JPS63277571A - Production of sintered aluminum nitride having high thermal conductivity - Google Patents

Production of sintered aluminum nitride having high thermal conductivity

Info

Publication number
JPS63277571A
JPS63277571A JP62110808A JP11080887A JPS63277571A JP S63277571 A JPS63277571 A JP S63277571A JP 62110808 A JP62110808 A JP 62110808A JP 11080887 A JP11080887 A JP 11080887A JP S63277571 A JPS63277571 A JP S63277571A
Authority
JP
Japan
Prior art keywords
group
aluminum nitride
rare earth
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110808A
Other languages
Japanese (ja)
Inventor
Yoshiko Sato
佳子 佐藤
Fumio Ueno
文雄 上野
Mitsuo Kasori
加曽利 光男
Akihiro Horiguchi
堀口 昭宏
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62110808A priority Critical patent/JPS63277571A/en
Publication of JPS63277571A publication Critical patent/JPS63277571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce the titled sintered article having high density and thermal conductivity, by calcining a specific molded article or sintered article in a calcination vessel made of AlN in an atmosphere or in vacuum. CONSTITUTION:AlN powder having impurity oxygen content of <=7wt.% and an average particle diameter of 0.05-5mum is mixed with 0.01-15wt.% (in terms of element) of a compound of at least one kind of element selected from group IIa, group IIIa and rare-earth elements and a binder. The mixture is granulated, graded and molded to obtain a molded article. The molded article or a sintered article containing 0.01-15wt.% of at least one kind of element selected from group IIa, group IIIa and rare earth elements, having an oxygen content of 0.01-20wt.% and containing AlN as a principal phase and a (group IIa, group IIIa or rare earth element)-Al-O compound phase and/or (group IIa, group IIIa or rare earth element)-O compound phase is put into a calcination vessel made of AlN and calcined in vacuum or in a non-oxidizing atmosphere at 1,550-2,050 deg.C for >=4hr.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an aluminum nitride sintered body.

(従来の技術) 窒化アルミニウム(Af2 N)は高温まで強度低下が
少なく、化学的耐性にも優れているため、耐熱材料とし
て用いられる一方、その高温伝導性、高電気絶縁性を利
用して半導体装置の放熱板材料、回路基板用絶縁体材料
としても有望視されている。
(Prior art) Aluminum nitride (Af2N) has little strength loss even at high temperatures and has excellent chemical resistance, so it is used as a heat-resistant material. It is also seen as a promising material for heat sinks in devices and insulator materials for circuit boards.

こうした窒化アルミニウムは常圧下では融点を持たず、
2500℃以上の高温で分解するため、薄膜などの用途
を除いては焼結体として用いられる。
Such aluminum nitride does not have a melting point under normal pressure,
Since it decomposes at high temperatures of 2,500°C or higher, it is used as a sintered body except for applications such as thin films.

かかる窒化アルミニウム焼結体は通常、窒化アルミニウ
ム粉末を成形、焼結して得られる。超微粉(0,3−以
下程度)のAsLN粉末を用いた場合には単独でも緻密
な焼結体が得られるが、原料粉末表面の酸化層中の酸素
が焼結時にA、IN格子中に固溶したり、Aλ−〇−N
化合物を生成し、その結果無添加焼結体の熱伝導率はた
かだか1001/mK程度である。また粒径0.5.以
上のA文N粉末を用いた場合は焼結性が良好でないため
に、ホットプレス法による以外には無添加では緻密な焼
結体を得ることは困難である。そこで常圧で焼結体を得
ようとする場合、焼結体の高密度化およびAiN原料粉
末の不純物酸素のA4N粒内への固溶を防止するために
、焼結助剤として希土類酸化物、アルカリ土類金属酸化
物等を添加することが一般に行なわれている(特開昭6
0−127267号、特開昭61−10071号、特開
昭60−71575号等)、これらの焼結助剤はAiN
原料粉末の不純物酸素と反応し液相を生成し焼結体の緻
密化を達成すると共に、この不純物酸素を粒界相として
固定(酸素トラップ)し、高熱伝導度化をも達成する。
Such an aluminum nitride sintered body is usually obtained by molding and sintering aluminum nitride powder. When ultrafine AsLN powder (approximately 0.3- or less) is used alone, a dense sintered body can be obtained, but oxygen in the oxidized layer on the surface of the raw material powder forms in the A and IN lattices during sintering. solid solution, Aλ-〇-N
A compound is produced, and as a result, the thermal conductivity of the additive-free sintered body is about 1001/mK at most. Also, the particle size is 0.5. When the above-mentioned A-mon N powder is used, the sinterability is not good, so it is difficult to obtain a dense sintered body without additives other than by hot pressing. Therefore, when trying to obtain a sintered body under normal pressure, rare earth oxides are used as a sintering aid in order to increase the density of the sintered body and to prevent the impurity oxygen of the AiN raw powder from dissolving into the A4N grains. It is common practice to add alkaline earth metal oxides, etc.
0-127267, JP-A-61-10071, JP-A-60-71575, etc.), these sintering aids are AiN
It reacts with impurity oxygen in the raw material powder to produce a liquid phase and achieve densification of the sintered body, and also fixes this impurity oxygen as a grain boundary phase (oxygen trap) to achieve high thermal conductivity.

このように焼結助剤を添加することにより確かに焼結体
はm密化、高熱伝導度化するが、他方で。
By adding a sintering aid in this way, it is true that the sintered body becomes m-densified and has high thermal conductivity, but on the other hand.

結果として残存する粒界相(主相であるA3.N相に対
し副相)の量、完全にトラップしきれなかった酸素等の
存在により、窒化アルミニウム焼結体のそれは高々16
0w/Il−に程度であった。
As a result, due to the amount of remaining grain boundary phase (subphase to the main phase A3.N phase) and the presence of oxygen, etc. that could not be completely trapped, the aluminum nitride sintered body has a concentration of at most 16
It was about 0 w/Il-.

そのため、窒化アルミニウム焼結体の熱伝導率の向上を
目的として種々の試みがなされているが、未だ十分満足
すべきものは得られていない。
Therefore, various attempts have been made to improve the thermal conductivity of aluminum nitride sintered bodies, but nothing that is fully satisfactory has yet been achieved.

(発明が解決しようとする問題点) 現在半導体搭載用の回路基板、放熱基板等ではより高い
熱伝導率を有する材料が望まれている。
(Problems to be Solved by the Invention) Currently, materials having higher thermal conductivity are desired for circuit boards for mounting semiconductors, heat dissipation boards, etc.

しかしながら酸素その他の不純物特に、助剤添加の結果
として粒界に生成する粒界相の存在により。
However, oxygen and other impurities, especially due to the presence of grain boundary phases that form at the grain boundaries as a result of additive addition.

窒化アルミニウム焼結体の高熱伝導度化には限界があっ
た。
There was a limit to increasing the thermal conductivity of aluminum nitride sintered bodies.

本発明は1以上の点を考慮してなされたもので。The present invention has been made with one or more points in mind.

熱伝導性に優れた窒化アルミニウム焼結体を提供するこ
とを目的とする。
The purpose is to provide an aluminum nitride sintered body with excellent thermal conductivity.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段及び作用)本発明者等は
上記目的を達成すべく窒化アルミニウム粉末に添加する
焼結助剤や焼結条件、焼結体組成、焼結体微細構造等と
熱伝導率の関係について実験・検討を進めた結果、以下
に示す新規事項を発見し1本発明を完成するに至った。
(Means and effects for solving the problem) In order to achieve the above object, the present inventors have developed a sintering aid added to aluminum nitride powder, sintering conditions, sintered body composition, sintered body fine structure, etc. As a result of conducting experiments and studies on the relationship between thermal conductivity, we discovered the following new matter and completed the present invention.

すなわち、焼結助剤としてイツトリウム化合物をA!L
N粉末に添加し、窒化アルミニウム焼成容器中で長時間
焼成したところ、粒成長がおこり。
That is, A! uses an yttrium compound as a sintering aid. L
When added to N powder and fired for a long time in an aluminum nitride firing vessel, grain growth occurred.

高い熱伝導率を有する窒化アルミニウム焼結体が得られ
るという事実をみいだした。この効果は。
It has been discovered that an aluminum nitride sintered body having high thermal conductivity can be obtained. This effect is.

他の希土類、 IIa族、およびHa族元素でも同様に
認められた。
Similar findings were observed for other rare earth, IIa group, and Ha group elements.

この事実に基づいて高熱伝導度化を達成する最適条件を
種々検討した結果が本発明であり、a)不純物酸素量が
7重量%以下であり、平均粒径が0.05〜5μmであ
る窒化アルミニウム粉末と、Ua族元素、IIa族元素
および希土類元素の少なくとも一種が重量換算で0.0
1〜15重量%の、 IIa族IIa族または希土類元
素の化合物とを混合したのち成形した成形体、またはI
Ia族、Ha族および希土類元素含有量が0.01〜1
5重t%で、酸素含有量が0.01〜20重量%であり
、A、gNを主相としくIIa族、Ha族および希土類
元素)−A又−0化合物相および/または(IIa族、
■a族および希土類元素)−0化合物相を含む焼結体を
Based on this fact, the present invention is the result of various studies on the optimal conditions for achieving high thermal conductivity. The aluminum powder and at least one of the Ua group element, IIa group element, and rare earth element are 0.0 in terms of weight.
A molded article formed after mixing with 1 to 15% by weight of a group IIa group IIa compound or a rare earth element compound, or I
Ia group, Ha group and rare earth element content is 0.01-1
5 wt%, oxygen content is 0.01 to 20 wt%, main phase is A, gN, group IIa, group Ha, and rare earth elements) -A or -0 compound phase and/or (group IIa) ,
■A sintered body containing a group A and rare earth elements)-0 compound phase.

b)窒化アルミニウム焼成容器を用い。b) Using an aluminum nitride firing vessel.

C)非酸化性ガス雰囲気、1550〜2050℃で、4
時間以上、真空を含む雰囲気圧下で焼成することを特徴
とした高熱伝導性窒化アルミニウム焼結体の製造方法で
ある。
C) Non-oxidizing gas atmosphere, 1550-2050°C, 4
This is a method for producing a highly thermally conductive aluminum nitride sintered body, characterized by firing under atmospheric pressure including vacuum for a period of time or more.

ついで、本発明の高熱伝導性窒化アルミニウム焼結体の
製造方法について述べる。
Next, a method for manufacturing the highly thermally conductive aluminum nitride sintered body of the present invention will be described.

本発明の製造方法は、窒化アルミニウム原料粉末の純度
および平均粒径、焼結助剤、焼結容器、焼成時間および
焼成雰囲気を骨子とするものである。
The main points of the production method of the present invention are the purity and average particle size of the aluminum nitride raw material powder, sintering aid, sintering container, firing time, and firing atmosphere.

主成分である窒化アルミニウム原料粉末としては、焼結
性、熱伝導性を考慮して酸素を7重量%以下、実用上は
0.01〜7重量%含有し、平均粒径が0.05〜5μ
sのものを使用する。
The aluminum nitride raw material powder, which is the main component, contains oxygen at 7% by weight or less, practically 0.01 to 7% by weight, in consideration of sinterability and thermal conductivity, and has an average particle size of 0.05 to 7% by weight. 5μ
Use the one from s.

添加物としてはna族、 IIIa族および希土類元素
化合物を用いる。これら元素の化合物としては、酸化物
、窒化物、フッ化物、酸フッ化物、酸窒化物、もしくは
焼成によりこれらの化合物となる物質が最適である。焼
成によって例えば酸化物となる物質としては、これら元
素の炭酸塩、硝酸塩、シュウ酸塩、水酸化物などをあげ
ることができる。
As additives, compounds of the na group, group IIIa, and rare earth elements are used. As compounds of these elements, oxides, nitrides, fluorides, oxyfluorides, oxynitrides, or substances that become these compounds upon firing are optimal. Examples of substances that become oxides upon firing include carbonates, nitrates, oxalates, and hydroxides of these elements.

IIa族、IIa族および希土類元素化合物の添加は。The addition of Group IIa, Group IIa and rare earth element compounds.

これら元素の重量換算で0.01〜15重量%の範囲で
添加する。
These elements are added in an amount of 0.01 to 15% by weight in terms of weight.

本発明方法においてはこの様なAXN粉と na族、I
IIa族および希土類元素化合物の混合された成形体を
後述の条件で焼結しても良いし、また、従来の方法(例
えば特開昭61−117160号)で、IIa族、II
a族および希土類元素含有量が0.01〜15重量%で
、酸素含有量が0.01〜20重量%であり、A又Nを
主相としくna族、IIa族および希土類元素)−A、
I−0化合物相および/または(IIa族、IIa族お
よび希土類元素)−〇化合物相から成る焼結体を製造し
、上記成形体の代りに用いてもよい。
In the method of the present invention, such AXN powder and na group, I
A molded body containing a mixture of Group IIa and rare earth element compounds may be sintered under the conditions described below, or a conventional method (for example, JP-A No. 61-117160) may be used to form a mixture of Group IIa and rare earth element compounds.
The content of group A and rare earth elements is 0.01 to 15% by weight, the content of oxygen is 0.01 to 20% by weight, the main phase is A or N, and the group Na, group IIa, and rare earth elements)-A ,
A sintered body comprising an I-0 compound phase and/or a (IIa group, IIa group, and rare earth element)-○ compound phase may be produced and used in place of the above molded body.

焼成容器に関しては、単に成形体をa密化させるだけの
目的ならば、アルミナでも十分である。
As for the firing vessel, alumina is sufficient if the purpose is simply to make the molded body a-densified.

しかし、この容器を用いたものでは、高熱伝導率は得ら
れない1本発明では、窒化アルミニウム焼成容器を用い
る。この容器を用いることにより、粒成長がおこり、結
果的に(na族、IIa族および希土類元素)−Al−
0化合物等の粒界相を焼結体中より除去する方向に作用
し、高熱伝導性の焼結体に変化していく。
However, high thermal conductivity cannot be obtained using this container.In the present invention, an aluminum nitride firing container is used. By using this container, grain growth occurs, resulting in (na group, IIa group and rare earth elements) -Al-
This acts to remove grain boundary phases such as zero compounds from the sintered body, and the sintered body changes into a highly thermally conductive sintered body.

焼結時間については、従来種々の助剤を用い1〜3時間
の短時間で行な麟れているが、この程度の時間では、上
記焼成容器中で焼成したとしても、窒化アルミニウム焼
結体の緻密化は可能であるが。
Regarding the sintering time, conventionally the sintering time has been reduced to 1 to 3 hours using various auxiliaries. Although it is possible to refine the

粒成長はおこらない。また、アルミナ容器を用いた場合
は、長時間の焼成によっても粒成長は生じない0粒成長
をおこさせるためには焼結温度および助剤添加量にもよ
るが、4時間以上が必要である。より好ましくは6時間
以上で、さらに好ましくは12時間以上である。
Grain growth does not occur. In addition, when using an alumina container, 4 hours or more is required to achieve 0 grain growth, which does not occur even with long firing, although it depends on the sintering temperature and the amount of additive added. . More preferably, the time is 6 hours or more, and still more preferably 12 hours or more.

焼成温度については、1550〜2050℃が好ましい
Regarding the firing temperature, 1550 to 2050°C is preferable.

1550℃より低温で焼成すると、原料粉末の粒径、酸
素量にもよるが緻密な焼結体が得られず、粒成長もおこ
らない、また2050℃より高温で焼成すると、A!L
N自体の蒸気圧が高くなり、緻密化が困難になる。焼成
温度は、より好ましくは1800〜1950℃である。
If fired at a temperature lower than 1550°C, a dense sintered body will not be obtained and grain growth will not occur, although it depends on the particle size of the raw powder and the amount of oxygen, and if fired at a temperature higher than 2050°C, A! L
The vapor pressure of N itself increases, making densification difficult. The firing temperature is more preferably 1800 to 1950°C.

焼成雰囲気は、真空、窒素ガス、水素ガス、−酸化炭素
、アルゴン等の群から選ばれる1種または2種以上の非
酸化性雰囲気が好ましい、酸化性雰囲気で焼成すると酸
素の固溶、異相生成により高熱伝導性は得られない、な
お焼結は真空、減圧。
The firing atmosphere is preferably one or more non-oxidizing atmospheres selected from the group of vacuum, nitrogen gas, hydrogen gas, -carbon oxide, argon, etc. If firing in an oxidizing atmosphere, solid solution of oxygen and generation of different phases are preferred. Therefore, high thermal conductivity cannot be obtained, and sintering is performed in a vacuum or under reduced pressure.

加圧及び常圧を含む雰囲気圧下で行なう。It is carried out under atmospheric pressure, including pressurized and normal pressure.

次いで本発明の窒化アルミニウム焼結体の製造方法の一
例を以下に述べる。
Next, an example of the method for manufacturing the aluminum nitride sintered body of the present invention will be described below.

まず、AiN粉末に焼結添加物として希土類元素化合物
を所定量添加したのちボールミル等を用いて混合する。
First, a predetermined amount of a rare earth element compound as a sintering additive is added to AiN powder, and then mixed using a ball mill or the like.

焼結には常圧焼結法を使用する。The pressureless sintering method is used for sintering.

この場合、混合粉末にバインダーを加え、混練。In this case, a binder is added to the mixed powder and kneaded.

造粒、整粒を行なったのち成形する。成形法としては、
金型プレス、静水圧プレス或いはシート成形などが適用
できる。続いて、成形体を非酸化性雰囲気中1例えば窒
素ガス気流中で加熱してバインダーを除去したのち常圧
焼結する。焼成容器は窒化アルミニウム焼成容器を用い
る。焼結温度は1550〜2050℃に、焼結時間は4
時間以上に設定する。この様な方法により本発明焼結体
を得ることができる。
After granulation and grading, it is molded. As a molding method,
Mold press, hydrostatic press, sheet molding, etc. can be applied. Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas stream to remove the binder, and then sintered under normal pressure. As the firing vessel, an aluminum nitride firing vessel is used. The sintering temperature was 1550-2050℃, and the sintering time was 4
Set it to more than an hour. The sintered body of the present invention can be obtained by such a method.

次に本発明の窒化アルミニウム焼結体の熱伝導性の向上
効果について説明する。厳密なメカニズムは現在のとこ
ろ完全に解明されているわけではないが、本発明者らの
研究によれば高熱伝導率化の要因として次のように推定
される。
Next, the effect of improving thermal conductivity of the aluminum nitride sintered body of the present invention will be explained. Although the exact mechanism has not been completely elucidated at present, according to the research conducted by the present inventors, the following factors are presumed to be responsible for the increase in thermal conductivity.

窒化アルミニウム容器中で長時間焼成することにより焼
結体の粒子が成長する。 A4N粒子が成長すると熱抵
抗となる粒界の数が結果的に少なくなることを意味し、
フォノンの散乱が小さな焼結体になる。
Particles of the sintered body grow by firing in an aluminum nitride container for a long time. This means that as A4N grains grow, the number of grain boundaries that provide thermal resistance decreases as a result.
Scattering of phonons results in small sintered bodies.

以上のような理由により高熱伝導性窒化アルミニウム焼
結体を得ることができる。
For the above reasons, a highly thermally conductive aluminum nitride sintered body can be obtained.

(実施例) 失庭銖よ 不純物としての酸素を1.0重量%含有し、平均粒径が
0.6−のAy、N粉末に、添加物として平均粒径0.
9pのY2O,をイツトリウム元素の重量換算で2.5
重量%添加し、ボールミルを用いて混合を行ない原料を
調整した。ついで、この原料に有機系バインダーを4重
量%添加して造粒したのち500kg/(!Jの圧力で
プレス成形して38 X 38 X 10■の圧粉体と
した。この圧粉体を窒素ガス雰囲気中で700℃まで加
熱してバインダーを除去し窒化アルミニウム焼成容器に
脱脂体を収容した。
(Example) Ay and N powders containing 1.0% by weight of oxygen as an impurity and having an average particle size of 0.6 mm were added as additives with an average particle size of 0.6 mm.
9p of Y2O, converted to the weight of yttrium element, is 2.5
% by weight was added and mixed using a ball mill to prepare raw materials. Next, 4% by weight of an organic binder was added to this raw material and granulated, followed by press molding at a pressure of 500 kg/(!J) to form a compact of 38 x 38 x 10 cm. The binder was removed by heating to 700° C. in a gas atmosphere, and the degreased body was placed in an aluminum nitride firing container.

この容器を用い窒素ガス雰囲気中(1気圧)igo。This container was used in a nitrogen gas atmosphere (1 atm).

℃、24時間の条件で常圧焼結した。得られたAiN焼
結体の密度および粒径を測定した。また焼結体から、直
径10■、厚さ3.3−の円板を研削し。
Normal pressure sintering was carried out at ℃ for 24 hours. The density and particle size of the obtained AiN sintered body were measured. A disk with a diameter of 10 cm and a thickness of 3.3 cm was also ground from the sintered body.

これを試験片としてレーザーフラッシュ法により熱伝導
率を測定した(真空理工11TC−3000使用)。
Using this as a test piece, thermal conductivity was measured by the laser flash method (using Shinku Riko 11TC-3000).

測定した温度は25℃である。上記焼結条件および得ら
れた焼結体の特性を第1表に示した6来亙涯l二旦 焼結添加物の添加量を種々に変えて上記実施例1と同様
にしてAIN焼結体を製造し、それぞれについて、同様
に、評価を行なった。
The measured temperature is 25°C. The above sintering conditions and the properties of the obtained sintered body are shown in Table 1. AIN sintering was carried out in the same manner as in Example 1 above, with various amounts of second sintering additives added. Each body was manufactured and evaluated in the same manner.

叉五叢且二I 焼結添加物の添加量および焼結温度を種々に変えて上記
実施例1と同様にしてA、、IN焼結体を製造し、それ
ぞれについて同様に評価を行なった。
A, IN sintered bodies were produced in the same manner as in Example 1, with various addition amounts of sintering additives and sintering temperatures, and each was evaluated in the same manner.

失庭五炙 A!LN原料粉末の粒径、不純物酸itおよび焼□結温
度を変えて上記実施例Jと同様にしてAiN焼結体を製
造し、同様の評価を行なった。
Lost Garden Goro A! AiN sintered bodies were produced in the same manner as in Example J above by changing the particle size of the LN raw material powder, the impurity acid IT, and the sintering temperature, and were evaluated in the same manner.

失凰叢l二刊 焼結添加物の添加量、焼結温度および焼結雰囲気および
雰囲気圧力を種々に変えて上記実施例1と同様にしてA
、IN焼結体を製造し、それぞれについて同様の評価を
行なった。
A was carried out in the same manner as in Example 1, with various changes in the amount of sintering additives, sintering temperature, sintering atmosphere, and atmospheric pressure.
, IN sintered bodies were produced, and the same evaluations were performed on each of them.

失鬼青旦二U 焼結時間を種々に変えて上記実施例1と同様にしてA′
RN焼結体を製造し、それぞれについて同様の評価を行
なった。
A'
RN sintered bodies were manufactured and the same evaluations were performed on each of them.

失嵐叢U 不純物としての酸素を1.5重量%含有し、平均粒径が
1.5−のAアN粉末に、添加物として平均粒径0.9
μsのY、 O3をイツトリウム元素の重量換算で0.
8重量%添加した。窒化アルミニウム焼成容器を用い、
窒化ガス10気圧の加圧中1700℃、12時間で焼結
した。得られた焼結体は上記実施例1と同様に評価を行
なった。
Lost Storm U AAN powder containing 1.5% by weight of oxygen as an impurity and having an average particle size of 1.5-, as an additive, an average particle size of 0.9
μs of Y, O3 is 0.0 in terms of weight of yttrium element.
It was added in an amount of 8% by weight. Using an aluminum nitride firing container,
Sintering was carried out at 1700° C. for 12 hours under pressure of nitriding gas at 10 atm. The obtained sintered body was evaluated in the same manner as in Example 1 above.

失五五且 焼結温度、焼結時間および焼結雰囲気を変えて上記実施
例1と同様にしてAlN焼結体を製造し。
AlN sintered bodies were produced in the same manner as in Example 1, except that the sintering temperature, sintering time, and sintering atmosphere were changed.

同様の評価を行なった。A similar evaluation was conducted.

失胤五皿 焼結温度および、焼結雰囲気をN、+H,(5%)の減
圧にしたことを除き、上記実施例1と同様にしてAに!
N焼結体を製造し、同様の評価を行なった。
A was carried out in the same manner as in Example 1 above, except that the five-plate sintering temperature and the sintering atmosphere were reduced to N, +H, (5%)!
A N sintered body was manufactured and evaluated in the same way.

失盈班且二旦 添加物の陽イオンを種々のna族、Ha族、希土類元素
に変えて上記実施例1と同様にしてAJN焼結体を製造
し、それぞれについて同様の評価を行なった。
AJN sintered bodies were produced in the same manner as in Example 1 except that the cations of the additives were changed to various Na group, Ha group, and rare earth elements, and the same evaluations were conducted for each.

星艶舅工 実施例1と同様な方法により得たAgN脱脂体を窒化ア
ルミニウム焼成容器にセットし、1800℃、2、(r
、N、気流中で常圧焼結し、焼結体を得た。これらの焼
結体の特性を表2に示す、実施例1と同様の評価の結果
より、焼結時間が4時間未満と短い場合、窒化アルミニ
ウム容器を用いることによる粒成長の効果が十分でない
ことがわかり、高熱伝導を有するAQN焼結体を得るた
めには長時間(4時間以上)の焼結が必要であることが
わかる。
The AgN degreased body obtained by the same method as in Example 1 was set in an aluminum nitride firing container, and heated at 1800°C for 2, (r
, N, and pressureless sintering in an air stream to obtain a sintered body. The properties of these sintered bodies are shown in Table 2, and from the results of the same evaluation as in Example 1, it was found that when the sintering time was short, less than 4 hours, the effect of grain growth by using an aluminum nitride container was not sufficient. It can be seen that sintering for a long time (4 hours or more) is necessary to obtain an AQN sintered body with high thermal conductivity.

里艶五又二旦 比較例2,4では実施例1と同様な方法により得たAg
N脱脂体を、比較例3では助剤添加量を変えて、比較例
5では助剤種を変えて実施例1と同様な方法により得た
AgN脱脂体をアルミナ焼成容器にセットし、比較例2
,3.5は1800℃、2イr、比較例4では1soo
℃、244r、どちらもN2気流中で常圧焼結し、同様
の評価を行なった。この結果より、AらO1焼成容器を
用いた場合、高熱伝導率を有するAQN焼結体は得られ
ず、窒化アルミニウム焼成容器の有効さがわかる。
In Comparative Examples 2 and 4, Ag obtained by the same method as in Example 1 was used.
An AgN degreased body obtained by the same method as in Example 1 except that the amount of auxiliary added was changed in Comparative Example 3 and the type of auxiliary agent was changed in Comparative Example 5 was set in an alumina firing container. 2
, 3.5 is 1800°C, 2ir, 1soo in comparative example 4
℃ and 244r, both were sintered under normal pressure in a N2 stream, and the same evaluation was performed. From this result, when using the AraO1 firing vessel, an AQN sintered body having high thermal conductivity could not be obtained, and it can be seen that the aluminum nitride firing vessel is effective.

ル敗孤立 実施例1で用いたA、]2N粉末を、500 kg /
 Ciの圧力でプレス成形して、30 X 30 X 
10■の圧粉体とし、この圧粉体をカーボン型中に入れ
窒素ガス雰囲気中、温度1800℃、400kg/dの
圧力下で1時間ホットプレス焼結し、焼結体を得た。こ
の焼結体の特性を第2表に示した結果として熱伝導率は
8hl/mKという低い値であった。
500 kg/2N powder used in Example 1
Press molded with pressure of Ci, 30 x 30 x
This green compact was put into a carbon mold and hot-press sintered in a nitrogen gas atmosphere at a temperature of 1800° C. and under a pressure of 400 kg/d for 1 hour to obtain a sintered compact. The properties of this sintered body are shown in Table 2, and the thermal conductivity was as low as 8 hl/mK.

この様に希土類元素化合物無添加では、Aj!N原料粉
末表面の不純物酸素とA3Nが反応し、熱伝導をさまた
げるAλ−〇−化合物が生成してしまうことから、希土
類元素化合物の添加の有効さがわかる。
In this way, without the addition of rare earth element compounds, Aj! The effectiveness of adding the rare earth element compound can be seen from the fact that the impurity oxygen on the surface of the N raw material powder reacts with A3N, producing an Aλ-〇- compound that impedes heat conduction.

(以下余白) 〔発明の効果〕 以上述べた如く1本発明の窒化アルミニウム焼結体の製
造方法は緻密でかつ、高熱伝導率を有する窒化アルミニ
ウム焼結体を提供するものであり、その工業的価値は極
めて大きいものである。
(The following is a blank space) [Effects of the Invention] As stated above, the method for producing an aluminum nitride sintered body of the present invention provides a dense aluminum nitride sintered body having high thermal conductivity, and is suitable for industrial use. The value is extremely large.

代理人 弁理士 則 近 憲 佑 同  松山光之Agent: Patent Attorney Noriyuki Chika Same as Mitsuyuki Matsuyama

Claims (3)

【特許請求の範囲】[Claims] (1)a)不純物酸素量が7重量%以下であり、平均粒
径が0.05〜5μmである窒化アルミニウム粉末と、
IIa族元素、IIIa族元素および希土類元素の少なくと
も一種が重量換算で0.01〜15重量%の、IIa族、
IIIa族または希土類元素の化合物とを混合したのち成
形した成形体、またはIIa族、IIIa族および希土類元
素の少なくとも一種の含有量が0.01〜15重量%で
、酸素含有量が0.01〜20重量%であり、AlNを
主相とし(IIa族、IIIa族または希土類元素)−Al
−O化合物相および/または(IIa族、IIIa族または
希土類元素)−O化合物相を含む焼結体を、 b)窒化アルミニウム焼成容器を用い、 c)非酸化性ガス雰囲気、1550〜2050℃で、4
時間以上、真空を含む雰囲気圧下で焼成することを特徴
とした高熱伝導性窒化アルミニウム焼結体の製造方法。
(1) a) aluminum nitride powder having an impurity oxygen content of 7% by weight or less and an average particle size of 0.05 to 5 μm;
Group IIa, containing at least one of Group IIa elements, Group IIIa elements, and rare earth elements in an amount of 0.01 to 15% by weight;
A molded article formed after mixing with a compound of Group IIIa or a rare earth element, or containing at least one of Group IIa, Group IIIa, and rare earth element from 0.01 to 15% by weight, and having an oxygen content of 0.01 to 15% by weight. 20% by weight, with AlN as the main phase (group IIa, group IIIa or rare earth element) -Al
A sintered body containing an -O compound phase and/or a (IIa group, IIIa group, or rare earth element) -O compound phase is produced b) using an aluminum nitride firing container, c) in a non-oxidizing gas atmosphere at 1550 to 2050°C. , 4
A method for producing a highly thermally conductive aluminum nitride sintered body, characterized by firing under atmospheric pressure including vacuum for a period of time or more.
(2)焼成時間が24時間以上から成る特許請求範囲第
1項記載の高熱伝導性アルミニウム焼結体の製造方法。
(2) A method for producing a highly thermally conductive aluminum sintered body according to claim 1, wherein the firing time is 24 hours or more.
(3)焼成温度が1500℃以上1800℃未満から成
る特許請求範囲第2項記載の高熱伝導性窒化アルミニウ
ム焼結体の製造方法。
(3) A method for producing a highly thermally conductive aluminum nitride sintered body according to claim 2, wherein the firing temperature is 1500°C or more and less than 1800°C.
JP62110808A 1987-05-08 1987-05-08 Production of sintered aluminum nitride having high thermal conductivity Pending JPS63277571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110808A JPS63277571A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride having high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110808A JPS63277571A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride having high thermal conductivity

Publications (1)

Publication Number Publication Date
JPS63277571A true JPS63277571A (en) 1988-11-15

Family

ID=14545182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110808A Pending JPS63277571A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride having high thermal conductivity

Country Status (1)

Country Link
JP (1) JPS63277571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295863A (en) * 1990-04-10 1991-12-26 Toyo Alum Kk Production of spherical aluminum nitride powder
JPH04124006A (en) * 1990-09-14 1992-04-24 Kawasaki Steel Corp Fine spherical sintered compact of aln and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241766A (en) * 1985-08-13 1987-02-23 株式会社トクヤマ Aluminum nitride sintered body and manufacture
JPS63166765A (en) * 1986-12-26 1988-07-09 イビデン株式会社 Aluminum nitride base sintered body and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241766A (en) * 1985-08-13 1987-02-23 株式会社トクヤマ Aluminum nitride sintered body and manufacture
JPS63166765A (en) * 1986-12-26 1988-07-09 イビデン株式会社 Aluminum nitride base sintered body and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295863A (en) * 1990-04-10 1991-12-26 Toyo Alum Kk Production of spherical aluminum nitride powder
JPH04124006A (en) * 1990-09-14 1992-04-24 Kawasaki Steel Corp Fine spherical sintered compact of aln and its production

Similar Documents

Publication Publication Date Title
CA1186346A (en) Sintered bodies of aluminum nitride
JPS6096578A (en) Temperature balancing material
US4539298A (en) Highly heat-conductive ceramic material
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63303863A (en) Aluminum nitride sintered body having high thermal conductivity and its production
JP2578113B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63277572A (en) Production of sintered aluminum nitride
JP3450400B2 (en) Aluminum nitride sintered body and aluminum nitride multilayer circuit board
JPH09175867A (en) Aluminum nitride sintered product
JPS63182260A (en) High heat conductive aluminum nitride sintered body
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JPH02120225A (en) Production of coating film or thin plate of superconducting ceramic
JPH02307871A (en) Production of ceramic sintered compact
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH0678195B2 (en) Aluminum nitride sintered body
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body