JP2772580B2 - Method for producing aluminum nitride sintered body - Google Patents

Method for producing aluminum nitride sintered body

Info

Publication number
JP2772580B2
JP2772580B2 JP2312285A JP31228590A JP2772580B2 JP 2772580 B2 JP2772580 B2 JP 2772580B2 JP 2312285 A JP2312285 A JP 2312285A JP 31228590 A JP31228590 A JP 31228590A JP 2772580 B2 JP2772580 B2 JP 2772580B2
Authority
JP
Japan
Prior art keywords
weight
sintered body
aluminum nitride
oxide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2312285A
Other languages
Japanese (ja)
Other versions
JPH04182358A (en
Inventor
健一郎 宮原
修二 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2312285A priority Critical patent/JP2772580B2/en
Publication of JPH04182358A publication Critical patent/JPH04182358A/en
Application granted granted Critical
Publication of JP2772580B2 publication Critical patent/JP2772580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高熱伝導性を有する窒化アルミニウム質焼
結体に関し、詳細には、低温焼成が可能な量産性に優れ
た窒化アルミニウム質焼結体に関する。
Description: TECHNICAL FIELD The present invention relates to an aluminum nitride sintered body having high thermal conductivity, and more particularly, to an aluminum nitride sintered body which can be fired at a low temperature and has excellent mass productivity. About the body.

(従来技術) 近時、情報処理装置の高性能化、高速化に伴いそれを
構成する半導体集積回路も高密度化、高集積化が急速に
進み、そのために半導体集積回路素子の発熱量が著しく
増加し、前記半導体集積回路素子を正常に作動させるた
めに発生した熱をいかに効率的に除去するかが問題とな
っている。
(Prior art) In recent years, as information processing apparatuses have become higher in performance and higher in speed, semiconductor integrated circuits constituting the information processing apparatuses have been rapidly becoming denser and more highly integrated. The problem is how to efficiently remove the heat generated to operate the semiconductor integrated circuit device normally.

かかる問題に対して最近に至り、これまで使用されて
いたアルミナ製基板や、古くから高熱伝導性基板として
知られる酸化ベリリウム製基板等に代わり、常温から高
温まで高い強度を有し、電気絶縁性が高く、高熱伝導性
であり、熱膨張係数がアルミナに比べシリコン単結晶に
近いなどの優れた特性を有する窒化アルミニウム質焼結
体が注目されている。
In recent years, such a substrate has been replaced with a substrate made of alumina or a substrate made of beryllium oxide, which has long been known as a high thermal conductive substrate. Aluminum nitride-based sintered bodies having high properties, high thermal conductivity, and excellent properties such as a coefficient of thermal expansion closer to that of silicon single crystal as compared with alumina are attracting attention.

ところが、窒化アルミニウムは本来難焼結性であり、
単味では高熱伝導性を有する高密度焼結体が得られない
ことから、焼結助剤としてY2O3等の希土類元素酸化物、
あるいはCaO等のアルカリ土類元素酸化物を添加して高
密度化する方法が採用されている。
However, aluminum nitride is inherently difficult to sinter,
Since a high-density sintered body having high thermal conductivity cannot be obtained simply, rare-earth element oxides such as Y 2 O 3 as sintering aids,
Alternatively, a method of adding an alkaline earth element oxide such as CaO to increase the density has been adopted.

(発明が解決しようとする問題点) しかしながら、従来の方法では、高密度の窒化アルミ
ニウム質焼結体を得るのに、1700℃以上、場合によって
は1900℃以上の高温にて焼成する必要があった。このよ
うに焼成温度が高いと、例えば、基板上に形成する金属
導体パターンと同時に焼成を行う場合、金属導体が粒成
長するために導体の基板との接着強度が低くなるという
問題があり、また焼成炉自体の構造も耐熱性が要求され
るために生産設備等の費用が高くなるために基板自体の
コストが非常に高くなると言った問題があった。
(Problems to be Solved by the Invention) However, in the conventional method, in order to obtain a high-density aluminum nitride sintered body, it is necessary to fire at a high temperature of 1700 ° C. or more, and sometimes 1900 ° C. or more. Was. When the sintering temperature is high, for example, when sintering is performed simultaneously with the metal conductor pattern formed on the substrate, there is a problem that the bonding strength between the conductor and the substrate is reduced due to the metal conductor grain growth, and The structure of the firing furnace itself also requires heat resistance, so that there is a problem that the cost of production equipment and the like becomes high, and the cost of the substrate itself becomes extremely high.

そこで、低温焼成化を達成するために希土類元素酸化
物とアルカリ土類元素酸化物とを同時に添加する方法が
特開昭61-117160号に記載されているが、その焼成温度
はせいぜい1700℃以上であり、1600℃程度の焼成温度で
は緻密化は達成されていない。また、窒化アルミニウム
に希土類元素のフッ化物を添加することにより焼成温度
をさげる方法が特開昭61-209959号に記載されている
が、フッ化物自体非常に高価であり、また焼成途中でフ
ッ素酸化物が揮散するために炉を腐食するために量産に
は不向きである。
Therefore, a method of simultaneously adding a rare earth element oxide and an alkaline earth element oxide to achieve low-temperature calcination is described in JP-A-61-117160, but the calcination temperature is at most 1700 ° C. At a firing temperature of about 1600 ° C., densification has not been achieved. Further, a method of lowering the sintering temperature by adding a fluoride of a rare earth element to aluminum nitride is described in JP-A-61-209959, but the fluoride itself is very expensive, and fluorinated oxidation occurs during sintering. It is not suitable for mass production because the furnace is corroded due to the volatilization of materials.

(発明の目的) 本発明は、上記問題点を解決することを主たる目的と
するものであり、具体的には、熱伝導率が40W/m・K以
上で、1700℃以下の低温焼成によって相対密度90%以上
が達成される窒化アルミニウム質焼結体の製造方法を提
供することにある。
(Object of the Invention) The object of the present invention is to solve the above-mentioned problems, and more specifically, it has a thermal conductivity of 40 W / m · K or more and a relative temperature of 1700 ° C. or less. An object of the present invention is to provide a method for producing an aluminum nitride sintered body that achieves a density of 90% or more.

(問題点を解決するための手段) 本発明者等は、上記の問題点に対して研究を重ねた結
果、焼結助剤として周期律表第IIIa族元素および第II
(a)族元素の酸化物とともに酸化リチウムを同時に添
加することにより、1700℃以下の低温における焼成によ
っても高い相対密度と熱伝導率を有する窒化アルミニウ
ム質焼結体が得られることを知見し、本発明に至った。
(Means for Solving the Problems) As a result of repeated studies on the above problems, the present inventors have found that elements of Group IIIa and II of the Periodic Table as sintering aids.
It was found that by simultaneously adding lithium oxide together with the oxide of the group (a) element, an aluminum nitride sintered body having a high relative density and a high thermal conductivity can be obtained even by firing at a low temperature of 1700 ° C. or less, The present invention has been reached.

即ち、本発明の窒化アルミニウム質焼結体の製造方法
は、窒化アルミニウム粉末に、周期律表第IIa族酸化物
あるいは焼成によってその酸化物に変化しうる化合物、
および周期律表第IIIa族酸化物あるいは焼成によってそ
の酸化物に変化しうる化合物を酸化物換算により合計で
0.01〜20重量%、酸化リチウムあるいは焼成によってそ
の酸化物に変化しうる化合物を酸化物換算で0.001〜10
重量%の割合で添加してなる混合物を成形した後、窒素
を含有する非酸化性雰囲気中で、1500〜1700℃の温度で
焼成して、相対密度90%以上、不純物酸素量が0.2〜6
重量%の焼結体を得ることを特徴とする窒化アルミニウ
ム質焼結体の製造方法。
That is, the method for producing an aluminum nitride-based sintered body of the present invention comprises the steps of: converting an aluminum nitride powder into an oxide of Group IIa of the periodic table or a compound capable of changing to the oxide by firing;
And Group IIIa oxides of the Periodic Table or compounds that can be converted to the oxides by calcination
0.01 to 20% by weight, lithium oxide or a compound which can be converted to its oxide by firing is 0.001 to 10
After the mixture added at a ratio of 1% by weight is molded, the mixture is fired at a temperature of 1500 to 1700 ° C. in a non-oxidizing atmosphere containing nitrogen to have a relative density of 90% or more and an impurity oxygen amount of 0.2 to 6%.
What is claimed is: 1. A method for producing an aluminum nitride-based sintered body, comprising obtaining a sintered body by weight.

以下、本発明を詳細する。 Hereinafter, the present invention will be described in detail.

本発明における大きな特徴は、焼結助剤として周期律
表第IIIa族及び第IIa族から選ばれる少なくとも1種の
元素の酸化物と、リチウムを含有する化合物を複合添加
する点にある。
A major feature of the present invention resides in that an oxide of at least one element selected from Group IIIa and Group IIa of the periodic table and a compound containing lithium are added as a sintering aid.

焼結体中における第IIIa族及び第IIa族元素は、酸化
物として0.01〜20重量%、特に0.1〜15重量%であり、
リチウムは酸化物(Li2O)として0.001〜10重量%、特
に0.01〜5.0重量%であることが重要である。
The Group IIIa and Group IIa elements in the sintered body are 0.01 to 20% by weight as an oxide, particularly 0.1 to 15% by weight,
Lithium oxide (Li 2 O) as 0.001 to 10 wt%, it is important that in particular 0.01 to 5.0 wt%.

かかる焼結助剤の量を上記の範囲に限定したのは、第
IIIa族及び第IIa族元素が0.01重量%より少ないと1700
℃以下での焼成によって相対密度90%以上が達成され
ず、20重量%を越えると熱伝導率が40W/m・Kより低く
なるためである。一方、リチウムの量が10重量%を越え
ても熱伝導率が40W/m・K以下になり、0.001重量%以下
では低温焼成の効果はほとんどない。
The reason why the amount of the sintering aid is limited to the above range is as follows.
1700 when the group IIIa and group IIa elements are less than 0.01% by weight
This is because a relative density of 90% or more cannot be achieved by calcination at a temperature of not more than 20 ° C., and if it exceeds 20% by weight, the thermal conductivity is lower than 40 W / m · K. On the other hand, even when the amount of lithium exceeds 10% by weight, the thermal conductivity becomes 40 W / m · K or less, and when the amount is 0.001% by weight or less, the effect of low-temperature sintering is hardly obtained.

なお、本発明によれば、焼結助剤成分として周期律表
第IIa族元素、周期律表第IIIa族元素およびリチウムの
3成分を複合添加する。この場合には、周期律表第IIa
族元素および第IIIa族元素量を酸化物換算でいずれも0.
01重量%以上とすることにより低温焼成による高密度化
をより安定に行うことができる。
According to the present invention, as a sintering aid component, three components of Group IIa element of the periodic table, Group IIIa element of the periodic table, and lithium are added in combination. In this case, Periodic Table IIa
Group elements and Group IIIa elements were all converted to oxides at 0.
By setting the content to 01% by weight or more, the densification by low-temperature firing can be performed more stably.

また、本発明によれば、上記焼結助剤を含む焼結体中
における不純物酸素量が0.2〜6重量%、特に0.4〜3.0
重量%であることも重要である。かかる不純物酸素量と
は、焼結体中の全酸素量から前記焼結助剤として混入さ
れる酸化物中の酸素を除く酸素量であり、主として窒化
アルミニウム原料粉末中の不可避不純物としての酸素に
相当する。この不純物酸素も系全体の焼結性に大きく寄
与するもので、その量が0.2重量%より小さいと低温焼
成による高密度化が達成されず、6重量%を越えると熱
伝導率が低下する。
According to the present invention, the amount of impurity oxygen in the sintered body containing the sintering aid is 0.2 to 6% by weight, particularly 0.4 to 3.0%.
It is also important that the percentage is by weight. The impurity oxygen amount is an oxygen amount excluding the oxygen in the oxide mixed as the sintering aid from the total oxygen amount in the sintered body, and mainly includes oxygen as an unavoidable impurity in the aluminum nitride raw material powder. Equivalent to. This impurity oxygen also greatly contributes to the sinterability of the entire system. If the amount is less than 0.2% by weight, high density by low-temperature sintering cannot be achieved, and if it exceeds 6% by weight, the thermal conductivity decreases.

さらに、本発明によれば、焼結体中の窒化アルミニウ
ムの平均結晶粒径が0.8μm以上、特に1.2μm以上であ
ることが望ましい。この結晶粒径は、焼結体の熱伝導率
に大きく寄与するもので、その粒径が大きい程熱伝導率
を高めることができる。即ち、粒径が0.8μmより小さ
いと、結晶粒子間の粒界の占める体積(面積)が大きい
ために粒界がフォノン伝導の障害物となり、熱伝導率が
低下する。
Further, according to the present invention, it is desirable that the average crystal grain size of aluminum nitride in the sintered body is 0.8 μm or more, particularly 1.2 μm or more. The crystal grain size greatly contributes to the thermal conductivity of the sintered body, and the larger the grain size, the higher the thermal conductivity. That is, when the particle size is smaller than 0.8 μm, the volume (area) occupied by the grain boundaries between the crystal grains is large, so that the grain boundaries become obstacles for phonon conduction, and the thermal conductivity is reduced.

次に、かかる窒化アルミニウム質焼結体の製造方法に
ついて説明する。
Next, a method for manufacturing such an aluminum nitride sintered body will be described.

まず、窒化アルミニウム原料粉末としては、直接窒化
法、アルミナ還元法等の公知の方法で製造したもので、
不純物酸素量1.5重量%以下、炭素含有量0.2重量%以
下、アルミニウムを除く陽イオン不純物含有量0.1重量
%以下、特にSi含有量及びFe含有量が共に100ppm以下の
平均粒径2μm以下の粉末が好適に使用される。
First, the aluminum nitride raw material powder is manufactured by a known method such as a direct nitriding method, an alumina reducing method,
Powders with an average particle size of 2 μm or less with an oxygen content of 1.5% by weight or less, a carbon content of 0.2% by weight or less, a cationic impurity content of 0.1% by weight or less excluding aluminum, and particularly a Si content and a Fe content of 100ppm or less. It is preferably used.

焼結助剤成分は、周期律表第IIa族元素、第IIIa族元
素およびリチウムのいずれも、酸化物粉末を用いる他に
焼成によって酸化物に変化しうる化合物、例えば炭酸
塩、塩化物、水酸化物等の化合物として添加することも
できる。
The sintering aid component is a compound that can be converted into an oxide by firing, in addition to using an oxide powder, such as carbonate, chloride, and water. It can also be added as a compound such as an oxide.

窒化アルミニウム原料粉末に焼結助剤成分を添加した
混合粉末は所望により有機溶媒中で混合される。この
時、有機溶媒中に含有される水分量は0.4重量%以下に
設定される。これにより窒化アルミニウム粉末の分散性
を向上させるとともに、水分との反応によって窒化アル
ミニウム粒子表面の酸化を防止することができる。
The mixed powder obtained by adding the sintering aid component to the aluminum nitride raw material powder is mixed in an organic solvent if desired. At this time, the amount of water contained in the organic solvent is set to 0.4% by weight or less. Thereby, the dispersibility of the aluminum nitride powder can be improved, and oxidation of the surface of the aluminum nitride particles due to the reaction with moisture can be prevented.

得られた混合粉末は、公知の成形方法、例えば金型も
しくは静水圧を用いたプレス成形、シート成形、押出成
形等により、所望に形状に成形した後、焼成に移され
る。
The obtained mixed powder is formed into a desired shape by a known molding method, for example, press molding using a mold or hydrostatic pressure, sheet molding, extrusion molding, or the like, and then is transferred to firing.

焼成は、窒素ガスを含有する非酸化性雰囲気中で行わ
れ、焼成手段としては常圧焼成、ホットプレス焼成、窒
素ガス加圧焼成などが採用されるが、本発明によれば、
この時の焼成温度を1500℃以上にすることにより相対密
度90%以上に緻密化することができ、窒化アルミニウム
の平均結晶粒径も原料時の一次粒子から急激に大きくな
る。
Firing is performed in a non-oxidizing atmosphere containing nitrogen gas, and as the firing means, normal pressure firing, hot press firing, nitrogen gas pressure firing, or the like is employed.
By setting the firing temperature at this time to 1500 ° C. or higher, the density can be increased to a relative density of 90% or higher, and the average crystal grain size of aluminum nitride rapidly increases from the primary particles in the raw material.

焼成温度を1500℃よりさらに高めるに従い焼結性は向
上するとともに、窒化アルミニウムの平均結晶粒径も次
第に大きくなるが、1700℃を越えると焼成炉としての耐
熱性が要求されるために炉自体の構造が大掛かりとな
る。よって量産性を考慮する場合、焼成温度は1700℃以
下、特に1650℃以下に設定し、これを常圧焼成すること
が望ましく、これによれば連続炉等の使用が可能とな
る。
As the firing temperature is further increased above 1500 ° C, the sinterability improves and the average crystal grain size of aluminum nitride gradually increases.However, when the temperature exceeds 1700 ° C, the heat resistance of the firing furnace is required, so The structure becomes large-scale. Therefore, in consideration of mass productivity, it is preferable that the firing temperature is set to 1700 ° C. or lower, particularly 1650 ° C. or lower, and firing at normal pressure is performed, whereby a continuous furnace or the like can be used.

また、リチウム化合物は焼成中に一部が揮散する場合
もあるが、焼結性の点からは、原料混合時に前述したよ
うな所定の量で存在させることにより、高い焼結性が得
られる。
In addition, the lithium compound may be partially volatilized during firing, but from the viewpoint of sinterability, high sinterability can be obtained by allowing the lithium compound to be present in the above-described predetermined amount when mixing the raw materials.

(作用) 窒化アルミニウムに対して、周期律表第IIa族元素お
よび第IIIa族元素の酸化物およびリチウム化合物を複合
添加することにより、焼成温度を大幅に下げることので
きる理由は定かではないが、第IIa族酸化物とリチウム
化合物、あるいは第IIIa族酸化物とリチウム化合物間に
おいて低融点の複合酸化物が形成されるためと考えら
れ、さらに第IIa族元素酸化物と第IIIa族元素酸化物と
を同時添加することによりさらに第IIa族酸化物と第III
a族酸化物間にさらに低融点の複合酸化物が形成される
ために、この低融点物質により窒化アルミニウムの液相
焼結が進行するものと推察される。
(Action) It is not clear why the firing temperature can be significantly reduced by adding an oxide of a group IIa element and a group IIIa element and a lithium compound to aluminum nitride in a complex manner. It is considered that a low melting point composite oxide is formed between the Group IIa oxide and the lithium compound, or between the Group IIIa oxide and the lithium compound, and furthermore, the Group IIa element oxide and the Group IIIa element oxide At the same time as adding a Group IIa oxide and a Group IIIa oxide.
It is presumed that the liquid-phase sintering of aluminum nitride progresses due to the formation of a composite oxide having a lower melting point between the group a oxides.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例1) 窒化アルミニウム原料粉末として、平均粒径(BET比
表面積)3.3m2/g、不純物酸素量1.1重量%、炭素含有量
0.05重量%以下、アルミニウムを除く陽イオン不純物含
有量0.1重量%以下の市販の窒化アルミニウム原料粉末
に対して、平均粒径が0.9μmのYb2O3粉末を9.1重量
%、平均粒径が1.5μmのCaCO3粉末をCaO換算で5.2重量
%添加混合し、これに添加量を1重量%に固定して第1
表に示す各種の酸化物を添加した。次にこれを室温で10
00kg/cm2の圧力でプレス成形した。この成形体を1500
℃、1550℃、1650℃の各温度にて窒素ガス1気圧下で3
時間焼成した。焼成後の各焼結体に対してアルキメデス
法に基づき相対密度を算出するとともに、1650℃焼成品
については、レーザーフラッシュ法により熱伝導率を測
定し、さらに外観観察を行いシミの有無を判断した。
(Example 1) Aluminum nitride raw material powder, average particle size (BET specific surface area) 3.3 m 2 / g, impurity oxygen amount 1.1 wt%, carbon content
Based on a commercially available aluminum nitride raw material powder having a 0.05% by weight or less and a cationic impurity content other than aluminum of 0.1% by weight or less, a Yb 2 O 3 powder having an average particle diameter of 0.9 μm is 9.1% by weight and an average particle diameter is 1.5%. μm CaCO 3 powder was added and mixed at 5.2% by weight in terms of CaO, and the amount added was fixed at 1% by weight.
Various oxides shown in the table were added. Then add this at room temperature for 10
Press molding was performed at a pressure of 00 kg / cm 2 . 1500 for this compact
At 1 ° C, 1550 ° C, and 1650 ° C under 1 atmosphere of nitrogen gas
Fired for hours. For each sintered body after firing, the relative density was calculated based on the Archimedes method, and for the product fired at 1650 ° C, the thermal conductivity was measured by the laser flash method, and the appearance was further observed to determine the presence or absence of spots. .

結果を第1表に示した。 The results are shown in Table 1.

焼結助剤が、Yb2O3とCaOの添加のみからなる試料No.1
では1650℃〜1700℃では相対密度90%以上の焼結体が得
られたが、第1表に示す1650℃より低い温度では緻密化
できなかった。
Sample No. 1 in which the sintering aid consisted of only addition of Yb 2 O 3 and CaO
At 1650 ° C. to 1700 ° C., a sintered body having a relative density of 90% or more was obtained, but densification could not be performed at a temperature lower than 1650 ° C. shown in Table 1.

そこで、各種の酸化物の添加効果を第1表から比較す
ると、酸化リチウムの添加により明らかに焼成温度の低
下が認められ、1500℃において相対密度90%以上が達成
された。酸化リチウムは、焼結体の外観の改善効果があ
ることも確認され、さらに1重量%程度の添加では、熱
伝導率に影響しないことがわかった。
Thus, comparing the effects of adding various oxides from Table 1, the addition of lithium oxide clearly reduced the firing temperature, and achieved a relative density of 90% or more at 1500 ° C. It was also confirmed that lithium oxide had an effect of improving the appearance of the sintered body, and it was found that addition of about 1% by weight did not affect the thermal conductivity.

なお、他の酸化物では低温焼成は難しく、表面にシミ
が発生し好ましくなかった。
In addition, low-temperature baking was difficult with other oxides, and the surface was stained, which was not preferable.

(実施例2) 実施例1の結果に基づき、実施例1で用いたのと全く
同じ原料を用いて、窒化アルミニウム粉末にYb2O39.1重
量%、CaCO3(CaO換算)5.2重量%にLi2CO3をLi2O換算
で1重量%添加した組成物について、第2表に示す温度
にて各3時間窒素ガス雰囲気中で常圧焼成し、得られた
各試料について、相対密度、熱伝導率、焼結体の窒化ア
ルミニウムの平均結晶粒径を測定した。
(Example 2) Based on the results of Example 1, using exactly the same raw materials as used in Example 1, 9.1% by weight of Yb 2 O 3 and 5.2% by weight of CaCO 3 (in terms of CaO) were added to aluminum nitride powder. The composition containing 1% by weight of Li 2 CO 3 in terms of Li 2 O was calcined at normal temperature in a nitrogen gas atmosphere at the temperature shown in Table 2 for 3 hours, and the relative density, The thermal conductivity and the average crystal grain size of the aluminum nitride of the sintered body were measured.

結果は第2表に示した。 The results are shown in Table 2.

第2表によれば、リチウムを添加した試料は、1500℃
以上で相対密度90%が達成され、熱伝導率も40W/m・K
を越える。さらに温度を高めるに従い熱伝導率も急激に
上昇するが、これは結晶粒径が大きくなるためと考えら
れる。
According to Table 2, the sample to which lithium was added was 1500 ° C.
With the above, a relative density of 90% is achieved and the thermal conductivity is also 40 W / m · K
Beyond. Further, as the temperature is further increased, the thermal conductivity also sharply increases. This is considered to be because the crystal grain size increases.

(実施例3) 次に、Yb2O3およびCaCO3量は実施例2と同じに設定
し、Li2CO3(Li2O換算量)を変えて添加し、それぞれ15
00℃、1550℃、1650℃にて窒素中、常圧で3時間焼成し
た。
(Example 3) Next, Yb 2 O 3 and CaCO 3 content is set to the same as in Example 2, was added by changing the Li 2 CO 3 (Li 2 O equivalent amount), respectively 15
It was calcined at 00 ° C., 1550 ° C., and 1650 ° C. in nitrogen at normal pressure for 3 hours.

得られた焼結体に対して、リチウム量をICP分析によ
り定量しその酸化物換算量を第3表に示した。また、焼
結体の相対密度を測定するとともに1650℃焼成品につい
ては熱伝導率および外観観察によりシミの有無を判断し
た。
With respect to the obtained sintered body, the amount of lithium was quantified by ICP analysis, and the amount in terms of oxide is shown in Table 3. In addition, the relative density of the sintered body was measured, and the presence or absence of a stain was determined by observing the thermal conductivity and appearance of the sintered product at 1650 ° C.

結果は第3表に示した。 The results are shown in Table 3.

第3表の結果によれば、Li2O量が0.001重量%を下回
ると、焼結体表面にシミが認められるとともに1550℃以
下では相対密度90%が達成されない。また、Li2O量が10
重量%を越えると熱伝導率が大きく低下した。よって、
Li2O量は0.001〜10重量%、特に0.01〜5.0重量%で安定
した焼成ができることを確認した。
According to the results in Table 3, when the Li 2 O content is less than 0.001% by weight, spots are observed on the surface of the sintered body, and at a temperature of 1550 ° C. or lower, a relative density of 90% cannot be achieved. In addition, the amount of Li 2 O is 10
If it exceeds 10% by weight, the thermal conductivity is greatly reduced. Therefore,
It has been confirmed that stable sintering can be performed when the Li 2 O content is 0.001 to 10% by weight, particularly 0.01 to 5.0% by weight.

(実施例4) 次に、周期律表第IIIa族元素酸化物として第4表の酸
化物を用いて、また、周期律表第IIa族元素酸化物とし
てCaO、BaO、SrOを炭酸塩としてそれぞれ第4表に示す
割合で添加し、1500℃、1550℃、1650℃の温度で焼成
し、それぞれの相対密度および1650℃焼成品の熱伝導率
を測定した。
(Example 4) Next, oxides of Table 4 were used as Group IIIa element oxides of the periodic table, and CaO, BaO, and SrO were used as carbonates of Group IIa element oxides of the periodic table, respectively. They were added at the ratios shown in Table 4 and fired at temperatures of 1500 ° C., 1550 ° C., and 1650 ° C., and the relative densities and thermal conductivity of the fired products at 1650 ° C. were measured.

また、焼結体の不純物酸素量は焼結体の全酸素量から
焼結助剤として添加した酸化物に含まれる酸素分と差し
引くことにより算出した。
The impurity oxygen content of the sintered body was calculated by subtracting the oxygen content of the oxide added as a sintering aid from the total oxygen content of the sintered body.

結果は、第4表に示した。 The results are shown in Table 4.

第4表によれば、リチウム化合物を全く添加しなかっ
た試料No.58(IIIaのみ)、59(IIaのみ)、および前記
第1表の試料No.1(IIIa+IIaのみ)では、いずれも165
0℃以下の温度では相対密度90%以上の焼結体が得られ
ず、リチウム化合物を適量添加しても、周期律表第IIIa
族元素酸化物および第IIa族元素の酸化物の合量が20重
量%を越える試料No.56では、熱伝導率が低く、逆に0.0
1重量%より少ない試料No.60では、相対密度は低く熱伝
導率も低いのものであった。
According to Table 4, in Sample Nos. 58 (IIIa only) and 59 (IIa only) to which no lithium compound was added, and in Sample No. 1 (IIIa + IIa only) in Table 1 above, all were 165.
At a temperature of 0 ° C. or less, a sintered body with a relative density of 90% or more cannot be obtained.
In sample No. 56, in which the total amount of the oxides of the group II elements and the oxides of the group IIa elements exceeded 20% by weight, the thermal conductivity was low,
Sample No. 60 having less than 1% by weight had low relative density and low thermal conductivity.

また、焼結体の不純物酸素量が0.2重量%より小さい
試料No.57では、1600℃未満で相対密度90%以上が達成
されず、6重量%を越える試料No.47では相対密度は高
いものの熱伝導率が大幅に低下した。
Further, in Sample No. 57 in which the impurity oxygen content of the sintered body was less than 0.2% by weight, a relative density of 90% or more was not achieved below 1600 ° C., and in Sample No. 47 exceeding 6% by weight, the relative density was high. Thermal conductivity dropped significantly.

これらの比較例に対して本発明の試料はいずれも1650
℃の焼成温度で相対密度97%以上が達成され、1500℃に
おいても相対密度90℃以上に緻密化でき、しかも熱伝導
率40W/m・K以上が達成された。これらの中でもリチウ
ム化合物に対して、第IIa族元素化合物として、Ca化合
物を、第IIIa族元素化合物としてYb2O3を複合添加した
ものが焼結性と特性の安定性の点で最も優れていた。
For these comparative examples, the samples of the present invention were all 1650.
A relative density of 97% or more was achieved at a sintering temperature of 150 ° C., and even at 1500 ° C., the relative density could be increased to 90 ° C. or more, and a thermal conductivity of 40 W / m · K or more was achieved. Among them, those obtained by adding a Ca compound as a Group IIa element compound and a Yb 2 O 3 as a Group IIIa element compound in combination with a lithium compound are the most excellent in terms of sinterability and stability of properties. Was.

(発明の効果) 以上詳述した通り、本発明によれば、周期律表第IIIa
族元素およびIIa族元素の酸化物に対してさらにリチウ
ム化合物を所定量添加することにより焼結性を高めるこ
とができ、焼成温度1700℃以下の温度でも相対密度90%
以上の高い熱伝導率を有する焼結体を得ることができ
る。これにより、高熱伝導性の窒化アルミニウム焼結体
を製造する際の焼成炉として、特別な耐熱構造を必要と
しないことから製造の経費等を削減することができ、こ
れにより安価な窒化アルミニウム焼結体を提供すること
ができる。
(Effect of the Invention) As described in detail above, according to the present invention, the periodic table IIIa
The sinterability can be improved by adding a predetermined amount of a lithium compound to the oxides of the Group II elements and Group IIa elements, and the relative density is 90% even at a firing temperature of 1700 ° C or less.
A sintered body having the above high thermal conductivity can be obtained. This eliminates the need for a special heat-resistant structure as a sintering furnace for manufacturing a highly thermally conductive aluminum nitride sintered body, thereby reducing manufacturing costs and the like. Body can be provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 35/58──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C04B 35/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウム粉末に、周期律表第IIa
族酸化物あるいは焼成によってその酸化物に変化しうる
化合物、および周期律表第IIIa族酸化物あるいは焼成に
よってその酸化物に変化しうる化合物を酸化物換算によ
り合計で0.01〜20重量%、酸化リチウムあるいは焼成に
よってその酸化物に変化しうる化合物を酸化物換算で0.
001〜10重量%の割合で添加してなる混合物を成形した
後、窒素を含有する非酸化性雰囲気中で、1500〜1700℃
の温度で焼成して、相対密度90%以上、不純物酸素量が
0.2〜6重量%の焼結体を得ることを特徴とする窒化ア
ルミニウム質焼結体の製造方法。
1. An aluminum nitride powder is added to the periodic table IIa
Group oxides or compounds that can be converted to their oxides by firing, and Group IIIa oxides or compounds that can be converted to their oxides by firing, in a total of 0.01 to 20% by weight in terms of oxides, lithium oxide Alternatively, a compound that can be converted to its oxide by firing is converted to an oxide equivalent of 0.
After molding the mixture added at a ratio of 001 to 10% by weight, in a non-oxidizing atmosphere containing nitrogen at 1500 to 1700 ° C
Baking at a temperature of more than 90%, the relative density is more than 90%, the amount of impurity oxygen is
A method for producing an aluminum nitride-based sintered body, comprising obtaining a sintered body of 0.2 to 6% by weight.
JP2312285A 1990-11-16 1990-11-16 Method for producing aluminum nitride sintered body Expired - Lifetime JP2772580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312285A JP2772580B2 (en) 1990-11-16 1990-11-16 Method for producing aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312285A JP2772580B2 (en) 1990-11-16 1990-11-16 Method for producing aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH04182358A JPH04182358A (en) 1992-06-29
JP2772580B2 true JP2772580B2 (en) 1998-07-02

Family

ID=18027407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312285A Expired - Lifetime JP2772580B2 (en) 1990-11-16 1990-11-16 Method for producing aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2772580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547408B1 (en) * 2006-07-28 2009-06-16 General Electric Company Process for reducing non-uniformities in the density of sintered materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712981B2 (en) * 1985-03-13 1995-02-15 株式会社東芝 Method for manufacturing aluminum nitride sintered body
JP2578113B2 (en) * 1987-05-08 1997-02-05 株式会社東芝 Method for producing high thermal conductive aluminum nitride sintered body
JPH02275765A (en) * 1989-04-17 1990-11-09 Kawasaki Steel Corp Production of sintered aluminum nitride

Also Published As

Publication number Publication date
JPH04182358A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JP2772580B2 (en) Method for producing aluminum nitride sintered body
EP0564257B1 (en) Low thermal conductivity ceramic and process for producing the same
JP2962466B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2666942B2 (en) Aluminum nitride sintered body
JP2535139B2 (en) Heat dissipation board
JP2772581B2 (en) Black aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JP2851712B2 (en) Aluminum nitride circuit board
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
KR960006249B1 (en) Process for producing an aluminium sintered product
JP2704194B2 (en) Black aluminum nitride sintered body
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JPH0881266A (en) Production of aluminum nitride sintered compact
JP2742598B2 (en) Aluminum nitride sintered body and method for producing the same
JP2901135B2 (en) Semiconductor device
JPH06219846A (en) Production of aluminum nitride sintered compact
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0687659A (en) Production of aluminum nitride sintered compact
JPH0566339B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080424

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13