JP5530738B2 - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP5530738B2
JP5530738B2 JP2010027971A JP2010027971A JP5530738B2 JP 5530738 B2 JP5530738 B2 JP 5530738B2 JP 2010027971 A JP2010027971 A JP 2010027971A JP 2010027971 A JP2010027971 A JP 2010027971A JP 5530738 B2 JP5530738 B2 JP 5530738B2
Authority
JP
Japan
Prior art keywords
seal
seal ring
stationary
ring
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010027971A
Other languages
Japanese (ja)
Other versions
JP2011163467A (en
Inventor
正守 赤松
毅 山野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2010027971A priority Critical patent/JP5530738B2/en
Publication of JP2011163467A publication Critical patent/JP2011163467A/en
Application granted granted Critical
Publication of JP5530738B2 publication Critical patent/JP5530738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、静止密封環の材料としてSiC摺動材を用いたメカニカルシールに関するものである。   The present invention relates to a mechanical seal using a SiC sliding material as a material for a stationary seal ring.

SiC(炭化珪素)はメカニカルシールや軸受等の摺動材として優れた特性を持っているが、摺動部に十分な潤滑液が回り込まない状況やドライ状況においては摩擦係数が高くなり、異常磨耗を招き易いという不利も有している。そこで対策としては、SiC摺動材にハイドロカットや溝加工を施したり、シール背面よりクエンチング等を実施する等の工夫が行われている。   SiC (silicon carbide) has excellent properties as a sliding material for mechanical seals and bearings, but the friction coefficient is high and abnormal wear occurs in situations where sufficient lubricating liquid does not flow into the sliding part or in dry conditions. There is also a disadvantage that it is easy to invite. Therefore, as countermeasures, contrivances such as hydrocutting and grooving of the SiC sliding material, quenching and the like from the back of the seal have been taken.

特許文献1においては、相対回転摺接する2つの密封環1,3の一方又は両方が、平均気孔径10〜40μmの独立気孔が均一に配置されており且つ気孔率が3〜10%である炭化珪素焼結材で構成される密封環を持つメカニカルシールが開示されている。これにより、相手密封環が炭化珪素等の硬質材製のもの又はカーボン等の軟質材製のものの何れである場合にも、相手密封環との間の潤滑性を大幅に向上させることができ、シール条件に拘わらず、耐摩耗性等の耐久性及びシール性に極めて優れたメカニカルシールの実現に寄与している。   In Patent Document 1, one or both of the two sealing rings 1 and 3 that are in relative sliding contact with each other are carbonized in which independent pores having an average pore diameter of 10 to 40 μm are uniformly arranged and the porosity is 3 to 10%. A mechanical seal having a sealing ring made of silicon sintered material is disclosed. Thereby, even when the mating seal ring is made of a hard material such as silicon carbide or a soft material such as carbon, the lubricity between the mating seal ring can be greatly improved, Regardless of the sealing conditions, it contributes to the realization of a mechanical seal that is extremely excellent in durability such as wear resistance and sealing performance.

特許文献2においては、炭化珪素焼結部品の結晶粒平均径が0.010から0.030mmの大きさで、その結晶粒界の間に気孔が形成され、気孔の大きさが0.001から0.020の範囲に形成されて気孔率が3から10容量%のものとされる静止密封環を持つメカニカルシールが開示されている。これにより、強度に優れ、耐摩耗性、耐食性及び耐高温に優れ、メカニカルシールに好適な炭化珪素焼結部品としての静止密封環が得られる、と記載されている。   In Patent Document 2, the crystal grain average diameter of the sintered silicon carbide part is 0.010 to 0.030 mm, pores are formed between the crystal grain boundaries, and the pore size is 0.001. A mechanical seal with a stationary seal ring formed in the range of 0.020 and having a porosity of 3 to 10% by volume is disclosed. Thus, it is described that a static seal ring as a silicon carbide sintered part which is excellent in strength, excellent in wear resistance, corrosion resistance and high temperature resistance and suitable for a mechanical seal can be obtained.

特許文献3においては、平均粒子径が0.1以上、10μm以下のα−SiC粉末と、平均粒子径が0.1以上、10μm以下のβ−SiC粉末と、プラズマCVD法により気相合成された平均粒子径が0.1μm未満のSiC超微粉末とを所望の比率で混合してSiC混合粉末を得、このSiC混合粉末を加熱焼結して成るする密封環を持つメカニカルシールが開示されている。これにより、炭化珪素焼結体の比抵抗値を低くすることができ、かつ、この比抵抗を広範囲に制御できる炭化珪素焼結体の比抵抗制御方法を提供できる、と記載されている。   In Patent Document 3, an α-SiC powder having an average particle diameter of 0.1 or more and 10 μm or less, a β-SiC powder having an average particle diameter of 0.1 or more and 10 μm or less, and vapor phase synthesis by a plasma CVD method. A mechanical seal having a sealing ring formed by mixing SiC ultrafine powder with an average particle diameter of less than 0.1 μm at a desired ratio to obtain SiC mixed powder and heating and sintering the SiC mixed powder is disclosed. ing. Thus, it is described that the specific resistance value of the silicon carbide sintered body can be provided which can reduce the specific resistance value of the silicon carbide sintered body and can control the specific resistance over a wide range.

以上のように、SiC摺動材を用いて密封環の耐摩耗性向上が図られたメカニカルシールはよく知られた技術である。しかしながら、シール対象流体の多様化やシール対象流体が摺動部に回り込まない条件下での使用では、SiC摺動材製のメカニカルシール用密封環としの性能が十分に発揮され難いこともあり、前述のように、ハイドロカットや溝加工を施す対策があるが、加工が難しいとか、コストや手間が掛かるという慢性的な問題がある。   As described above, the mechanical seal in which the wear resistance of the sealing ring is improved by using the SiC sliding material is a well-known technique. However, diversification of the fluid to be sealed and use under conditions in which the fluid to be sealed does not go into the sliding portion, it may be difficult to fully exhibit the performance as a seal ring for mechanical seal made of SiC sliding material. As described above, there are measures to perform hydrocutting and grooving, but there are chronic problems such as difficulty in processing and cost and labor.

一方、カーボン、黒鉛、BN、MoS2 、フッ素樹脂等の低摩擦材を含浸させる等、SiC摺動材に自己潤滑性を有する材料を配合したものによる密封環を持つメカニカルシールも開発されているが、製造が難しくコストも非常に高いことから、使用用途が限られるものであった。このように、種々の利点を有するSiC摺動材製の密封環を、使用条件によっては摩擦係数が高くなって摩耗が早くなるという問題が解消又は抑制されたものとするには、さらなる改善の余地が残されていた。
特許第3517711号公報 特開2002−338368号公報 特開平9−255428号公報
On the other hand, a mechanical seal having a sealing ring made of a material in which a self-lubricating material is blended with a SiC sliding material, such as impregnation with a low friction material such as carbon, graphite, BN, MoS2, or a fluororesin, has been developed. Since the production is difficult and the cost is very high, the intended use is limited. As described above, in order to eliminate or suppress the problem that the friction coefficient is increased and the wear is accelerated depending on use conditions, the seal ring made of SiC sliding material having various advantages is further improved. There was room left.
Japanese Patent No. 3517711 JP 2002-338368 A JP-A-9-255428

本発明の目的は、鋭意研究を進めることにより、基本的にSiC摺動材を用いた静止密封環を持つものとしながら、摺動部に十分な潤滑液が回り込まない状況やドライ状況といった厳しい環境下においても、摩擦係数が高くなる不都合を抑制又は解消して、耐久性や信頼性に優れるメカニカルシールを実現して提供する点にある。   The object of the present invention is to have a stationary seal ring using SiC sliding material by conducting earnest research, and in a severe environment such as a situation where sufficient lubricating liquid does not flow into the sliding part and a dry situation Even below, it is in the point which implement | achieves and provides the mechanical seal which is excellent in durability and reliability, suppressing or canceling the disadvantage that a friction coefficient becomes high.

請求項1に係る発明は、回転軸1に相対回転不能に支持される回転密封環2と、ハウジング3に相対回転不能に支持される静止密封環4と、前記回転密封環2のシール面2aと前記静止密封環4のシール面4aとを互いに回転軸の軸心X方向に押付けてシール部Sを形成するための弾性機構5とを有して成るメカニカルシールにおいて、
前記静止密封環4がSiC摺動材製であって、
温度30℃、圧力2.5MPaの水が、前記静止密封環4を所定の規格寸法である外径×内径×厚さがφ54mm×φ40mm×6mmに加工して成る環状体の外周面から内部を浸透して内周面から滲み出てくる単位時間当りの浸透漏れ量F、又は前記静止密封環4の外周面から内部を浸透して内周面から滲み出てくる単位時間当りの浸透漏れ量を前記所定の規格寸法に合せた換算値Fが、
0.01ml/24hr≦F≦500ml/1hr
で規定される自己浸透性を有するSiC摺動材で形成されるとともに、
前記静止密封環4に、前記ハウジング3を介して供給されてくるシール用液体fを取り込むための取込口14及びこれに続く内部流路15が形成されていることを特徴とするものである。
The invention according to claim 1 includes a rotary seal ring 2 supported on the rotary shaft 1 so as not to be relatively rotatable, a stationary seal ring 4 supported on the housing 3 so as not to be relatively rotatable, and a seal surface 2 a of the rotary seal ring 2. And a sealing surface 4a of the stationary seal ring 4 are pressed against each other in the direction of the axis X of the rotary shaft to form a seal portion S, and a mechanical seal comprising:
The stationary seal ring 4 is made of a SiC sliding material,
Water at a temperature of 30 ° C. and a pressure of 2.5 MPa is introduced from the outer peripheral surface of the annular body formed by processing the stationary sealing ring 4 into a predetermined standard size of outer diameter × inner diameter × thickness of φ54 mm × φ40 mm × 6 mm. penetrates and penetration leakage amount per coming out unit time bleeding from the inner peripheral surface F, or the stationary seal penetration leakage per unit time to come oozed from the inner peripheral surface penetrates the inside from the outer peripheral surface of the ring 4 A conversion value F in which the amount is adjusted to the predetermined standard dimension is as follows :
0.01ml / 24hr ≦ F ≦ 500ml / 1hr
And is formed of a SiC sliding material having self-penetration property defined in
The stationary seal ring 4 is formed with an intake port 14 for taking in the sealing liquid f supplied via the housing 3 and an internal flow path 15 subsequent thereto. .

請求項2に係る発明は、請求項1に記載のメカニカルシールにおいて、前記内部流路15が前記シール部Sに貫通して前記回転密封環2のシール面2aで閉塞される状態に構成されていることを特徴とするものである。   According to a second aspect of the present invention, in the mechanical seal according to the first aspect, the internal flow path 15 penetrates the seal portion S and is closed by the seal surface 2a of the rotary seal ring 2. It is characterized by being.

請求項3に係る発明は、請求項2に記載のメカニカルシールにおいて、前記静止密封環4のシール面4aに、前記軸心Xに関する環状で、かつ、前記内部流路15のシール面側開口部を含む状態のシール用液体充填用の側周溝16が形成されている請求項2に記載のメカニカルシールことを特徴とするものである。   The invention according to claim 3 is the mechanical seal according to claim 2, wherein the seal surface 4a of the stationary seal ring 4 is annular with respect to the axis X, and the opening on the seal surface side of the internal channel 15 is provided. The mechanical seal according to claim 2, wherein a side circumferential groove 16 for filling a sealing liquid is formed.

請求項4に係る発明は、請求項2又は3に記載のメカニカルシールにおいて、前記静止密封環4の外周面4bに、前記取込口14を含むシール用液体充填用の外周溝17が形成されていることを特徴とするものである。   According to a fourth aspect of the present invention, in the mechanical seal according to the second or third aspect, an outer peripheral groove 17 for filling a sealing liquid including the intake port 14 is formed on the outer peripheral surface 4b of the stationary seal ring 4. It is characterized by that.

請求項5に係る発明は、請求項1に記載のメカニカルシールにおいて、前記内部流路15が、その終端が前記静止密封環4の内部に位置する行止り状のものに形成されていることを特徴とするものである。   According to a fifth aspect of the present invention, in the mechanical seal according to the first aspect, the internal flow path 15 is formed in a dead end shape whose end is located inside the stationary seal ring 4. It is a feature.

請求項1の発明によれば、詳しくは実施形態の項にて説明するが、SiC摺動材として十分な強度と硬度を有しながら、内部流路を用いてシール用液体をSiC摺動材に浸透させることができる。従って、その液体浸透によって程よく濡れている状態が維持でき、静止密封環のシール面(摺動面)を常に液体雰囲気とすることが可能になる。そして、静止密封輪を所定の規格寸法に加工して成る環状体の浸透漏れ量も定義することにより、製品によって異なる寸法の密封輪の漏れ量も直接又は換算して規定できる便利さがある。   According to the first aspect of the present invention, as will be described in detail in the section of the embodiment, the sealing liquid is supplied to the SiC sliding material using the internal channel while having sufficient strength and hardness as the SiC sliding material. Can penetrate. Therefore, the wet state can be maintained moderately by the liquid permeation, and the sealing surface (sliding surface) of the stationary sealing ring can always be in a liquid atmosphere. Then, by defining the permeation leakage amount of the annular body formed by processing the stationary sealing ring to a predetermined standard size, there is the convenience that the leakage amount of the sealing ring having a different size depending on the product can be defined directly or in terms of conversion.

さらに、ハウジングに支持される静止密封環としてのSiC摺動材にシール用液体を供給する内部経路を形成してあるから、回転している回転密封環をSiC摺動材製として内部流路を持たせる場合に比べて、シール用液体の供給経路構造が簡単で廉価に構成できる利点がある。
そして、シール用液体が浸透してシール部に迅速に及ぶようになり、内部流路が形成されていないものに比べて、シール用液体の供給開始から実際にシール部に及ぶまでの応答時間が短縮化され、シール用液体がシール部へ及ぶ応答性に優れるものとなる。
その結果、基本的にSiC摺動材を用いた静止密封環を持つものとしながら、摺動部に十分な潤滑液が回り込まない状況やドライ状況といった厳しい環境下においても、摩擦係数が高くなる不都合を抑制又は解消して、耐久性や信頼性に優れるメカニカルシールを提供することができる。
Further, since it is formed inside the unit path you supply sealing liquid to the SiC sliding member as the stationary sealing ring supported by the housing, the internal flow of the rotary seal ring which rotates as manufactured SiC sliding member Compared with the case of having a path, there is an advantage that the structure for supplying the sealing liquid supply path is simple and inexpensive.
Then, the sealing liquid penetrates quickly and reaches the sealing portion, and the response time from the start of supplying the sealing liquid to actually reaching the sealing portion compared to the case where the internal flow path is not formed. It is shortened, and the responsiveness that the sealing liquid reaches the seal portion becomes excellent.
As a result, there is a disadvantage that the friction coefficient becomes high even in a severe environment such as a situation in which a sufficient amount of lubricating liquid does not flow into the sliding part or a dry situation while having a stationary sealing ring using a SiC sliding material. Can be suppressed or eliminated, and a mechanical seal excellent in durability and reliability can be provided.

請求項2の発明によれば、内部流路が静止密封環を貫通してシール部で閉塞される構造とされているので、シール用液体が寄り迅速にシール部に及ぶようになり、前述の応答性がより良くなる利点がある。   According to the second aspect of the present invention, since the internal flow path is configured to pass through the stationary sealing ring and closed by the seal portion, the sealing liquid quickly reaches the seal portion, There is an advantage that the responsiveness is improved.

請求項3の発明によれば、静止密封環のシール面にシール用液体充填用の側周溝を設けてあるので、シール用液体がシール部全体に行渡る迅速さがより素早くなり、前述の応答性がより一層改善されるという利点がある。   According to the invention of claim 3, since the side circumferential groove for filling the sealing liquid is provided on the sealing surface of the stationary sealing ring, the speed with which the sealing liquid reaches the entire seal portion becomes faster. There is an advantage that the responsiveness is further improved.

請求項4の発明によれば、静止密封環の外周面に形成されるシール用液体充填用の外周溝により、ハウジングの液路を単一等の少ないものとしながらも、静止密封環に形成される複数の内部流路に無理なく円滑に、かつ、廉価にシール用液体をバランス良く供給することが可能となる利点が得られる。   According to the fourth aspect of the present invention, the outer peripheral groove for filling the sealing liquid formed on the outer peripheral surface of the stationary sealing ring is formed in the stationary sealing ring while the number of liquid passages in the housing is small. The advantage is that the sealing liquid can be supplied to the plurality of internal flow paths smoothly and inexpensively in a well-balanced manner.

請求項5の発明によれば、静止密封環の内部流路を行止り状としてあるので、ある程度の圧を持たせたシール用流体でもってしてSiC摺動材の内部に浸透させ、静止密封環のシール面(摺動面)を液体雰囲気とすることが可能になる。この場合、シール面には浸透による均一な分布状態でシール用流体を供給することが可能になるという利点がある。   According to the invention of claim 5, since the internal flow path of the stationary seal ring is a dead end, it is allowed to permeate the inside of the SiC sliding material with a sealing fluid having a certain pressure, It becomes possible to make the sealing surface (sliding surface) of the ring a liquid atmosphere. In this case, there is an advantage that the sealing fluid can be supplied to the sealing surface in a uniformly distributed state by permeation.

メカニカルシール及びその構造を示す要部の断面図(実施例1)Sectional drawing of the principal part which shows a mechanical seal and its structure (Example 1) 静止密封環の浸透性測定用の実験装置を示す断面図Sectional view showing an experimental device for measuring the permeability of a stationary seal ring 図2の実験装置に試験液が満たされた状態の断面図FIG. 2 is a cross-sectional view of the test apparatus filled with the test solution. (a)複数の実施例及び比較例の各種特性図、(b)は各実施例の気孔率と自己浸透性との表を示す図(A) Various characteristic diagrams of a plurality of examples and comparative examples, (b) is a diagram showing a table of porosity and self-permeability of each example SiC摺動材の拡大表面状況を示し、(a)は実施例1、(b)は実施例4The enlarged surface condition of a SiC sliding material is shown, (a) is Example 1, (b) is Example 4. SiC摺動材の拡大表面状況を示し、(a)は比較例1、(b)は比較例2、(c)は比較例4The expansion | swelling surface condition of a SiC sliding material is shown, (a) is the comparative example 1, (b) is the comparative example 2, (c) is the comparative example 4. メカニカルシール用密封環の製造方法を示すブロック図Block diagram showing a method for manufacturing a sealing ring for a mechanical seal 実施例2によるメカニカルシールの要部を示す部分断面図The fragmentary sectional view which shows the principal part of the mechanical seal by Example 2 実施例3によるメカニカルシールの要部を示す部分断面図The fragmentary sectional view which shows the principal part of the mechanical seal by Example 3

以下に、本発明によるメカニカルシール、SiC製の静止用密封環、及びその製造方法の実施の形態を、図面を参照しながら説明する。   Embodiments of a mechanical seal, a static sealing ring made of SiC, and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.

メカニカルシールMは、図1に示すように、回転軸1に対してその軸心X方向に移動可能な状態で外嵌されて一体回転(相対回転不能)する回転密封環2と、ハウジング3に相対回動不能に内嵌される静止密封環4と、回転密封環2を静止密封環4に押付けてシール部Sを形成するための弾性機構5とを有して構成されている。つまり、このメカニカルシールMは、ハウジング3と回転軸1との間を含む機内側(プロセス側)Pと、ハウジング3と回転軸1との間を含む機外側(大気側)Tとをシールするものであり、シール対象液体(プロセス液)としては、プラント設備等における水(工業用水、水道水)、薬液、原油関係液、洗浄液等が挙げられる。   As shown in FIG. 1, the mechanical seal M is attached to a rotating seal ring 2 that is externally fitted to the rotating shaft 1 so as to be movable in the direction of the axis X thereof, and rotates together with the rotating shaft 1. The stationary sealing ring 4 is fitted in such a manner that it cannot be rotated relative to the stationary sealing ring 4, and the elastic mechanism 5 for pressing the rotary sealing ring 2 against the stationary sealing ring 4 to form the seal portion S. That is, the mechanical seal M seals the machine interior (process side) P including the space between the housing 3 and the rotary shaft 1 and the machine exterior (atmosphere side) T including the space between the housing 3 and the rotary shaft 1. Examples of the liquid to be sealed (process liquid) include water (industrial water, tap water), chemical liquids, crude oil related liquids, cleaning liquids and the like in plant facilities and the like.

回転軸1の機内側には、軸ビス9で軸外周1aに押圧係止される固定支持輪13が外装され、その機外側には作用輪7が軸心X方向に移動可能に遊外嵌されており、軸心X方向に沿う姿勢でそれら固定支持輪13と作用輪7とに亘って介装されるコイルばね8を軸心X回りの均等角度毎に配置することで弾性機構5が構成されている。そして、回転密封環2は、回転軸1に軸心X方向移動可能に外嵌される保持輪6の先端側に圧入保持されており、保持輪6は、その基端軸部6aが作用輪7の貫通孔7aに挿入されてその作用輪7と一体回転するように構成されている。保持輪6と回転軸1との間にはシール用のOリング12が介装されている。従って、コイルばね8の付勢力が作用輪7と保持輪6とを介して回転密封環2に作用する。   A fixed support wheel 13 that is pressed and locked to the shaft outer periphery 1a by a shaft screw 9 is externally mounted on the inner side of the rotary shaft 1, and a working wheel 7 is loosely fitted on the outer side of the rotary shaft 1 so as to be movable in the axis X direction. The elastic mechanism 5 is arranged by arranging the coil springs 8 interposed between the fixed support wheel 13 and the working wheel 7 at equal angles around the axis X in a posture along the direction of the axis X. It is configured. The rotary seal ring 2 is press-fitted and held on the distal end side of a holding ring 6 that is externally fitted to the rotary shaft 1 so as to be movable in the direction of the axis X, and the base end shaft portion 6a of the holding ring 6 is a working wheel. 7 is inserted into the through-hole 7a and rotates together with the working wheel 7. An O-ring 12 for sealing is interposed between the holding ring 6 and the rotating shaft 1. Therefore, the urging force of the coil spring 8 acts on the rotary seal ring 2 via the action wheel 7 and the holding ring 6.

ハウジング3には、2個のOリング10,11を介して静止密封環が、軸心X方向で機外側Tへの移動、及び軸心X回りの回動ができないように、かつ、回転軸1には遊外嵌される状態で内嵌されている。回転密封環2は弾性機構5によって機外側Tに押圧付勢されており、従ってその機外側の側周面であるシール面2aと静止密封環4の機内側の先端側周面であるシール面4aとが軸心X方向で互いに圧接され、それによって環状のシール部Sが形成されている。尚、回転密封環2はカーボン又はその他の材料によって形成されている。   The housing 3 has a stationary sealing ring through two O-rings 10 and 11 so that the stationary sealing ring cannot move to the machine outside T in the direction of the axis X and rotate around the axis X, and the rotation axis. 1 is fitted in a state of being loosely fitted. The rotary seal ring 2 is pressed and urged toward the machine outer side T by the elastic mechanism 5, and therefore, the seal surface 2a which is the side peripheral surface of the machine outside and the seal surface which is the front side circumferential surface of the stationary seal ring 4 inside the machine. 4a is in pressure contact with each other in the direction of the axis X, whereby an annular seal portion S is formed. The rotary seal ring 2 is made of carbon or other material.

静止密封環4は自己浸透性を有するSiC摺動材で形成されている。SiC摺動材の材料であるSiCは通常の焼結体であり、焼結温度や成形面圧等で低密度化を実現させ、かつ、自己潤滑材は配合していないので、低密度でもメカニカルシールMに必要となる性能を満足する硬度や強度を有している。このSiC摺動材の製造方法は、図7に示すように、SiC粉末とメタノールとを混ぜる混合工程a、混合工程aによる混合液を噴霧乾燥させて造粒材を作成する造粒工程b、造粒工程bによる造粒材を型に入れてプレス成形することで環状の成形体を作成する成形工程c、成形工程cによる成形体を所定高温のアルゴン雰囲気中で焼成させて炭化珪素焼結体を作成する焼成工程d、とを有して成る。   The stationary seal ring 4 is formed of a SiC sliding material having self-penetration. SiC, which is the material of the SiC sliding material, is a normal sintered body, which realizes low density due to the sintering temperature, molding surface pressure, etc., and does not contain a self-lubricating material. It has hardness and strength that satisfy the performance required for the seal M. As shown in FIG. 7, the manufacturing method of this SiC sliding material includes a mixing step a in which SiC powder and methanol are mixed, a granulating step b in which a mixture is spray-dried to create a granulated material, A granulated material obtained by the granulating step b is put into a mold and press-molded to form an annular shaped body, and the shaped body obtained by the forming step c is fired in a predetermined high-temperature argon atmosphere to sinter silicon carbide. And a firing step d for creating a body.

上述の製造方法によって得られた炭化珪素焼結体、即ち焼成工程dによる炭化珪素焼結体の一端面(一方の側周面)又は両端面を表面研磨してシール用の密封環を作成する仕上げ工程eを経ることにより、前述の静止密封環4が作成される。つまり、図7に示すように、メカニカルシール用摺動材の製造方法に、焼成工程による炭化珪素焼結体の一端面を表面研磨する仕上げ工程eを追加することにより、メカニカルシール用静止密封環の製造方法として定義される。尚、メカニカルシール用静止密封環の製造方法は、メカニカルシール用摺動材の製造方法を包括する概念である。   A silicon carbide sintered body obtained by the above-described manufacturing method, that is, one end surface (one side peripheral surface) or both end surfaces of the silicon carbide sintered body by the firing step d is polished to create a sealing ring for sealing. By passing through the finishing process e, the above-mentioned stationary sealing ring 4 is created. That is, as shown in FIG. 7, by adding a finishing step e for polishing the one end surface of the silicon carbide sintered body by the firing step to the method for manufacturing the sliding material for mechanical seal, the stationary seal ring for mechanical seal is added. Is defined as the manufacturing method. In addition, the manufacturing method of the stationary seal ring for mechanical seals is the concept which encompasses the manufacturing method of the sliding material for mechanical seals.

メカニカルシール用静止密封環4の製造方法について詳述する。まず、混合工程aは、粒子径約1.0μmのα−SiC粉末或いはβ−SiC粉末100gに、焼結助材としてのB4C粉末0.5g及びカーボン源としてのフェノール樹脂4gを添加し、さらに成形助材としてPEG(ポリエチレングリコール)29g及びステアリン酸1gを添加して、これらを溶剤であるメタノールと共にボールミルで24時間混合する、という工程である。   A method for manufacturing the stationary seal ring 4 for the mechanical seal will be described in detail. First, the mixing step a is performed by adding 0.5 g of B4C powder as a sintering aid and 4 g of phenol resin as a carbon source to 100 g of α-SiC powder or β-SiC powder having a particle size of about 1.0 μm, In this process, 29 g of PEG (polyethylene glycol) and 1 g of stearic acid are added as molding aids, and these are mixed with methanol as a solvent in a ball mill for 24 hours.

造粒工程bは、混合工程aで得られた混合液(流動性懸濁液)を、スプレードライヤーにより噴霧乾燥させることによって造粒し、径30〜100μmの球形状の造粒材を得る、という工程である。成形工程cは、造粒工程bで得られた硬質の造粒材を所定の金型に充填してから、冷間プレス成形(成形圧:100MPa)を行って環状形態を為す成形体を得る、という工程である。   The granulation step b is granulated by spray-drying the liquid mixture (fluid suspension) obtained in the mixing step a with a spray dryer to obtain a spherical granulated material having a diameter of 30 to 100 μm. It is a process. In the molding step c, the hard granulated material obtained in the granulation step b is filled in a predetermined mold, and then cold press molding (molding pressure: 100 MPa) is performed to obtain a molded body having an annular shape. This is the process.

焼成工程dは、成形工程cで得られた成形体を、加圧することなく1850〜2050℃のアルゴン雰囲気中で焼成させて炭化珪素焼結体を得る、という工程であり、この焼成工程dを経て作成される環状のものがメカニカルシール用摺動材である。そして、仕上げ工程eは、焼成工程dで得られた炭化珪素焼結体の一端面をRa=0.05〜0.25の鏡面に表面研磨(ラップ)する等により密封環を得る、という工程である。ここで言う「密封環」とは回転密封環としても、又静止密封環としても使用可能な環のことであり、本実施形態においてはその密封環を「静止密封環4」として使用している。尚、静止密封環4の鏡面部分は、これを静止密封環(静止密封環4)として使用した場合におけるシール面4a(密封端面)として機能する。   The firing step d is a step of firing the molded body obtained in the molding step c in an argon atmosphere at 1850 to 2050 ° C. without applying pressure to obtain a silicon carbide sintered body. The annular material created through this is a sliding material for mechanical seal. And the finishing step e is a step of obtaining a sealing ring by surface polishing (wrapping) one end surface of the silicon carbide sintered body obtained in the firing step d to a mirror surface of Ra = 0.05 to 0.25. It is. The “sealing ring” here is a ring that can be used as both a rotary sealing ring and a stationary sealing ring. In this embodiment, the sealing ring is used as the “static sealing ring 4”. . The mirror surface portion of the stationary sealing ring 4 functions as a sealing surface 4a (sealing end surface) when this is used as a stationary sealing ring (stationary sealing ring 4).

上記製造方法によって得られる密封環、即ち実施例1〜実施例4の密封環の密度、気孔率、曲げ強度、硬度等の各種特性表を図4に示す。密度は水置換法により計測し、炭化珪素(SiC)の理論密度を3.2g/cm3 として気孔率を計算してある。一例として実施例1の気孔率K1は、K1=1−(摺動材の測定密度)/(理論密度)=(1−2.605/3.2)×100=18.6(%)である。尚、図4の特性表に示すように、上記諸条件の範囲外である比較例1〜比較例4の密封環も作成し、その特性を確認してある。 FIG. 4 shows various characteristic tables such as density, porosity, bending strength, and hardness of the seal ring obtained by the above manufacturing method, that is, the seal rings of Examples 1 to 4. The density was measured by a water displacement method, and the porosity was calculated by setting the theoretical density of silicon carbide (SiC) to 3.2 g / cm 3 . As an example, the porosity K1 of Example 1 is K1 = 1− (measured density of sliding material) / (theoretical density) = (1-2.605 / 3.2) × 100 = 18.6 (%). is there. In addition, as shown in the characteristic table of FIG. 4, the sealing rings of Comparative Examples 1 to 4 which are outside the range of the above conditions were also prepared, and the characteristics were confirmed.

そして、本発明による密封環、即ち静止密封環4と、例えばカーボン製の回転密封環2とを組み込んだメカニカルシール(図1に示すメカニカルシールM)を使用して工業用水によるシール試験を行い、密封環の性能及びシール性能を確認した。また、静止密封環4として使用する密封環の自己浸透性を測定するために、図2に示すような実験装置Aを作成し、その実験装置Aによる測定値も、図4に示す特性表に記載することとした。   Then, a seal test with industrial water is performed using a mechanical seal (mechanical seal M shown in FIG. 1) incorporating a seal ring according to the present invention, that is, a stationary seal ring 4 and a rotating seal ring 2 made of carbon, for example. The performance of the sealing ring and the sealing performance were confirmed. Further, in order to measure the self-penetration of the sealing ring used as the stationary sealing ring 4, an experimental apparatus A as shown in FIG. 2 is created, and the measured values by the experimental apparatus A are also shown in the characteristic table shown in FIG. It was decided to describe.

図1に示すメカニカルシールMを用いての摺動テストの条件は、回転密封環2と静止密封環4とによるシール部Sの径=40mm(アンバランス型)、回転速度=3600回転/分、フラッシング流量=3リットル/分、試験用液体=工業用水、運転時間=100時間、液体温度=30℃、圧力=2.5MPaである。尚、摺動テスト結果(図4の「摺動特性」※)における◎、○、△、×の意味は下記のようである。
◎:回転密封環2及び静止密封環4共に摩耗が検出できず
○:単位時間当たりの摩耗量が、回転密封環2が0.01μm/hr以下、かつ、静止密 封輪4が0.1μm/hr以下
△:単位時間当たりの摩耗量が、回転密封環2が0.01μm/hr以下、かつ、静止密 封輪4が0.1μm/hr以上
×:回転密封環2の単位時間当たりの摩耗量が0.01μm/hr以上
The condition of the sliding test using the mechanical seal M shown in FIG. 1 is that the diameter of the seal portion S by the rotating seal ring 2 and the stationary seal ring 4 = 40 mm (unbalanced type), the rotation speed = 3600 rotations / minute, Flushing flow rate = 3 liters / minute, test liquid = industrial water, operation time = 100 hours, liquid temperature = 30 ° C., pressure = 2.5 MPa. In the sliding test results (“sliding characteristics” * in FIG. 4), the meanings of “」 ”,“ ◯ ”,“ Δ ”, and“ X ”are as follows.
A: Wear is not detected in both the rotary seal ring 2 and the stationary seal ring 4. B: The wear amount per unit time is 0.01 μm / hr or less for the rotary seal ring 2 and 0.1 μm for the static seal ring 4. / Hr or less Δ: Wear amount per unit time is 0.01 μm / hr or less for the rotary sealing ring 2 and 0.1 μm / hr or more for the stationary sealing ring 2 ×: per unit time of the rotary sealing ring 2 Wear amount is 0.01μm / hr or more

次に、自己浸透性の実験装置Aについて説明する。図2,図3に示すように、実験装置Aは、略ドーナツ状の静止密封環4(密封環)が装填される円形凹入部23を有する実験ケース本体21と、円形凹入部23に内嵌されてその上面をカバーする状態で実験ケース本体21の上面に複数のボルト24で固定される蓋ケース22と、から成る実験器20を有して構成されている。実験ケース本体21には、円形凹入部23に装填されている回転密封環2の外周面2bのほぼ全面に開口する環状凹入部25、及び環状凹入部25に連通する入口路26が形成されている。蓋ケース22の中央部には、漏れ出た液体を測定するための円形の大径口22Aが形成されている。尚、27、28はOリングである。   Next, the self-penetrating experimental apparatus A will be described. As shown in FIGS. 2 and 3, the experimental apparatus A includes an experimental case main body 21 having a circular recessed portion 23 into which a substantially donut-shaped stationary sealing ring 4 (sealing ring) is loaded, and an internal fit in the circular recessed portion 23. The experimenter 20 includes a lid case 22 fixed to the upper surface of the experiment case main body 21 with a plurality of bolts 24 in a state of covering the upper surface. The experiment case main body 21 is formed with an annular recess 25 that opens to almost the entire outer peripheral surface 2 b of the rotary seal ring 2 loaded in the circular recess 23, and an inlet passage 26 that communicates with the annular recess 25. Yes. A circular large-diameter port 22 </ b> A for measuring the leaked liquid is formed at the center of the lid case 22. Reference numerals 27 and 28 denote O-rings.

実験装置Aによる静止密封環4の実験方法は、円形凹入部23に静止密封環4を配置して蓋ケース22で蓋をした実験状態(図2参照)において、実験ケース本体21の側面21Aに開口する入口路26から正圧を有する試験液rを供給し、図3に示すように環状凹入部25に満たす。その実験液eで環状凹入部25が満たされている状態を所定時間維持し、静止密封環4の内周面4cから漏れ出た試験液rの量を測定するのである。尚、実験条件の一例は、試験液rとして、温度30℃で2.5MPaの圧が掛けられた工業用水であり、静止密封環4のサイズ例は、外径×内径×厚さがφ54×φ40×6(単位:mm)である。   The experiment method of the stationary seal ring 4 by the experimental apparatus A is as follows. In the experimental state (see FIG. 2) in which the stationary seal ring 4 is arranged in the circular recess 23 and covered with the lid case 22 (see FIG. 2), A test solution r having a positive pressure is supplied from the opening inlet passage 26 and fills the annular recess 25 as shown in FIG. The state in which the annular recess 25 is filled with the experimental liquid e is maintained for a predetermined time, and the amount of the test liquid r leaking from the inner peripheral surface 4c of the stationary seal ring 4 is measured. An example of the experimental condition is industrial water applied with a pressure of 2.5 MPa at a temperature of 30 ° C. as the test solution r. The size example of the stationary seal ring 4 is an outer diameter × inner diameter × thickness of φ54 ×. φ40 × 6 (unit: mm).

図4の特性表における「自己浸透性」は、目視で漏れが確認できたとき(図3参照)から計測し始めた(静止密封環4の内周面4cから滲み出てきた液体を測定する)。また、「自己浸透性」における×とは、「24hr(時間)計測しても目視で漏れが確認できなかったこと」を意味している。図4(a)は、焼成温度を1800℃〜2200℃超の範囲で種々に変更設定した場合の各種特性を示し、図4(b)は、図4(a)における摺動特性が合格(評価が○と◎)である実施例1〜4について、気孔率と浸透漏れ量(自己浸透性)とを計測したものである。   The “self-permeability” in the characteristic table of FIG. 4 starts to be measured when leakage can be visually confirmed (see FIG. 3) (measures the liquid that has oozed out from the inner peripheral surface 4c of the stationary seal ring 4). ). In addition, “x” in “self-penetration” means “a leak could not be visually confirmed even when measured for 24 hours (hours)”. FIG. 4A shows various characteristics when the firing temperature is variously changed in the range of 1800 ° C. to over 2200 ° C., and FIG. 4B shows that the sliding characteristics in FIG. About Examples 1-4 whose evaluation is (circle) and (double-circle)), a porosity and the amount of osmotic leakage (self-permeability) are measured.

比較例1のものは、自己浸透性はあったが、焼結密度が低いためか強度、硬度が低く、また摩耗量も多く(摺動特性は×)、メカニカルシールとしての特性は不十分である。比較例2〜4のものは、強度や硬度はあり、また摺動特性の評価が○のもの(比較例2)もあったが、いずれも自己浸透性が無かったため摺動面の面荒れが発生し、摩耗も認められた。比較例3のものは、従来の高密度化SiC製であり、SiC摺動材(メカニカルシール用密封環)として一般的に使用されているものである。試験用のメカニカルシールMはその従来品に関する選定基準をはるかに超える負荷条件であるが故に、比較例3のものには摩耗、面荒れが発生し、当然ながら不合格である。   Comparative Example 1 had self-penetration, but due to its low sintered density, its strength and hardness were low, and the amount of wear was large (sliding property was x), and the properties as a mechanical seal were insufficient. is there. The comparative examples 2 to 4 have strength and hardness, and there were also those with good sliding characteristics (comparative example 2) (comparative example 2). Occurred and wear was also observed. The thing of the comparative example 3 is a product made from the conventional high density SiC, and is generally used as a SiC sliding material (sealing ring for mechanical seals). Since the test mechanical seal M is under a load condition that far exceeds the selection criteria for the conventional product, the comparative example 3 suffers from wear and surface roughness, and of course is rejected.

実験結果による図4(a)の特性表から、SiC摺動材製のメカニカルシール用密封環は、焼成温度が1850℃〜2050℃で、焼結密度が2.6g/cm3 〜3.0g/cm3 で、強度が400MPa以上、硬度が1600hrv以上のSiC焼結体であることが分かる。そして、その場合のSiC焼結体においては、外周面Wbから内周面Wcに向けての単位時間当りの液体の浸透漏れ量F0.01ml/24hr≦F≦500ml/1hrの範囲である。このようなメカニカルシール用密封環では、図1に示すメカニカルシールMにおける前述の過負荷条件においても良好なメカニカルシール機能が発揮される。尚、参考として、実施例1〜4のSiC摺動材における気孔率と浸透漏れ量(自己浸透性)を図4(b)に示す。また、実施例1,4、及び比較例1,2,4の各SiC摺動材の表面状況写真を図5(a),(b)及び図6(a),(b),(c)に示す。 From the characteristic table of FIG. 4A by the experimental results, the sealing ring for mechanical seal made of SiC sliding material has a firing temperature of 1850 ° C. to 2050 ° C. and a sintered density of 2.6 g / cm 3 to 3.0 g. It can be seen that this is a SiC sintered body having a strength of 400 MPa or more and a hardness of 1600 hrv or more at / cm 3 . Then, in the SiC sintered body in this case, penetration leakage amount F of the liquid per unit time toward the inner circumferential surface Wc from the outer peripheral surface Wb is in the range of 0.01ml / 24hr ≦ F ≦ 500ml / 1hr . In such a seal ring for mechanical seal, a good mechanical seal function is exhibited even under the above-described overload condition in the mechanical seal M shown in FIG. For reference, the porosity and permeation leakage amount (self-permeability) in the SiC sliding materials of Examples 1 to 4 are shown in FIG. Moreover, the surface condition photograph of each SiC sliding material of Examples 1, 4 and Comparative Examples 1, 2, 4 is shown in FIGS. 5 (a), (b) and FIGS. 6 (a), (b), (c). Shown in

ところで、前記浸透漏れ量Fが規定の範囲(0.01ml/24hr≦F≦500ml/1hr)であることの確認を実験装置Aで行うに当り、メカニカルシール用密封環そのものでは不可のときがある。即ち、メカニカルシールが異なれば回転及び静止の各密封環の寸法(サイズ)も種々に異なることが多いので、実験装置Aの寸法に合わないことがあるからである。そのような場合には、密封環を所定の規格寸法に加工(切削等)して環状体(図示省略)を作成し、その規格寸法に加工された環状体を用いることで実験装置Aによる漏れ量測定が可能になる。規格寸法の例としては、前述の「外径×内径×厚さがφ54×φ40×6(単位:mm)」が挙げられるが、その他でも良い。尚、所定の規格寸法より密封環が小さい場合には、計算によって規格寸法に合せた換算値でも良い。   By the way, when the experiment apparatus A confirms that the permeation leakage amount F is within a specified range (0.01 ml / 24 hr ≦ F ≦ 500 ml / 1 hr), the mechanical seal seal ring itself may not be possible. . That is, if the mechanical seals are different, the sizes (sizes) of the rotating and stationary sealing rings are often different, and therefore may not match the dimensions of the experimental apparatus A. In such a case, an annular body (not shown) is created by machining (cutting, etc.) the sealing ring to a predetermined standard dimension, and leakage by the experimental apparatus A is performed by using the annular body machined to the standard dimension. Quantity measurement is possible. As an example of the standard dimension, the above-mentioned “outer diameter × inner diameter × thickness is φ54 × φ40 × 6 (unit: mm)” may be mentioned, but other dimensions may be used. If the seal ring is smaller than a predetermined standard dimension, a converted value matched to the standard dimension by calculation may be used.

本発明による自己浸透性を有するSiC摺動材製の静止密封環(メカニカルシール用密封環)は、数μmの不連続気孔及び連続気孔を有しており、十分な強度と硬度を有しながら、ある程度の液体圧をかけると液体が摺動材内部まで浸透する。故に、浸透によって程よく濡れている状態が維持できることから、摺動面は常に液体雰囲気になり、メカニカルシールや軸受け等の起動時に発生するドライ状況が改善され、円滑に起動することが可能になる。また、運転中においても液体が摺動面に常に内部から送り出されているので、安定した液体膜が形成され続けてシール特性を良好に保つことができる。そして、浸透した液体が大気側で溜まることでクエンチ効果が得られるという利点もある。   The static sealing ring (seal ring for mechanical seal) made of a SiC sliding material having self-penetration according to the present invention has discontinuous pores and continuous pores of several μm, and has sufficient strength and hardness. When a certain amount of liquid pressure is applied, the liquid penetrates into the sliding material. Therefore, since the moderately wet state can be maintained by the permeation, the sliding surface is always in a liquid atmosphere, and the dry condition that occurs when starting the mechanical seal, the bearing, and the like is improved, and the start can be performed smoothly. In addition, since the liquid is always sent from the inside to the sliding surface even during operation, a stable liquid film can be continuously formed and the sealing characteristics can be kept good. And there exists an advantage that the quenching effect is acquired because the penetrated liquid accumulates on the atmosphere side.

さて、図1に示すように、静止密封環4に、ハウジング3に形成されている液路3Wを介して供給されてくる冷却水(シール用液体の一例)fを取り込むための取込口14及びこれに続く行止り状の内部流路15が形成されている。内部流路15は、軸心Xに対する径方向に向く縦流路15aと、軸心Xに沿う方向に向く横流路15bとを有し、シール部Sに貫通して回転密封環2のシール面2aで閉塞される状態に構成されている。そして、静止密封環4のシール面4aに、軸心Xに関する環状で、かつ、内部流路15のシール面側開口部を含む状態の冷却水充填用の側周溝16が形成されている。側周溝16は、軸心Xに関する環状のものが望ましいが、複数箇所の内部流路15毎に対応して設けられる軸心Xに関する所定角度の円弧状のもの(周方向に間欠配置される複数の側周溝)でも良い。   As shown in FIG. 1, an intake port 14 for taking in cooling water (an example of a sealing liquid) f supplied to the stationary sealing ring 4 via a liquid passage 3 </ b> W formed in the housing 3. And the dead end-like internal flow path 15 following this is formed. The internal flow path 15 has a longitudinal flow path 15a facing in the radial direction with respect to the axis X and a lateral flow path 15b facing in the direction along the axis X, penetrating through the seal portion S and sealing surface of the rotary seal ring 2 It is comprised in the state obstruct | occluded by 2a. Further, a side circumferential groove 16 for filling with cooling water is formed on the seal surface 4 a of the stationary seal ring 4, which is annular with respect to the axis X and includes the opening on the seal surface side of the internal flow path 15. The side circumferential grooves 16 are preferably annular with respect to the axis X, but are arc-shaped with a predetermined angle with respect to the axis X provided corresponding to each of the plurality of internal flow paths 15 (disposed intermittently in the circumferential direction). It may be a plurality of side circumferential grooves).

自己浸透性を有するSiC摺動材製の静止密封環4に行止り状の内部流路15が形成されているから、冷却水fが浸透してシール面4aに迅速に及ぶようになり、内部流路15が形成されていないものに比べて、冷却水fの供給開始から実際に静止密封環4のシール面4aに及ぶまでの応答時間が短縮化される。つまり応答性が良くなる。そして、内部流路15が静止密封環4を貫通して回転密封環2のシール面2aで閉塞される構造とすることで応答性がより良くなるとともに、側周溝16を設けることで一層応答性が改善されるという利点がある。   Since the dead-end internal flow path 15 is formed in the stationary seal ring 4 made of a SiC sliding material having self-penetration, the cooling water f penetrates and quickly reaches the seal surface 4a. Compared with the case where the flow path 15 is not formed, the response time from the start of the supply of the cooling water f to the actual seal surface 4a of the stationary seal ring 4 is shortened. That is, responsiveness is improved. The internal flow path 15 penetrates the stationary seal ring 4 and is closed by the seal surface 2a of the rotary seal ring 2, so that the responsiveness is improved and the side circumferential groove 16 is provided to further respond. There is an advantage that the property is improved.

〔実施例2〕
図8に示すように、静止密封環の外周面に、前記取込口を含むシール用液体充填用の外周溝17が形成されている構造を持つメカニカルシールMでも良い。例えば、外周溝17を軸心Xに関する環状のものとして、ハウジング3の液路3Wを単一のものとしながら、軸心Xに関して均等角度毎に設けられる複数(例:6箇所)の内部流路15及び側周溝16に冷却水が円滑に供給されるようにすることができる。また、2箇所の内部流路15及び側周溝16に亘るように、軸心Xに関して約180度の外周溝17を設ける構成とすることも可能である。
[Example 2]
As shown in FIG. 8, a mechanical seal M having a structure in which an outer peripheral groove 17 for filling a sealing liquid including the intake port is formed on the outer peripheral surface of the stationary seal ring. For example, a plurality of (for example, six) internal flow paths provided at equal angles with respect to the axis X while the outer circumferential groove 17 is annular with respect to the axis X and the liquid path 3W of the housing 3 is single. The cooling water can be smoothly supplied to 15 and the side circumferential groove 16. It is also possible to provide a configuration in which an outer peripheral groove 17 of about 180 degrees with respect to the axis X is provided so as to extend over the two internal flow paths 15 and the side peripheral grooves 16.

外周溝17を設けることにより、ハウジングの液路3Wを単一等の少ないものとしながらも、静止密封環4に形成される複数の内部流路15に無理なく円滑に、かつ、廉価にシール用液体fをバランス良く供給することが可能となる利点が得られる。   By providing the outer peripheral groove 17, the number of liquid passages 3 W of the housing is reduced to a single number, etc., but the plurality of internal flow paths 15 formed in the stationary sealing ring 4 can be smoothly and inexpensively sealed. There is an advantage that the liquid f can be supplied in a balanced manner.

〔実施例3〕
図9に示すように、ハウジング3が静止密封環4の機外側の側周面4dを受止める内向きフランジ部3Aを有し、側周面4に設けられる取込口14及び軸心Xの方向に沿う内部流路15を持つメカニカルシールMも可能である。直線状の内部流路15は、その機内側端がシール面4aの寸前で終了する(内部流路15の終端が静止密封環4の内部に位置する)行止り状のものである。この場合、内向きフランジ部3Aの機内側の側周面18に開口する状態で環状の側周溝19を形成して、軸心Xに関して均等角度毎に複数の内部流路15を設ける構成が望ましい。尚、側周溝19を、静止密封環4の側周面4dに形成しても良い。
Example 3
As shown in FIG. 9, the housing 3 has an inward flange portion 3 </ b> A for receiving the outer peripheral side surface 4 d of the stationary seal ring 4, and the intake port 14 provided on the side peripheral surface 4 and the shaft center X are provided. A mechanical seal M with an internal flow path 15 along the direction is also possible. The straight internal flow path 15 is a dead end whose inner end ends just before the seal surface 4a (the end of the internal flow path 15 is located inside the stationary seal ring 4). In this case, a configuration in which an annular side circumferential groove 19 is formed in an open state on the machine-side side circumferential surface 18 of the inward flange portion 3A, and a plurality of internal flow paths 15 are provided at equal angles with respect to the axis X is provided. desirable. The side circumferential groove 19 may be formed on the side circumferential surface 4d of the stationary sealing ring 4.

外周溝19を設けることにより、ハウジング3の液路3Wを単一等の少ないものとしながらも、静止密封環4に形成される複数の内部流路15に無理なく円滑に、かつ、廉価にシール用液体fをバランス良く供給することが可能となる利点が得られる。また、図9に示される構造によれば、内部流路15を直線状として加工し易くて廉価に形成できる利点があるとともに、内部流路15がシール面4aに貫通していないので、貫通する構成のものに比べてシール面の面積を多く取れ、シール部Sの、つまりはメカニカルシールMの耐久性向上に寄与可能となる利点もある。   By providing the outer peripheral groove 19, the liquid passage 3 </ b> W of the housing 3 is reduced to a single or the like, but the plurality of internal flow paths 15 formed in the stationary seal ring 4 are smoothly and inexpensively sealed. The advantage that the liquid f can be supplied in a well-balanced manner is obtained. Further, according to the structure shown in FIG. 9, there is an advantage that the internal flow path 15 can be easily processed in a straight line and can be formed at a low cost, and the internal flow path 15 does not penetrate the seal surface 4a, and thus penetrates. There is also an advantage that it is possible to increase the area of the sealing surface as compared with the configuration, and to contribute to improving the durability of the seal portion S, that is, the mechanical seal M.

〔別実施例〕
シール用流体は、冷却水(冷却液)のほか、クエンチング液、フラッシング液、潤滑液等の種々のものを含む概念である。
[Another Example]
The sealing fluid is a concept including various kinds of materials such as quenching liquid, flushing liquid, and lubricating liquid in addition to cooling water (cooling liquid).

1 回転軸
2 回転密封環
2a シール面
3 ハウジング
4 静止密封環
4a シール面
4b 外周面
5 弾性機構
14 取込口
15 内部流路
16 側周溝
17 外周溝
F 浸透漏れ量
S シール部
X 軸心
f シール用液体
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Rotating sealing ring 2a Sealing surface 3 Housing 4 Static sealing ring 4a Sealing surface 4b Outer peripheral surface 5 Elastic mechanism 14 Intake port 15 Internal flow path 16 Side circumferential groove 17 Outer circumferential groove F Permeation leak amount S Seal part X Shaft center f Sealing liquid

Claims (5)

回転軸に相対回転不能に支持される回転密封環と、ハウジングに相対回転不能に支持される静止密封環と、前記回転密封環のシール面と前記静止密封環のシール面とを互いに回転軸の軸心方向に押付けてシール部を形成するための弾性機構とを有して成るメカニカルシールであって、
前記静止密封環がSiC摺動材製であって、
温度30℃、圧力2.5MPaの水が、前記静止密封環を所定の規格寸法である外径×内径×厚さがφ54mm×φ40mm×6mmに加工して成る環状体の外周面から内部を浸透して内周面から滲み出てくる単位時間当りの浸透漏れ量F、又は前記静止密封環の外周面から内部を浸透して内周面から滲み出てくる単位時間当りの浸透漏れ量を前記所定の規格寸法に合せた換算値Fが、
0.01ml/24hr≦F≦500ml/1hr
で規定される自己浸透性を有するSiC摺動材で形成されるとともに、
前記静止密封環に、前記ハウジングを介して供給されてくるシール用液体を取り込むための取込口及びこれに続く内部流路が形成されているメカニカルシール。
A rotary seal ring that is supported so as not to rotate relative to the rotary shaft, a stationary seal ring that is supported so as not to rotate relative to the housing, a seal surface of the rotary seal ring, and a seal surface of the stationary seal ring are mutually connected to the rotary shaft. A mechanical seal having an elastic mechanism for pressing in the axial direction to form a seal portion,
The stationary seal ring is made of SiC sliding material,
Water at a temperature of 30 ° C. and a pressure of 2.5 MPa penetrates into the inside from the outer peripheral surface of the annular body formed by processing the stationary seal ring into a predetermined standard size of outer diameter × inner diameter × thickness of φ54 mm × φ40 mm × 6 mm. and the inner circumference and penetration leakage amount per coming out unit time bleeding from surface F with or penetration leakage amount per unit time to come oozed from the inner peripheral surface penetrates the inside from the outer peripheral surface of the stationary seal ring The conversion value F in accordance with the predetermined standard dimension is
0.01ml / 24hr ≦ F ≦ 500ml / 1hr
And is formed of a SiC sliding material having self-penetration property defined in
A mechanical seal in which an intake port for taking in a sealing liquid supplied via the housing and an internal flow path following the intake port are formed in the stationary seal ring.
前記内部流路が前記シール部に貫通して前記回転密封環のシール面で閉塞される状態に構成されている請求項1に記載のメカニカルシール。   The mechanical seal according to claim 1, wherein the internal flow path is configured to penetrate the seal portion and be closed by a seal surface of the rotary seal ring. 前記静止密封環のシール面に、前記軸心に関する環状で、かつ、前記内部流路のシール面側開口部を含む状態のシール用液体充填用の側周溝が形成されている請求項2に記載のメカニカルシール。   3. A side circumferential groove for filling a sealing liquid in an annular shape related to the axial center and including a seal surface side opening of the internal flow path is formed on the seal surface of the stationary seal ring. The mechanical seal described. 前記静止密封環の外周面に、前記取込口を含むシール用液体充填用の外周溝が形成されている請求項2又は3に記載のメカニカルシール。   The mechanical seal according to claim 2 or 3, wherein an outer peripheral groove for filling a sealing liquid including the intake port is formed on an outer peripheral surface of the stationary seal ring. 前記内部流路が、その終端が前記静止密封環の内部に位置する行止り状のものに形成されている請求項1に記載のメカニカルシール。   The mechanical seal according to claim 1, wherein the internal flow path is formed in a dead-end shape whose end is located inside the stationary sealing ring.
JP2010027971A 2010-02-10 2010-02-10 mechanical seal Active JP5530738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027971A JP5530738B2 (en) 2010-02-10 2010-02-10 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027971A JP5530738B2 (en) 2010-02-10 2010-02-10 mechanical seal

Publications (2)

Publication Number Publication Date
JP2011163467A JP2011163467A (en) 2011-08-25
JP5530738B2 true JP5530738B2 (en) 2014-06-25

Family

ID=44594392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027971A Active JP5530738B2 (en) 2010-02-10 2010-02-10 mechanical seal

Country Status (1)

Country Link
JP (1) JP5530738B2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124865A (en) * 1982-01-19 1983-07-25 Arai Pump Mfg Co Ltd Mechanical seal
JPS58134275A (en) * 1982-02-03 1983-08-10 Arai Pump Mfg Co Ltd Mechanical seal
JPS58134276A (en) * 1982-02-04 1983-08-10 Arai Pump Mfg Co Ltd Mechanical seal
JPS59121564U (en) * 1983-02-02 1984-08-16 株式会社中村金属工業所 mechanical seal
JPS6237573A (en) * 1985-08-12 1987-02-18 Ebara Res Co Ltd Shaft seal device
JPH0643423U (en) * 1992-11-12 1994-06-10 三菱重工業株式会社 Shaft seal device
JP3150606B2 (en) * 1996-03-19 2001-03-26 住友大阪セメント株式会社 Method for controlling specific resistance of silicon carbide sintered body
JP3517711B2 (en) * 2000-11-09 2004-04-12 日本ピラー工業株式会社 Seal ring for mechanical seal and mechanical seal using the same
JP4865146B2 (en) * 2001-05-23 2012-02-01 イーグル工業株式会社 Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JP4205910B2 (en) * 2002-04-02 2009-01-07 イーグル工業株式会社 Sliding parts
JP2004060738A (en) * 2002-07-26 2004-02-26 Eagle Ind Co Ltd Sliding component
US7229102B2 (en) * 2002-12-20 2007-06-12 Deublin Company Fluid coolant union
JP3839432B2 (en) * 2003-10-30 2006-11-01 株式会社神鋼環境ソリューション Contamination-resistant shaft seal device
JP4119398B2 (en) * 2004-04-30 2008-07-16 日本ピラー工業株式会社 Non-contact mechanical seal
JP4315394B2 (en) * 2006-06-27 2009-08-19 日本ピラー工業株式会社 mechanical seal

Also Published As

Publication number Publication date
JP2011163467A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US6454268B1 (en) Shaft seal device
EP1007853B1 (en) Oil-free screw rotor apparatus
JP5530808B2 (en) mechanical seal
CN111542713A (en) Sliding component
JPH0788909B2 (en) Mechanical seal using pore dispersion material, pore dispersion cemented carbide and method for producing the same
JP5572395B2 (en) Monitoring of closed structure, especially closed structure of gas compressor or gas expander
JP5767119B2 (en) Lance unit and spindle with lance unit
JP2008215090A (en) Scroll compressor and its manufacturing method
JPWO2014030423A1 (en) Double mechanical seal device
US6845985B2 (en) Rotating mechanical seal
JP5530738B2 (en) mechanical seal
JPH04272582A (en) Noncontact packing apparatus for axis insulating gas
JP5530739B2 (en) Seal ring for mechanical seal and manufacturing method thereof
JP2000170768A (en) Sliding member
US20060119049A1 (en) Slip-ring seal arrangement
US10202967B2 (en) High-pressure rotating sealing coupling with continuous expandable ring
US845114A (en) Rotary compressor.
JP2014077475A (en) Bearing structure and water injection type air compression device
JP4083394B2 (en) End-contact mechanical seal for submersible pumps handling slurry fluids
JP2001139376A (en) Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JP2020094557A (en) Fluid machine
JP2007309351A (en) Rolling bearing
JPS6331003B2 (en)
JP6446294B2 (en) Double mechanical seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150