JP2772581B2 - Black aluminum nitride sintered body - Google Patents

Black aluminum nitride sintered body

Info

Publication number
JP2772581B2
JP2772581B2 JP2312286A JP31228690A JP2772581B2 JP 2772581 B2 JP2772581 B2 JP 2772581B2 JP 2312286 A JP2312286 A JP 2312286A JP 31228690 A JP31228690 A JP 31228690A JP 2772581 B2 JP2772581 B2 JP 2772581B2
Authority
JP
Japan
Prior art keywords
group
aluminum nitride
weight
periodic table
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2312286A
Other languages
Japanese (ja)
Other versions
JPH04182357A (en
Inventor
健一郎 宮原
修二 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2312286A priority Critical patent/JP2772581B2/en
Publication of JPH04182357A publication Critical patent/JPH04182357A/en
Application granted granted Critical
Publication of JP2772581B2 publication Critical patent/JP2772581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体集積回路素子から発生した熱を効率
的に除去することができる高熱伝導性を有する窒化アル
ミニウム質基板に関し、詳細には、低温焼成が可能な量
産性に優れた黒色窒化アルミニウム質基板に関する。
Description: FIELD OF THE INVENTION The present invention relates to an aluminum nitride substrate having a high thermal conductivity capable of efficiently removing heat generated from a semiconductor integrated circuit device. The present invention relates to a black aluminum nitride substrate that can be fired at a low temperature and has excellent mass productivity.

(従来技術) 近時、情報処理装置の高性能化、高速化に伴いそれを
構成する半導体集積回路も高密度化、高集積化が急速に
進み、そのために半導体集積回路素子の発熱量が著しく
増加し、前記半導体集積回路素子を正常に作動させるた
めに発生した熱をいかに効率的に除去するかが問題とな
っている。
(Prior art) In recent years, as information processing apparatuses have become higher in performance and higher in speed, semiconductor integrated circuits constituting the information processing apparatuses have been rapidly becoming denser and more highly integrated. The problem is how to efficiently remove the heat generated to operate the semiconductor integrated circuit device normally.

かかる問題に対して最近に至り、これまで使用されて
いたアルミナ製基板や、従来から高熱伝導性基板として
知られる酸化ベリリウム性基板等に代わり、常温から高
温まで高い強度を有し、電気絶縁性が高く、高熱伝導性
であり、熱膨張係数がアルミナに比べシリコン単結晶に
近いなどの優れた特性を有する窒化アルミニウム質焼結
体が注目されている。
In recent years, such a substrate has been replaced with an alumina substrate or a beryllium oxide substrate, which is conventionally known as a high thermal conductive substrate. Aluminum nitride-based sintered bodies having high properties, high thermal conductivity, and excellent properties such as a coefficient of thermal expansion closer to that of silicon single crystal as compared with alumina are attracting attention.

また最近では、窒化アルミニウム質焼結体に対しては
遮光性、および汚れが目立ち難い等の点から焼結体を黒
色化したものも要求されている。
Recently, a blackened aluminum nitride-based sintered body has been demanded from the viewpoints of light-shielding properties and dirt being less noticeable.

ところが、窒化アルミニウムは本来難焼結性であり、
単味では高熱伝導性を有する高密度焼結体が得られない
ことから、焼結助剤としてY2O3等の周期律表第III a族
元素酸化物、あるいはCaO等の周期律表第II a族元素酸
化物を添加して高密度化する方法が採用されている。
However, aluminum nitride is inherently difficult to sinter,
Since the high-density sintered body having a high thermal conductivity can not be obtained in plain, periodic table III a group element oxide such as Y 2 O 3 as a sintering aid, or the periodic table such as CaO A method of increasing the density by adding a Group IIa element oxide has been adopted.

(発明が解決しようとする問題点) しかしながら、従来の方法では高密度の窒化アルミニ
ウム焼結体を得るのに、1700℃以上、場合によっては19
00℃以上の高温にて焼成する必要があった。このように
焼成温度が高いと、例えば、基板上に形成する金属導体
パターンと同時に焼成を行う場合、金属導体が粒成長す
るために導体の基板との接着強度が低くなるという問題
があり、また焼成炉自体の構造も耐熱性が要求されるた
めに生産設備等の費用が高くなるために基板自体のコス
トが非常に高くなると言った問題があった。
(Problems to be Solved by the Invention) However, in the conventional method, a high-density aluminum nitride sintered body is obtained at a temperature of 1700 ° C. or more, and sometimes 19
It was necessary to fire at a high temperature of 00 ° C. or higher. When the sintering temperature is high, for example, when sintering is performed simultaneously with the metal conductor pattern formed on the substrate, there is a problem that the bonding strength between the conductor and the substrate is reduced due to the metal conductor grain growth, and The structure of the firing furnace itself also requires heat resistance, so that there is a problem that the cost of production equipment and the like becomes high, and the cost of the substrate itself becomes extremely high.

そこで、低温焼成化を達成するために、希土類元素酸
化物とアルカリ土類酸化物とを同時に添加する方法が特
開昭61−117160号に記載されているが、その焼成温度は
せいぜい1700℃以上であり、1600℃程度またはそれ以下
の焼成温度では緻密化は達成されず、また磁器中にシミ
等が発生しやすいという問題があった。
Therefore, in order to achieve low temperature firing, a method of simultaneously adding a rare earth element oxide and an alkaline earth oxide is described in JP-A-61-117160, but the firing temperature is at most 1700 ° C. At a firing temperature of about 1600 ° C. or lower, densification cannot be achieved, and there is a problem that stains and the like are easily generated in the porcelain.

また、上記の窒化アルミニウム質焼結体に対して高密
度、高熱伝導率化を目的として周期律表第IV a、V a、V
I a、VII a及びVIII族元素から選ばれる少なくとも1種
を添加することが特開昭62−153173号にて提案されてい
るが、この方法においても焼成温度の低温化は不十分で
ある。
In addition, with respect to the above aluminum nitride sintered body, for the purpose of increasing the density and the thermal conductivity, the periodic table IVa, Va, V
It has been proposed in JP-A-62-153173 to add at least one member selected from the group consisting of Group Ia, VIIa and VIII elements. However, even in this method, the firing temperature is not sufficiently lowered.

さらに、窒化アルミニウムに希土類元素のフッ化物を
添加することにより焼成温度をさげる方法が61−209959
号に記載されているが、フッ化物自体非常に高価であ
り、また焼成途中でフッ素酸化物が揮散するために炉を
腐食するために量産には不向きである。
Further, a method of lowering the firing temperature by adding a rare earth element fluoride to aluminum nitride has been proposed in 61-209959.
However, the fluoride itself is very expensive, and is not suitable for mass production because the furnace is corroded due to the volatilization of fluorine oxide during firing.

(発明の目的) 本発明は、上記問題点を解決することを主たる目的と
するものであり、具体的には、1600℃以下の低温焼成に
よっても相対密度95%以上が達成され、且つ1600℃焼成
品において熱伝導率が80W/m・K以上の高熱伝導性を有
する黒色窒化アルミニウム質基板を提供することにあ
る。
(Object of the Invention) The object of the present invention is to solve the above-mentioned problems, and specifically, a relative density of 95% or more is achieved even by low-temperature firing at 1600 ° C or less, and 1600 ° C. An object of the present invention is to provide a black aluminum nitride substrate having a high thermal conductivity of at least 80 W / m · K in a fired product.

(問題点を解決するための手段) 本発明者等は、上記の問題点に対して研究を重ねた結
果、焼結助剤として周期律表第I a族元素の酸化物を必
須成分とし、これに周期律表第IV a、V a、VI a、VII a
及びVIII族元素から選ばれる少なくとも1種の酸化物を
同時に添加することにより、焼成温度を低くすることを
知見し、本発明に至った。
(Means for Solving the Problems) As a result of repeated studies on the above problems, the present inventors have made an oxide of a Group Ia element of the periodic table an essential component as a sintering aid, In addition, Periodic Table IVa, Va, VIa, VIIa
It has been found that the firing temperature is lowered by simultaneously adding at least one oxide selected from Group VIII and Group VIII elements, and the present invention has been achieved.

即ち、本発明の窒化アルミニウム質基板は、窒化アル
ミニウムを主体とし、周期律表第I a族元素から選ばれ
る少なくとも1種を酸化物換算で0.001〜5重量%、周
期律表第IV a、V a、VI a、VII a及びVIII族元素から選
ばれる少なくとも1種を酸化物換算で0.01〜10重量%の
割合でそれぞれ含有し、相対密度95%以上、熱伝導率80
W/m・K以上の焼結体からなることを特徴とするもの
で、さらに、焼結体中には、周期律表第II a族および/
又は第III a族元素から選ばれる少なくとも1種の元素
を酸化物換算で0.01〜20重量%の割合でそれぞれ含有せ
しめることを特徴とするものである。
That is, the aluminum nitride-based substrate of the present invention is mainly composed of aluminum nitride and contains at least one element selected from Group Ia elements of the periodic table in an amount of 0.001 to 5% by weight in terms of oxide. a, VIa, VIIa, and at least one element selected from the group VIII elements in an amount of 0.01 to 10% by weight in terms of oxides, a relative density of 95% or more, and a thermal conductivity of 80% or more.
It is characterized by being composed of a sintered body of W / m · K or more, and further includes a group IIa of the periodic table and / or
Alternatively, at least one element selected from Group IIIa elements is contained at a ratio of 0.01 to 20% by weight in terms of oxide.

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明の基板を形成する焼結体における大きな特徴
は、周期律表第I a族から選ばれる少なくとも1種の元
素と、周期律表第IV a、V a、VI a、VII a及びVIII族元
素から選ばれる少なくとも1種の元素を含有する点にあ
る。
A great feature of the sintered body forming the substrate of the present invention is that at least one element selected from Group Ia of the periodic table and Group IVa, Va, VIa, VIIa and VIII of the periodic table. It contains at least one element selected from the elements.

周期律表第I a族元素から選ばれる少なくとも1種の
元素は、焼結体中に酸化物換算量で0.001〜5重量%、
特に0.01〜1重量%の割合で含有され、周期律表第IV
a、V a、VI a、VII a及びVIII族元素から選ばれる少な
くとも1種の元素は、酸化物換算で0.01〜10重量%、特
に0.05〜4重量%の割合で含有されることが重要であ
る。
At least one element selected from Group Ia elements of the periodic table contains 0.001 to 5% by weight of oxide in the sintered body,
In particular, it is contained at a ratio of 0.01 to 1% by weight,
It is important that at least one element selected from the group consisting of a, Va, VIa, VIIa and VIII is contained in a proportion of 0.01 to 10% by weight, especially 0.05 to 4% by weight in terms of oxide. is there.

かかる添加物の量を上記の範囲に限定したのは、第I
a族元素が0.001重量%より少ないと焼結性が大きく低下
し緻密化せず、5重量%を越えると熱伝導率が低下す
る。また、第IV a、V a、VI a、VII a及びVIII族元素の
量が0.01重量%未満では焼結性が劣化するとともに焼結
体への着色性も低下し、10重量%を越えると熱伝導率が
低下し好ましくない。
The reason for limiting the amount of such additives to the above range is as follows.
If the content of the group a element is less than 0.001% by weight, the sinterability is greatly reduced and the powder is not densified. If it exceeds 5% by weight, the thermal conductivity is reduced. If the amount of the group IVa, Va, VIa, VIIa, and VIII element is less than 0.01% by weight, the sinterability is deteriorated and the coloring property of the sintered body is reduced. Thermal conductivity is undesirably reduced.

なお、本発明におけるより好ましい形態としては、上
記の系に対してさらに周期律表第II a族元素および/ま
たは第III a族元素を含有させることが望ましい。この
場合には、これらの元素を酸化物換算の合量で0.1〜20
重量%の割合で含有されることによりさらに低温焼成に
よる高密度化を実現することができる。
In a more preferred embodiment of the present invention, it is desirable that the above system further contain a Group IIa element and / or a Group IIIa element of the periodic table. In this case, these elements are used in a total amount of 0.1 to 20 in terms of oxide.
When the content is contained in the ratio of weight%, higher density can be realized by low-temperature firing.

また、本発明によれば、上記焼結助剤を含む焼結体中
における不純物酸素量が0.1〜6重量%、特に0.4〜2.5
重量%であることが望ましい。かかる不純物酸素量と
は、焼結体中の全酸素量から前記添加物のうち、周期律
表第I a、II a、III a、IV a、V a、VI a、VII a、VIII
族元素の酸化物中に含まれる酸素を除く酸素量であり、
主として窒化アルミニウム原料粉末中の不可避不純物と
しての酸素に相当する。この不純物酸素も系全体の焼結
性に大きく寄与するもので、その量が0.1重量%より小
さいと低温焼成による高密度化が達成されず、6重量%
を越えると熱伝導率が低下する。
According to the present invention, the amount of impurity oxygen in the sintered body containing the sintering aid is 0.1 to 6% by weight, particularly 0.4 to 2.5%.
% By weight. Such an impurity oxygen amount refers to the total oxygen amount in the sintered body, and among the additives, the periodic table Ia, IIa, IIIa, IVa, Va, VIa, VIIa, VIII
It is the amount of oxygen excluding oxygen contained in the oxide of the group III element,
It mainly corresponds to oxygen as an unavoidable impurity in the aluminum nitride raw material powder. This impurity oxygen also greatly contributes to the sinterability of the entire system. If the amount is less than 0.1% by weight, high density by low-temperature sintering cannot be achieved, and 6% by weight.
If it exceeds, the thermal conductivity decreases.

さらに、本発明によれば、焼結体中の窒化アルミニウ
ムの平均結晶粒径が0.8μm以上、特に1.2μm以上であ
ることが望ましい。この結晶粒径が大きい程熱伝導率を
高めることができる。即ち、粒径が0.8μmより小さい
と、結晶粒子間の粒界の占める体積(面積)が大きいた
めに粒界がフォノン伝導の障害物となり、熱伝導率が低
下する。
Further, according to the present invention, it is desirable that the average crystal grain size of aluminum nitride in the sintered body is 0.8 μm or more, particularly 1.2 μm or more. The larger the crystal grain size, the higher the thermal conductivity. That is, when the particle size is smaller than 0.8 μm, the volume (area) occupied by the grain boundaries between the crystal grains is large, so that the grain boundaries become obstacles for phonon conduction, and the thermal conductivity is reduced.

なお、本発明において用いられる周期律表第I a族元
素としてはLi、Na、K、Rb、第IV a族元素としてはTi、
Zr、Hf、第V a族元素としては、V、Nb、Ta、第VI a族
元素としてはW、Mo、Cr、第VII a族元素としてはMn、
第VIII族元素としてはCo、Ni等が挙げられる。また、第
II a族元素としては、Ca、Sr、Ba、第III a族元素とし
てはY、Yb、Er等が挙げられる。
Incidentally, as the Group Ia element of the periodic table used in the present invention, Li, Na, K, Rb, as the Group IVa element, Ti,
Zr, Hf, Group Va elements as V, Nb, Ta, Group VIa elements as W, Mo, Cr, Group VIIa elements as Mn,
Group VIII elements include Co, Ni and the like. Also,
Group IIa elements include Ca, Sr, Ba, and Group IIIa elements include Y, Yb, Er and the like.

次に、かかる窒化アルミニウム焼結体の製造方法につ
いて説明する。
Next, a method for manufacturing such an aluminum nitride sintered body will be described.

まず、窒化アルミニウム原料粉末としては、直接窒化
法、アルミナ還元法等の公知の方法で製造したもので、
不純物酸素量1.5重量%以下、炭素含有量0.2重量%以
下、アルミニウムを除く陽イオン不純物含有量0.1重量
%以下、特にSi含有量及びFe含有量が共に100ppm以下の
平均粒径3μm以下の粉末が好適に使用される。
First, the aluminum nitride raw material powder is manufactured by a known method such as a direct nitriding method, an alumina reducing method,
Powders with an average particle size of 3 μm or less, with an impurity oxygen content of 1.5 wt% or less, a carbon content of 0.2 wt% or less, a cationic impurity content of 0.1 wt% or less excluding aluminum, and particularly a Si content and a Fe content of both 100 ppm or less. It is preferably used.

添加成分は、前述した周期律表第I a〜VIII族元素の
いずれも酸化物粉末を用いる他に、焼成によって酸化物
に変化しうる化合物、例えば炭酸塩、塩化物、水酸化物
等の化合物として添加することもできる。また、第I a
族化合物としては、フッ化物等の使用もできる。
Additive components, in addition to using any of the oxide powders of any of the above-described Group Ia to VIII Group elements in the periodic table, compounds that can be converted to oxides by firing, for example, compounds such as carbonates, chlorides, and hydroxides Can also be added. Also, the Ia
As the group compound, a fluoride or the like can be used.

窒化アルミニウム原料粉末に上記添加成分が配合され
た混合粉末を所望により有機溶媒中で混合する。この
時、有機溶媒中に含有される水分量は0.4重量%以下に
設定される。これにより窒化アルミニウム粉末の分散性
を向上させるとともに、様内中水分との反応によって窒
化アルミニウム粒子表面の酸化を防止することができ
る。
A mixed powder in which the above-mentioned additive component is blended with the aluminum nitride raw material powder is mixed in an organic solvent if desired. At this time, the amount of water contained in the organic solvent is set to 0.4% by weight or less. Thereby, the dispersibility of the aluminum nitride powder can be improved, and oxidation of the surface of the aluminum nitride particles can be prevented by a reaction with moisture in the inside.

得られた混合粉末を公知の成形方法、例えば金型もし
くは静水圧を用いたプレス成形、シート成形、押出成形
等により、所望に形状に成形した後、焼成を行う。
The obtained mixed powder is formed into a desired shape by a known molding method, for example, press molding using a mold or hydrostatic pressure, sheet molding, extrusion molding, or the like, and then fired.

焼成は、窒素ガスを含有する非酸化性雰囲気中で行わ
れ、焼成手段としては常圧焼成、ホットプレス焼成、窒
素ガス加圧焼成などが採用されるが、本発明によれば、
この時の焼成温度を1500℃程度以上にすることにより相
対密度95%以上に緻密化することができ、窒化アルミニ
ウムの平均結晶粒径も原料時の一次粒子からやや大きく
なる。
Firing is performed in a non-oxidizing atmosphere containing nitrogen gas, and as the firing means, normal pressure firing, hot press firing, nitrogen gas pressure firing, or the like is employed.
By setting the firing temperature at this time to about 1500 ° C. or more, it is possible to densify to a relative density of 95% or more, and the average crystal grain size of aluminum nitride is slightly larger than that of the primary particles in the raw material.

焼成温度を1500℃よりさらに高めるに従い焼結性は向
上するとともに、窒化アルミニウムの平均結晶粒径も次
第に大きくなるが、1700℃を越えると焼成炉としての耐
熱性が要求されるために炉自体の構造が大掛かりとな
る。よって量産性を考慮する場合、焼成温度は1700℃以
下、特に1650℃以下に設定し、これを常圧焼成すること
が望ましく、これによれば連続炉等の使用が可能とな
る。
As the firing temperature is further increased above 1500 ° C, the sinterability improves and the average crystal grain size of aluminum nitride gradually increases.However, when the temperature exceeds 1700 ° C, the heat resistance of the firing furnace is required, so The structure becomes large-scale. Therefore, in consideration of mass productivity, it is preferable that the firing temperature is set to 1700 ° C. or lower, particularly 1650 ° C. or lower, and firing at normal pressure is performed, whereby a continuous furnace or the like can be used.

また、着色性を考慮すれば、焼成雰囲気中に炭素、一
酸化炭素、水素等を含有させることにより各元素を還元
し発色性を高めることもできる。
Further, in consideration of coloring properties, it is possible to reduce each element by adding carbon, carbon monoxide, hydrogen, and the like in the firing atmosphere to enhance the coloring property.

(作用) 窒化アルミニウムに対して、周期律表第I a族元素と
周期律表第IV a〜VIII族元素を含有させることにより、
系の焼結性を高めることができ、1500℃で相対密度95%
以上の緻密化が達成できる。なお、周期律表第IV a〜VI
II族元素は、焼結過程において、例えば酸化物として添
加した場合には焼成雰囲気により一部還元され、金属単
体、あるいは炭化物や窒化物として存在することにより
黒色に発色した窒化アルミニウム質基板が得られる。
(Action) By allowing the aluminum nitride to contain a Group Ia element of the periodic table and an element of Groups IVa to VIII of the periodic table,
The sinterability of the system can be improved, and the relative density is 95% at 1500 ° C.
The above densification can be achieved. The Periodic Table IVa-VI
In the sintering process, for example, when the group II element is added as an oxide, it is partially reduced by the sintering atmosphere, and an aluminum nitride substrate that develops a black color by being present as a simple metal or a carbide or a nitride is obtained. Can be

また、この系中に周期律表第II a族元素および/また
は第III a族元素を配合することにより、第I a族元素
と、第II a族元素酸化物や第III a族元素酸化物との間
に低融点の複合酸化物が形成され、これにより低温焼結
性がさらに高まり、安定した焼結性が得られる。
Further, by mixing a Group IIa element and / or a Group IIIa element of the periodic table into the system, a Group Ia element and a Group IIa element oxide or a Group IIIa element oxide can be obtained. A low-melting-point composite oxide is formed between them, whereby the low-temperature sinterability is further enhanced, and stable sinterability is obtained.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例1) 窒化アルミニウム原料粉末として、BET比表面積2.8m2
/g、不純物酸素量0.8重量%、炭素含有量0.05重量%以
下、アルミニウムを除く陽イオン不純物含有量0.1重量
%以下の市販の窒化アルミニウム原料粉末に対して、第
1表に示すように第I a族元素を炭素塩、塩化物、フッ
化物の形態で添加し、さらに第IV a〜VIII族元素をいず
れも酸化物の形態で添加した。また、第II a族元素は炭
酸塩、第III a族元素は酸化物として添加した。次にこ
れを室温で1000kg/cm2の圧力でプレス成形した。この成
形体を1500℃、1550℃、1600℃の各温度にて窒素ガス
中、常圧で3時間焼成した。
(Example 1) As a raw material powder of aluminum nitride, a BET specific surface area of 2.8 m 2
/ g, a content of impurity oxygen of 0.8% by weight, a carbon content of 0.05% by weight or less, and a commercially available aluminum nitride raw material powder having a cationic impurity content of 0.1% by weight or less excluding aluminum as shown in Table 1 The group a elements were added in the form of carbon salts, chlorides and fluorides, and the elements of groups IVa to VIII were all added in the form of oxides. The Group IIa element was added as a carbonate, and the Group IIIa element was added as an oxide. Next, it was press-molded at room temperature under a pressure of 1000 kg / cm 2 . The compact was fired at 1500 ° C., 1550 ° C., and 1600 ° C. in nitrogen gas at normal pressure for 3 hours.

焼成後の各試料に対して、アルキメデス法に基づき、
相対密度を算出するとともに、1600℃焼成品について
は、レーザーフラッシュ法により熱伝導率を測定した。
For each sample after firing, based on the Archimedes method,
The relative density was calculated, and the thermal conductivity of the fired product at 1600 ° C. was measured by a laser flash method.

結果を第1表に示した。 The results are shown in Table 1.

第1表の結果によれば、窒化アルミニウムに対してTi
O2のみを添加した試料No.28、第I a族元素を添加しない
試料No.29,30では、いずれも1600℃以下の温度では相対
密度95%以上まで緻密化することができず、第I a族元
素としてリチウムを添加してもその量が多いNo.31で
は、熱伝導率が低下し、第IV a〜VIII a族元素の添加量
が少ない試料No.32では焼結体への着色が不十分であっ
た。また、焼結助剤としてのY2O3の量が多い試料No.34
でも熱伝導率の低下が見られた。
According to the results in Table 1, the aluminum nitride
Sample No. 28 to which only O 2 was added and Sample Nos. 29 and 30 to which no Group Ia element was added could not be densified to a relative density of 95% or more at a temperature of 1600 ° C. or less. In the case of adding lithium as a group Ia element, the thermal conductivity decreased in the large amount of No. 31 and in the sample No. 32 in which the added amount of the group IVa to VIIIa element was small, Coloring was insufficient. Sample No. 34 having a large amount of Y 2 O 3 as a sintering aid
However, a decrease in thermal conductivity was observed.

これらの比較例に対して、本発明に基づき、第I a族
元素化合物とともに第IV a〜第VIII族元素化合物を添加
した試料No.1〜16では1500℃の焼成温度においても相対
密度95%以上まで緻密化することができるとともに高い
熱伝導率を示した。また、この系に対してさらに第II
a、III a族元素を添加した試料No.17〜27ではさらに焼
成性が安定しており、熱伝導率も高くすることができ
た。
In contrast to these comparative examples, samples Nos. 1 to 16 in which the Group IVa to Group VIII element compounds were added together with the Group Ia element compounds according to the present invention had a relative density of 95% even at a firing temperature of 1500 ° C. As described above, it was possible to densify and exhibit high thermal conductivity. In addition, II
In Samples Nos. 17 to 27 to which Group a and IIIa elements were added, the sinterability was further stabilized, and the thermal conductivity could be increased.

(発明の効果) 以上詳述した通り、本発明によれば、周期律表第I a
族元素とともに周期律表第IV a〜VIII族元素を特定の割
合で含有させ、さらには第II a、III a族元素を含有さ
せることにより、焼結性を高めることができ、焼成温度
1600℃以下の温度でも相対密度95%以上を有し、熱伝導
率80W/m・K以上の高熱伝導性を有する焼結体からなる
窒化アルミニウム質基板を得ることができる。これによ
り、高熱伝導性の窒化アルミニウム焼結体を製造する際
の焼結炉として、特別な耐熱構造を必要とせず、連続炉
等の使用が可能になることにより、製造の経費等を削減
することができ、これにより安価な窒化アルミニウム質
基板を提供することができる。
(Effect of the Invention) As described in detail above, according to the present invention, the periodic table Ia
The sinterability can be improved by containing the elements of Groups IVa to VIII of the periodic table at a specific ratio together with the elements of the periodic table, and further containing the elements of the groups IIa and IIIa, and the sintering temperature can be increased.
Even at a temperature of 1600 ° C. or less, an aluminum nitride substrate made of a sintered body having a relative density of 95% or more and a high thermal conductivity of 80 W / m · K or more can be obtained. As a result, it is possible to use a continuous furnace without requiring a special heat-resistant structure as a sintering furnace when manufacturing a high thermal conductive aluminum nitride sintered body, thereby reducing manufacturing costs and the like. Thus, an inexpensive aluminum nitride substrate can be provided.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウムを主体とし、周期律表第
I a族元素から選ばれる少なくとも1種を酸化物換算で
0.001〜5重量%、周期律表第IV a、V a、VI a、VII a
及びVIII族元素から選ばれる少なくとも1種を酸化物換
算で0.01〜10重量%の割合でそれぞれ含有し、相対密度
95%以上、熱伝導率80W/m・K以上の焼結体からなるこ
とを特徴とする黒色窒化アルミニウム質基板。
1. The periodic table is mainly composed of aluminum nitride.
At least one element selected from the group Ia elements in oxide terms
0.001 to 5% by weight, Periodic Table IVa, Va, VIa, VIIa
And at least one element selected from the group VIII elements at a ratio of 0.01 to 10% by weight in terms of oxide, and
A black aluminum nitride substrate made of a sintered body having a thermal conductivity of at least 95% and a thermal conductivity of at least 80 W / m · K.
【請求項2】窒化アルミニウムを主体とし、周期律表第
I a族元素から選ばれる少なくとも1種を酸化物換算で
0.001〜5重量%、周期律表第IV a、V a、VI a、VII a
及びVIII族元素から選ばれる少なくとも1種を酸化物換
算で0.01〜10重量%、周期律表第II a族および/又は第
III a族元素から選ばれる少なくとも1種の元素を酸化
物換算で0.01〜20重量%の割合でそれぞれ含有し、相対
密度95%以上、熱伝導率80W/m・K以上の焼結体からな
ることを特徴とする黒色窒化アルミニウム質基板。
2. The periodic table mainly comprising aluminum nitride.
At least one element selected from the group Ia elements in oxide terms
0.001 to 5% by weight, Periodic Table IVa, Va, VIa, VIIa
And at least one element selected from Group VIII elements in an amount of 0.01 to 10% by weight in terms of oxides,
III A sintered body containing at least one element selected from Group a elements at a ratio of 0.01 to 20% by weight in terms of oxide, each having a relative density of 95% or more and a thermal conductivity of 80 W / m · K or more. A black aluminum nitride substrate characterized by the above-mentioned.
JP2312286A 1990-11-16 1990-11-16 Black aluminum nitride sintered body Expired - Lifetime JP2772581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312286A JP2772581B2 (en) 1990-11-16 1990-11-16 Black aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312286A JP2772581B2 (en) 1990-11-16 1990-11-16 Black aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH04182357A JPH04182357A (en) 1992-06-29
JP2772581B2 true JP2772581B2 (en) 1998-07-02

Family

ID=18027420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312286A Expired - Lifetime JP2772581B2 (en) 1990-11-16 1990-11-16 Black aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2772581B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106430A (en) * 1984-10-31 1986-05-24 Noritake Co Ltd Ceramic die for blow-molding glass article

Also Published As

Publication number Publication date
JPH04182357A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
EP0207465B1 (en) Aluminum nitride sintered body and preparation thereof
JPH0244787B2 (en)
JPH0717454B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP2772581B2 (en) Black aluminum nitride sintered body
EP0564257B1 (en) Low thermal conductivity ceramic and process for producing the same
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2851716B2 (en) Aluminum nitride circuit board
JP2962466B2 (en) Aluminum nitride sintered body
JP2535139B2 (en) Heat dissipation board
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JP2851712B2 (en) Aluminum nitride circuit board
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JP2704194B2 (en) Black aluminum nitride sintered body
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JP3347526B2 (en) Aluminum nitride sintered body and method for producing the same
KR960006249B1 (en) Process for producing an aluminium sintered product
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0881266A (en) Production of aluminum nitride sintered compact
JPH11180774A (en) Silicon nitride-base heat radiating member and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080424

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13