molding pressure of 20MPa.
Formed as a to obtain a disk-shaped molded body having a diameter of 210 mm and a thickness of 12 mm. This compact was packed in a graphite hot press container, uniaxially pressed at 40 MPa, 1 atm.
Sintering was performed at 300 ° C. for 4 hours to obtain a silicon carbide sintered body having a desired specific resistance. The raw materials used at this time are as follows. β-SiC ultrafine powder: (average particle diameter 0.06 μm; synthesized by gas phase by plasma CVD method) β-SiC powder: (average particle diameter 0.3 μm; manufactured by Ibiden) α-SiC powder: (average particle Diameter 0.3 μm; manufactured by Showa Denko KK) The specific resistance of the silicon carbide sintered body thus manufactured was measured by a four probe method, and the sintered density and the four-point bending strength were measured. The sintering density was 3.21 the theoretical density of silicon carbide.
The relative density was 6 g / cm 3 , and the four-point bending strength was 3
The measurement was performed in accordance with JIS-R1601 using a test piece having a 3 × 40 mm sample surface mirror-polished with a No. 600 grindstone. The results are shown in Table 1. The relationship between the specific resistance value and the amount of the α-SiC powder mixed is shown in the graph of FIG. The curves A, B, C, and D in FIG.
The mixing amount of the iC ultrafine powder was 0 (Comparative Examples 1-4),
3 (Examples 7 to 10), 5 (Examples 1 to 6), and 10 (Examples 11 to 14) show the results in the case of weight%.

【0014】[0014]

【表1】 [Table 1]

【0015】図1より、β−SiC超微粉末を加えるこ
とにより、炭化珪素焼結体の比抵抗が低下し、この低下
量はβ−SiC超微粉末の含有量が多い程大きくなるこ
とが明かである。また、特にα−SiC粉末が20重量
%以下である範囲において、この効果が大きく、比抵抗
の制御範囲が拡大していることがわかる。この結果、β
−SiC超微粉末、α−SiC粉末およびβ−SiC粉
末の比率を調整することにより、約1.0×10-3
1.0×102Ω・cmの広範囲において比抵抗の制御
が可能となることが明かである。
From FIG. 1, it can be seen that the addition of the ultrafine β-SiC powder reduces the specific resistance of the silicon carbide sintered body, and the amount of the decrease increases as the content of the ultrafine β-SiC powder increases. It is clear. Also, it can be seen that this effect is large and the control range of the specific resistance is expanded particularly in the range where the α-SiC powder is 20% by weight or less. As a result, β
By adjusting the ratio of the -SiC ultrafine powder, α-SiC powder and β-SiC powder, about 1.0 × 10 −3 to
It is clear that the specific resistance can be controlled in a wide range of 1.0 × 10 2 Ω · cm.

【0016】また、表1より、α−SiC粉末を望まし
い20重量%以下とした実施例1〜4、7、8、11、
12においては、全てその比抵抗値が1.0Ω・cmよ
りも低い値となっている。これに対し、α−SiC粉末
を20重量%よりも多く設定した実施例においては、実
施例13(β−SiC超微粉末:10重量%;α−Si
C粉末:25重量%)のみが、比抵抗値が1.0Ω・c
mよりも低い値となっている。すなわち、α−SiC粉
末の20重量%を越える場合にも、β−SiC超微粉末
の比率を増加させることによって、炭化珪素焼結体の比
抵抗を低い値に制御できることがわかる。
Further, from Table 1, it was found that Examples 1 to 4, 7, 8, 11, and
In No. 12, the specific resistance values are all lower than 1.0 Ω · cm. On the other hand, in the example in which the α-SiC powder was set to be more than 20% by weight, Example 13 (β-SiC ultrafine powder: 10% by weight;
C powder: 25% by weight), the specific resistance value is 1.0Ω · c.
The value is lower than m. That is, even when the content exceeds 20% by weight of the α-SiC powder, the specific resistance of the silicon carbide sintered body can be controlled to a low value by increasing the ratio of the β-SiC ultrafine powder.

【0017】また、β−SiC超微粉末を混合した実施
例は、全く混合しなかった比較例と比べて、いずれも焼
結密度および4点曲げ強度において優れている。β−S
iC超微粉末の比率が3重量%である実施例7〜10に
おいては、5重量%以上である他の実施例と比較して焼
結密度がやや劣るが、比較例と比べると、焼結密度と4
点曲げ強度は明かに大きく、少量の添加によってもβ−
SiC超微粉末によって炭化珪素焼結体の強度が高めら
れる効果が得られることが明かである。
Further, the examples in which the β-SiC ultrafine powder was mixed were all superior in the sintered density and the four-point bending strength as compared with the comparative example in which no β-SiC powder was mixed. β-S
In Examples 7 to 10 in which the ratio of the iC ultrafine powder was 3% by weight, the sintering density was slightly inferior to the other examples in which the ratio was 5% by weight or more. Density and 4
The point bending strength is clearly large, and β-
It is clear that the effect of increasing the strength of the silicon carbide sintered body can be obtained by the SiC ultrafine powder.

【0018】[0018]

【発明の効果】以上説明したように、本発明において
は、SiC超微粉末、α−SiC粉体およびβ−SiC
粉末の比率を変化させることによって、炭化珪素焼結体
の比抵抗値を約1.0×10-3〜1.0×102Ω・c
mの広範囲において制御することができる。また、前記
SiC超微粉末を用いることにより、焼結助剤を添加す
ることなく高純度かつ緻密質の炭化珪素焼結体を容易に
得ることができる。したがって、例えば炭化珪素焼結体
を真空装置用発熱体として使用する場合にも、従来のホ
ウ素、炭素などの焼結助剤を用いた炭化珪素焼結体と異
なり、前記焼結助剤成分が発熱体表面から揮発して汚染
源となることはない。また、前記SiC超微粉末は分散
性が良好であり、均一な分散組成が容易に得られるの
で、この炭化珪素焼結体の比抵抗制御方法を工業的に行
うことが容易である。
As described above, in the present invention, ultrafine SiC powder, α-SiC powder and β-SiC powder are used.
By changing the ratio of the powder, the specific resistance value of the silicon carbide sintered body can be set to about 1.0 × 10 −3 to 1.0 × 10 2 Ω · c.
m can be controlled over a wide range. Further, by using the SiC ultrafine powder, a high-purity and dense silicon carbide sintered body can be easily obtained without adding a sintering aid. Therefore, for example, even when a silicon carbide sintered body is used as a heating element for a vacuum device, unlike the conventional silicon carbide sintered body using a sintering aid such as boron and carbon, the sintering aid component is not used. It does not volatilize from the heating element surface and become a source of contamination. Further, since the SiC ultrafine powder has good dispersibility and a uniform dispersion composition can be easily obtained, it is easy to industrially carry out the method for controlling the specific resistance of the silicon carbide sintered body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における炭化珪素焼結体の比抵抗値とα
−SiC粉末の含有量との関係を示したグラフである。
FIG. 1 shows the specific resistance and α of a silicon carbide sintered body in an example.
4 is a graph showing a relationship with the content of SiC powder.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒子径が0.1μm以上、10μm
以下のα−SiC粉末と、平均粒子径が0.1μm以
上、10μm以下のβ−SiC粉末と、プラズマCVD
法により気相合成された平均粒子径が0.1μm未満の
SiC超微粉末とを所望の比率で混合してSiC混合粉
末を得、このSiC混合粉末を加熱焼結することを特徴
とする炭化珪素焼結体の比抵抗制御方法。
An average particle diameter of 0.1 μm or more and 10 μm
Α-SiC powder below, β-SiC powder having an average particle diameter of 0.1 μm or more and 10 μm or less, and plasma CVD
Carbonized powder obtained by mixing at a desired ratio with ultrafine SiC powder having an average particle diameter of less than 0.1 μm synthesized by a gas phase method to obtain a SiC mixed powder, and heating and sintering the SiC mixed powder. A method for controlling the specific resistance of a silicon sintered body.
【請求項2】 前記SiC混合粉末中の前記α−SiC
粉末の含有量は、20重量%以下であることを特徴とす
る請求項1記載の炭化珪素焼結体の比抵抗制御方法。
2. The α-SiC in the SiC mixed powder
2. The method according to claim 1, wherein the content of the powder is not more than 20% by weight.
JP06350596A 1996-03-19 1996-03-19 Method for controlling specific resistance of silicon carbide sintered body Expired - Lifetime JP3150606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06350596A JP3150606B2 (en) 1996-03-19 1996-03-19 Method for controlling specific resistance of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06350596A JP3150606B2 (en) 1996-03-19 1996-03-19 Method for controlling specific resistance of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH09255428A JPH09255428A (en) 1997-09-30
JP3150606B2 true JP3150606B2 (en) 2001-03-26

Family

ID=13231166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06350596A Expired - Lifetime JP3150606B2 (en) 1996-03-19 1996-03-19 Method for controlling specific resistance of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP3150606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446693A (en) * 2017-07-12 2019-11-12 住友大阪水泥股份有限公司 The manufacturing method of SiC sintered body, heater and SiC sintered body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090733A (en) * 1997-08-27 2000-07-18 Bridgestone Corporation Sintered silicon carbide and method for producing the same
GB2404128B (en) 2003-07-16 2005-08-24 Kanthal Ltd Silicon carbide furnace heating elements
JP2007217240A (en) * 2006-02-17 2007-08-30 Toshiba Ceramics Co Ltd SiC SINTERED COMPACT, SiC PARTICLE, AND METHOD FOR PRODUCING SiC SINTERED COMPACT
JP5530738B2 (en) * 2010-02-10 2014-06-25 日本ピラー工業株式会社 mechanical seal
JP5530739B2 (en) * 2010-02-10 2014-06-25 日本ピラー工業株式会社 Seal ring for mechanical seal and manufacturing method thereof
JP6778644B2 (en) * 2017-03-29 2020-11-04 東京窯業株式会社 Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
WO2019013247A1 (en) * 2017-07-12 2019-01-17 住友大阪セメント株式会社 SiC SINTERED BODY, HEATER AND METHOD FOR PRODUCING SiC SINTERED BODY
JP2022148668A (en) * 2021-03-24 2022-10-06 日本碍子株式会社 Honeycomb structure, and electric heating support and exhaust gas treatment device each using the honeycomb structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446693A (en) * 2017-07-12 2019-11-12 住友大阪水泥股份有限公司 The manufacturing method of SiC sintered body, heater and SiC sintered body
CN110446693B (en) * 2017-07-12 2021-06-25 住友大阪水泥股份有限公司 SiC sintered body, heater, and method for producing SiC sintered body

Also Published As

Publication number Publication date
JPH09255428A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
EP0219933B1 (en) Sintered silicon carbide ceramic body of high electrical resistivity
JPS6228109B2 (en)
JPS6128627B2 (en)
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
KR102042668B1 (en) SiC sintered body and heater and manufacturing method of SiC sintered body
KR101178234B1 (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
JPH1149572A (en) Ceramic composite particles and their production
KR101413250B1 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
JP3233160B2 (en) Silicon carbide sputtering target and method of manufacturing the same
JP3023435B2 (en) High purity silicon carbide sintered body and method for producing the same
JP3004030B2 (en) Silicon carbide heater and method of manufacturing the same
WO2019013247A1 (en) SiC SINTERED BODY, HEATER AND METHOD FOR PRODUCING SiC SINTERED BODY
KR20220050306A (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JP2021072350A (en) Composite sintered body and manufacturing method thereof
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP3016571B2 (en) Silicon carbide electrode and method of manufacturing the same
JP3157957B2 (en) High thermal conductive silicon carbide sintered body and method for producing the same
JPH1192225A (en) Silicon carbide sintered product and its production
JP2007217240A (en) SiC SINTERED COMPACT, SiC PARTICLE, AND METHOD FOR PRODUCING SiC SINTERED COMPACT
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPH11335173A (en) Aluminum nitride-base sintered compact and its production
JPH1112039A (en) Production of aluminum nitride-based sintered material for high heat-irradiating lid
JPS6344713B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

EXPY Cancellation because of completion of term