JPH0788256B2 - Method for manufacturing aluminum nitride sintered body - Google Patents

Method for manufacturing aluminum nitride sintered body

Info

Publication number
JPH0788256B2
JPH0788256B2 JP61160820A JP16082086A JPH0788256B2 JP H0788256 B2 JPH0788256 B2 JP H0788256B2 JP 61160820 A JP61160820 A JP 61160820A JP 16082086 A JP16082086 A JP 16082086A JP H0788256 B2 JPH0788256 B2 JP H0788256B2
Authority
JP
Japan
Prior art keywords
sintered body
aln
weight
thermal conductivity
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61160820A
Other languages
Japanese (ja)
Other versions
JPS6317262A (en
Inventor
光男 加曽利
和夫 篠崎
昭宏 堀口
文雄 上野
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61160820A priority Critical patent/JPH0788256B2/en
Publication of JPS6317262A publication Critical patent/JPS6317262A/en
Publication of JPH0788256B2 publication Critical patent/JPH0788256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は窒化アルミニウム焼結体の製造方法に関するも
のであり、特に、高密度でしかも高熱伝導性の窒化アル
ミニウム焼結体の製造方法を提供することを目的とする
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an aluminum nitride sintered body, and particularly to an aluminum nitride sintered body having high density and high thermal conductivity. It is an object of the present invention to provide a manufacturing method of.

(従来の技術) 窒化アルミニウム(AlN)は常温から高温まで高強度性
を保ち、又、溶融金属に濡れず、更に電気絶縁性が高
く、高熱伝導性であるなど、多くの優れた特性を有して
おり新素材として注目されている。
(Prior Art) Aluminum nitride (AlN) has many excellent properties such as high strength from normal temperature to high temperature, high wettability to molten metal, high electric insulation and high thermal conductivity. It is attracting attention as a new material.

近年、半導体基板への応用研究が活発に行われ、量産可
能なAlN焼結体の熱伝導率は数年前まで40〜60W/m.kであ
ったものが、〜200W/m.kまで改良されるに到った。
In recent years, application research on semiconductor substrates has been actively conducted, and the thermal conductivity of mass-produced AlN sintered bodies was 40 to 60 W / mk until a few years ago, but it will be improved to ~ 200 W / mk. Arrived

窒化アルミニウム焼結体の高熱伝導率化の達成について
は高純度AlN原料、特に酸素含有量の少ないAlN粉の量産
が可能になったことが第1の要因である。
Regarding the achievement of high thermal conductivity of the aluminum nitride sintered body, the first factor is that mass production of high-purity AlN raw material, particularly AlN powder having a low oxygen content, has become possible.

酸素含有量の少ないAlN粉を主成分とし、焼結助剤の最
適化により、高熱伝導性のAlN焼結体が得られるように
なったが、一方、酸素含有量が少なくなると共に焼結性
が悪くなる傾向があり、緻密な焼結体を得るためには従
来に比べてより高温での焼結が必要となってきた。
AlN powder with low oxygen content was the main component, and by optimizing the sintering aid, it became possible to obtain an AlN sintered body with high thermal conductivity, but on the other hand, the oxygen content decreased and sinterability increased. However, in order to obtain a dense sintered body, it has become necessary to sinter at a higher temperature than in the past.

すなわち、従来酸素量が多いAlN粉はその粉末から得た
焼結体の熱伝導率は低いが焼結性においては優れていた
と言える。半導体実装基板への応用を考える時、現在広
く使用されているアルミナ基板との代替が考えられる
が、このような応用を考える時、徹底的な低コスト化が
必要であり、焼結温度の上昇は製造コストの増加とな
り、好ましくないものであった。
That is, it can be said that the AlN powder having a large amount of oxygen in the past was excellent in sinterability although the sintered body obtained from the powder had a low thermal conductivity. When considering application to semiconductor mounting boards, it is possible to substitute for alumina substrates that are widely used at present, but when considering such applications, it is necessary to thoroughly reduce the cost and increase the sintering temperature. Was unfavorable because it increased the manufacturing cost.

(発明が解決しようとする問題点) 本発明は高純度で低酸素含有量のAlNを用いて、その高
熱伝導性を損うことなく焼結性を改良し、低温での焼結
を可能とするものである。
(Problems to be Solved by the Invention) The present invention uses AlN with high purity and low oxygen content to improve sinterability without impairing its high thermal conductivity, and enables sintering at low temperature. To do.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段と作用) 本発明者等は、各種添加物を加えたAlN焼結体の焼結性
および熱伝導率について、種々研究を行った結果、アル
カリ土類化合物および又は希土類化合物および遷移金属
元素又はそれらの化合物、およびアルミニウム酸化物か
ら成る添加物を加えることにより、高純度AlN原料本来
の高熱伝導性を扱うことなく焼結性が改良されることを
見い出した。
(Means and Actions for Solving Problems) The present inventors have conducted various studies on sinterability and thermal conductivity of AlN sintered bodies to which various additives are added, and as a result, alkaline earth compounds and It has also been found that by adding an additive consisting of a rare earth compound and a transition metal element or a compound thereof, and an aluminum oxide, the sinterability is improved without dealing with the high thermal conductivity inherent in the high-purity AlN raw material.

すなわち本発明はAlNを主成分とし、これにアルカリ土
類金属化合物および又は希土類化合物および遷移金属化
合物およびアルミニウム酸化物から成る添加物を各々の
酸化物に換算して0.05〜20重量%添加して焼結したこと
を特徴とする。
That is, the present invention contains AlN as a main component, to which an additive consisting of an alkaline earth metal compound and / or a rare earth compound and a transition metal compound and an aluminum oxide is added in an amount of 0.05 to 20% by weight in terms of each oxide. It is characterized by being sintered.

本発明においてアルカリ土金属元素としてはCa,Ba,Sr
が、希土類元素としてはY,La,Ceがそして遷移金属元素
としてはZr,Ti,Hf,Ni,Cr,Mn,Fe,Co,Ta,Nb,WそしてVが
特に有効であり、これらの元素からなる化合物、すなわ
ち酸化物、窒化物又は炭化物等として添加して焼結する
ことが望ましい。更には、アルカリ土類化合物および又
は希土類化合物の合計量が各々の酸化物換算で0.02〜15
重量%、遷移金属化合物が同じく酸化物換算で0.02〜3
重量%アルミニウム酸化物が0.02〜3重量%添加して焼
結することが望ましい。
In the present invention, as the alkaline earth metal element, Ca, Ba, Sr
However, Y, La, and Ce as rare earth elements and Zr, Ti, Hf, Ni, Cr, Mn, Fe, Co, Ta, Nb, W and V are particularly effective as transition metal elements. It is desirable to add and sinter as a compound consisting of, that is, an oxide, a nitride, a carbide, or the like. Furthermore, the total amount of alkaline earth compounds and / or rare earth compounds is 0.02 to 15 in terms of each oxide.
% By weight, transition metal compound is 0.02 to 3 in terms of oxide
It is desirable to add 0.02 to 3% by weight of aluminum oxide and sinter.

一般にアルカリ土類金属化合物、希土類化合物が焼結助
剤として、緻密化に有効であるのは、焼結温度において
主にAlN原料中の不純物酸素と反応して液相を生じ、AlN
の液相焼結を進行させると考えられている。このような
焼結機構において、低酸素含有なAlN原料では、焼結性
が低下するのは、上述のような焼結助剤と反応して焼結
時に生じる液相量が少なくなるため、焼結が進行し難な
るためであろうと推測される。すなわち、低酸素含有な
AlN原料においては、アルミニウム酸化物およびアルカ
リ土類金属および又は希土類化合物を添加することによ
って焼結に充分な液相1が生じ、更に添加したアルミニ
ウム酸化物はAlNと反応してAlの酸窒化物、スピネル又
はα−Al2O3などを生成することなく、アルカリ土類金
属アルミネート化合物又は希土類アルミネート化合物と
なって生成するため、熱伝導率を低下させることはない
ものであろうと推定される。
In general, alkaline earth metal compounds and rare earth compounds are effective for densification as sintering aids because they mainly react with impurity oxygen in AlN raw material at the sintering temperature to form a liquid phase,
It is believed that the liquid phase sintering of is promoted. In such a sintering mechanism, in the low oxygen content AlN raw material, the sinterability decreases because the amount of liquid phase generated during the sintering due to the reaction with the sintering aid as described above decreases. It is presumed that this may be because it is difficult for the marriage to proceed. That is, low oxygen content
In the AlN raw material, by adding aluminum oxide and an alkaline earth metal and / or a rare earth compound, a liquid phase 1 sufficient for sintering is generated, and the added aluminum oxide reacts with AlN to form an oxynitride of Al. , Spinel or α-Al 2 O 3 etc. are not formed, and since they are formed as alkaline earth metal aluminate compounds or rare earth aluminate compounds, it is presumed that the thermal conductivity will not be reduced. It

更に、本発明から成るAlN焼結体では、遷移金属元素又
はそれらの化合物、中でも周期律表第IVの族、すなわ
ち、Zr,Tr,Hfを加えると、高熱伝導性に加えて、極めて
高強度のものとなるが、他の遷移金属元素であるNi、C
r、Mn、Fe、Co、Ta、Nb、W、V又はその化合物も熱伝
導性はZrの化合物と同様である。
Furthermore, in the AlN sintered body according to the present invention, a transition metal element or a compound thereof, especially Group IV of the periodic table, that is, Zr, Tr, Hf, in addition to high thermal conductivity, extremely high strength Other transition metal elements such as Ni and C
The thermal conductivity of r, Mn, Fe, Co, Ta, Nb, W, V or a compound thereof is similar to that of the Zr compound.

従来よりアルカリ土類金属そして希土類の化合物がAlN
の焼結助剤としておよび高熱伝導率化に有効であること
が知られていた。これらの添加物はAlN中に不可避的に
含まれている不純物酸素と反応し、例えば添加物がアル
カリ土類金属化合物のCaOである時は焼結後にCaO・2Al2
O3,CaO・Al2O3などの副相となって、不純物酸素を取り
込んだ生成物となり、焼結体を高熱伝導率化するものと
考えられている。又、このような添加物を全く含まずに
AlN単味で焼結すると、不純物酸素はAlNと反応してAlの
酸窒化物(Al(8/3+x/3)O4-XNX)又はスピネル(Al9O
3N7)をα−Al2O3等を生成し、たとえホットプレス焼結
により緻密化したとしても熱伝導率を大幅に低下させる
ことが知られている。
AlN is a compound of alkaline earth metals and rare earths
It has been known that it is effective as a sintering aid of and for increasing the thermal conductivity. These additives react with impurity oxygen unavoidably contained in AlN.For example, when the additive is CaO of alkaline earth metal compound, CaO.2Al 2 after sintering is used.
It is considered that it becomes a sub-phase of O 3 , CaO / Al 2 O 3, etc., and becomes a product in which impurity oxygen is taken in, thereby increasing the thermal conductivity of the sintered body. Also, without such additives at all
When sintered with AlN alone, the impurity oxygen reacts with AlN and oxynitride of Al (Al (8/3 + x / 3) O 4-X N X ) or spinel (Al 9 O
It is known that even if 3 N 7 ) is converted into α-Al 2 O 3 or the like and densified by hot press sintering, the thermal conductivity is significantly reduced.

一般に高熱伝導率なAlN焼結体を得るためにはアルミニ
ウム酸化物は有害な不純物として極力混入しないように
するのが常道的な考え方である。しかしながら、本発明
者等の研究結果では、アルカリ土類金属化合物および又
は希土類化合物および遷移金属化合物と共にアルミニウ
ム酸化物と添加すると、何ら熱伝導率を損うことなく、
かえって焼結性を向上させることが判明したものであ
る。
In general, in order to obtain an AlN sintered body having high thermal conductivity, it is a normal idea to prevent aluminum oxide from being mixed as a harmful impurity as much as possible. However, the research results of the inventors of the present invention show that addition of an aluminum oxide together with an alkaline earth metal compound and / or a rare earth compound and a transition metal compound does not impair the thermal conductivity at all,
On the contrary, it was found to improve the sinterability.

更に、本発明の焼結体は、第2の添加物である遷移元素
を含有することによって着色され、しかも、その色調は
添加物元素の種類とその添加量及び組合わせによって様
々に変えることが可能である。即ち、一般に、AlN原料
ではAl/Nモル比が必ずしも1ではなく、Alリッチである
場合が多く、このような原料では焼結体の色は灰色又は
黒色となる。又、原料がAlリッチであるほど黒色化が進
む一方で、熱伝導率が低下してしまうことが通例であ
る。したがって、AlN原料において、AlNモル比がなるべ
く1に近く、かつ含有される不純物量が少ないほど熱伝
導率が向上し、かつ白色ないしは半透明の焼結体が得ら
れるのである。つまり、従来は、高熱伝導率のものを得
ようとすると、必然的に焼結体の色は白色ないし半透明
となってしまい、一方、着色したものを得ようとする
と、熱伝導率が低下してしまう。これに対して、本発明
ではアルカリ土類元素及び/又は希土類元素と遷移金属
元素とを同時に添加することにより、Al/Nモル比が1に
近く、しかも不純物量の少ないAlN原料を用い高い熱伝
導率を確保しつつ、添加元素の種類又は組合せを適宜選
択して、種々に着色した焼結体を得ることが可能であ
る。例えば、Cr2O3等を添加すると、濃灰色に着色さ
れ、又、TiO2を添加すると茶色に着色される。一方、Eu
2O3,Sm2O3等を添加すると淡赤色となり、TiO2とCr2O3
同時に添加すると濃灰色から黒色のものが得られる。し
たがって、本発明によれば、所望の色調を呈するAlN焼
結体を製造することが可能である。このように着色され
たAlN焼結体は、熱の放射率が高くなるので放熱性が更
に良好となり、半導体回路の誤動作の要因となる光を遮
ぎり、又、着色により製造時の焼結ムラ等を回避するこ
とができ製品の美観を高めることができる等の利点を有
するものである。
Further, the sintered body of the present invention is colored by containing the transition element which is the second additive, and its color tone can be variously changed depending on the kind of the additive element, its addition amount and combination. It is possible. That is, in general, the AlN raw material does not always have an Al / N molar ratio of 1 and is often Al-rich, and with such a raw material, the color of the sintered body is gray or black. Further, as the raw material is richer in Al, blackening progresses, while the thermal conductivity is usually lowered. Therefore, in the AlN raw material, the more the AlN molar ratio is as close as possible to 1 and the smaller the amount of impurities contained, the more the thermal conductivity is improved, and a white or translucent sintered body can be obtained. In other words, in the past, when trying to obtain a material with high thermal conductivity, the color of the sintered body was inevitably white or translucent, while when trying to obtain a colored material, the thermal conductivity decreased. Resulting in. On the other hand, in the present invention, by simultaneously adding the alkaline earth element and / or the rare earth element and the transition metal element, the Al / N molar ratio is close to 1, and the AlN raw material containing a small amount of impurities is used to obtain high heat. It is possible to obtain variously colored sintered bodies by appropriately selecting the type or combination of additive elements while ensuring the conductivity. For example, when Cr 2 O 3 or the like is added, it is colored dark gray, and when TiO 2 is added, it is colored brown. On the other hand, Eu
Addition of 2 O 3 , Sm 2 O 3, etc. gives a pale red color, and simultaneous addition of TiO 2 and Cr 2 O 3 gives a dark gray to black color. Therefore, according to the present invention, it is possible to manufacture an AlN sintered body exhibiting a desired color tone. The AlN sintered body colored in this way has a higher emissivity of heat, so that the heat dissipation is further improved, and it blocks the light that causes malfunction of the semiconductor circuit, and coloring causes uneven sintering. It is possible to avoid such problems and to enhance the aesthetic appearance of the product.

本発明において、アルカリ土類金属化合物および又は希
土類化合物およびアルミニウム酸化物の合計量を0.05〜
20重量%としたのは0.05重量%未満では、目的とする効
果が得られないためであり、20重量%を超えると、耐熱
性、機械的強度が損われるばかりか、熱伝導率も低下し
てしまう場合があるためである。又、アルカリ土類金属
化合物および希土類化合物は、酸化物、フッ化物、窒化
物、炭化物が望ましいが、焼成途中にこれらの化合物と
なるものでも何ら支障はない。更に、アルミニウム酸化
物は、α−Al2O3,γ−Al2O3などのAl2O3又は焼成途中に
これらの酸化物となるものを用いることができる。
In the present invention, the total amount of the alkaline earth metal compound and / or the rare earth compound and the aluminum oxide is 0.05 to
20% by weight is because if less than 0.05% by weight, the intended effect cannot be obtained, and if it exceeds 20% by weight, not only the heat resistance and mechanical strength are impaired, but also the thermal conductivity decreases. This is because there is a possibility that Further, the alkaline earth metal compound and the rare earth compound are preferably oxides, fluorides, nitrides and carbides, but there is no problem even if they become these compounds during firing. Further, as the aluminum oxide, it is possible to use Al 2 O 3 such as α-Al 2 O 3 and γ-Al 2 O 3, or those which become these oxides during firing.

次に、本発明のAlN焼結体を得るための一製造方法を説
明する。
Next, one manufacturing method for obtaining the AlN sintered body of the present invention will be described.

まず、AlN粉末に所定量の添加物を加え、ボールミル等
を用いて混合した後、常圧焼結の場合はバインダーを加
え、混練、造粒、整粒を行い、金型、静水圧プレス或い
はシート成形により成形を行う。つづいて、成形体をN2
ガス気流中で700℃前後で加熱してバインダーを除去す
る。次いで、成形体を黒鉛又は窒化アルミニウムの容器
にセットし、N2ガス雰囲気中にて1600〜1850℃で常圧焼
結を行う。
First, after adding a predetermined amount of additives to the AlN powder and mixing using a ball mill or the like, in the case of pressureless sintering, a binder is added, and kneading, granulation and sizing are performed, and a mold, a hydrostatic press or Molding is performed by sheet molding. Next, the molded body is N 2
The binder is removed by heating at around 700 ° C in a gas stream. Next, the molded body is set in a container of graphite or aluminum nitride, and pressureless sintering is performed at 1600 to 1850 ° C. in a N 2 gas atmosphere.

一方、ホットプレス焼結の場合は前記ボールミル等で混
合した原料を1600〜1800℃でホットプレスする。
On the other hand, in the case of hot press sintering, the raw materials mixed by the ball mill or the like are hot pressed at 1600 to 1800 ° C.

〔発明の実施例〕Example of Invention

実施例1 不純物としての酸素を1.4重量%含有し、平均粒径が2.2
μmのAlN粉末に、平均粒径2.5μmのY2O3を3重量%及
び平均粒径3μmのZrO2を0.5重量%平均粒径1.0μmの
α−Al2O3 0.2重量%添加し、ボールミルを用いて粉
砕、混合を行い原料を調製した。次いで、この原料にバ
インダーとしてパラフィンを7重量%添加して造粒した
のち、300kg/cm2の圧力でプレス成形して50×50×8mmの
圧粉体とした。この圧粉体を窒素ガス雰囲気中で700℃
まで加熱してパラフィンを除去した。更に、カーボン製
容器に収容し、窒素ガス雰囲気中、1800℃において2時
間常圧焼結した。得られたAlN焼結体の密度を測定し
た。又、焼結体から直径10mm、厚さ2.5mmの円板を研削
し、これを試験片としてレーザフラッシュ法により熱伝
導率を測定した。
Example 1 1.4% by weight of oxygen as an impurity was contained and the average particle size was 2.2.
3% by weight of Y 2 O 3 having an average particle size of 2.5 μm and 0.5% by weight of ZrO 2 having an average particle size of 3 μm were added to 0.2 μ% of α-Al 2 O 3 having an average particle size of 1.0 μm, The raw material was prepared by crushing and mixing using a ball mill. Then, 7% by weight of paraffin was added as a binder to this raw material, and the mixture was granulated, and then press-molded at a pressure of 300 kg / cm 2 to obtain a green compact of 50 × 50 × 8 mm. This green compact was heated to 700 ° C in a nitrogen gas atmosphere.
To remove paraffin. Further, it was housed in a carbon container and sintered under atmospheric pressure at 1800 ° C. for 2 hours in a nitrogen gas atmosphere. The density of the obtained AlN sintered body was measured. Further, a disk having a diameter of 10 mm and a thickness of 2.5 mm was ground from the sintered body, and this was used as a test piece to measure the thermal conductivity by the laser flash method.

又、得られた焼結体から幅4mm厚さ3mm長さ40mmの角棒を
6本研削加工し、これを抗折強度測定用試験片として、
支点間距離20mm、クロスヘッド速度0.5mm/minの条件で
3点曲げ強度を測定した。これらの結果を第1表に示し
た。
In addition, 6 square bars with a width of 4 mm, a thickness of 3 mm, and a length of 40 mm were ground from the obtained sintered body, and this was used as a test piece for bending strength measurement.
Three-point bending strength was measured under the conditions of a fulcrum distance of 20 mm and a crosshead speed of 0.5 mm / min. The results are shown in Table 1.

実施例2〜24,比較例1〜5 AlN粉末の種類並びに添加物の種類を種々に変えて、上
記実施例と同様にしてAlN焼結体を製造し、それぞれに
ついて、同じく密度熱伝導率および3点曲げ強度を測定
した。結果を、各AlN粉末の粒径、酸素含有量、焼結添
加物の種類、添加量とともに第1表に示した。
Examples 2 to 24, Comparative Examples 1 to 5 AlN sintered bodies were manufactured in the same manner as in the above-mentioned Examples by changing the types of AlN powder and the types of additives in various ways. Three-point bending strength was measured. The results are shown in Table 1 together with the particle size of each AlN powder, the oxygen content, the type of sintering additive, and the amount added.

実施例25 平均粒径2.8μmで不純物酸素量が1.8重量%のAlN粉末
に平均粒径2.5μmのY2O3 5重量%および、平均粒径1.0
μmのγ−Al2O3 0.2重量%および平均粒径2.1μmのTi
O2 0.5重量%を添加し、ボールミルで粉砕・混合して原
料を調整した。
Example 25 AlN powder having an average particle size of 2.8 μm and an impurity oxygen content of 1.8% by weight, Y 2 O 3 5% by weight having an average particle size of 2.5 μm, and an average particle size of 1.0
0.2% by weight of γ-Al 2 O 3 and Ti having an average particle size of 2.1 μm
0.5% by weight of O 2 was added, and the raw material was adjusted by grinding and mixing with a ball mill.

次いで、この原料にバインダーとしてパラフィンを7重
量%添加して造粒したのち、500kg/cm2の圧力下でプレ
ス成形して30×30×8mmの圧粉体とした。この圧粉体を
窒素気流中で最高温度700℃まで加熱してパラフィンを
除去した。
Then, 7% by weight of paraffin was added as a binder to this raw material, and the mixture was granulated and then press-molded under a pressure of 500 kg / cm 2 to obtain a 30 × 30 × 8 mm green compact. The green compact was heated to a maximum temperature of 700 ° C. in a nitrogen stream to remove paraffin.

次にカーボン容器中にセットして、窒素ガス雰囲気下で
1650,1700,1750,1800,1850,1900℃の各温度で2時間加
熱して常圧焼結した。得られた各焼結体の密度を測定し
た。又、各焼結体から直径10mm厚さ2.5mmの円板を切り
出し、これを試験片としてレーザーフラッシュ法によ
り、熱伝導率を測定した。この結果を第2表および第1
図のAとして示した。
Next, set it in a carbon container, and in a nitrogen gas atmosphere
It was heated at each temperature of 1650, 1700, 1750, 1800, 1850, 1900 ° C. for 2 hours and sintered under normal pressure. The density of each obtained sintered body was measured. Further, a disk having a diameter of 10 mm and a thickness of 2.5 mm was cut out from each sintered body, and a thermal conductivity was measured by a laser flash method using this as a test piece. The results are shown in Table 2 and Table 1.
Shown as A in the figure.

比較例6 実施例25で用いたAlN粉末に、同じく実施例25で用いたY
2O35重量%を添加し、実施例25と同様な方法で常圧焼結
体6ヶを製造した。各焼結体の密度を測定し、又実施例
25と同様に熱伝導率を測定した。これらの結果を実施例
25の結果と同じく第2表そして第1図のBとしての合わ
せて示した。
Comparative Example 6 The AlN powder used in Example 25 was the same as Y used in Example 25.
6 % normal pressure sintered bodies were manufactured in the same manner as in Example 25 by adding 5% by weight of 2 O 3 . The density of each sintered body was measured, and
The thermal conductivity was measured in the same manner as 25. Examples of these results
The results of 25 are also shown in Table 2 and FIG. 1B.

実施例26 実施例22で用いたAlN粉末に、実施例25で用いたY2O3
末3重量%および同じく実施例25で用いたTiO2 0.5重量
%および同じく実施例25で用いたγ−Al2O3 0.2重量%
を添加し、ボールミルを用いて粉砕・混合を行い原料を
調整した。この原料粉を500kg/cm2の圧力でプレス成形
して、直径12mm、圧さ10mmの圧粉体とした。しかるの
ち、この圧力粉体をカーボン型中に入れ、窒素ガス雰囲
気中、温度1700℃で400kg/cm2の圧力下でホットプレス
焼結を行った。実施例25と同様にして、得られた焼結体
の密度、熱伝導率を測定し、結果を第3素に示した。
Example 26 3% by weight of Y 2 O 3 powder used in Example 25, 0.5% by weight of TiO 2 used in Example 25 and γ− used in Example 25 were added to the AlN powder used in Example 22. Al 2 O 3 0.2 wt%
Was added, and the raw materials were adjusted by crushing and mixing using a ball mill. This raw material powder was press-molded at a pressure of 500 kg / cm 2 to obtain a green compact having a diameter of 12 mm and a pressure of 10 mm. Then, this pressure powder was put into a carbon mold, and hot press sintering was carried out in a nitrogen gas atmosphere at a temperature of 1700 ° C. under a pressure of 400 kg / cm 2 . The density and thermal conductivity of the obtained sintered body were measured in the same manner as in Example 25, and the results are shown in the third element.

実施例27〜33,比較例7〜11 AlNの粉末ならびに添加物の種類を変えて、上記実施例2
6と同様にしてAlN焼結体をホットプレス焼結により製造
した。得られた各焼結体の密度、熱伝導率を測定し、結
果を第3表に示した。
Examples 27-33, Comparative Examples 7-11 The above-mentioned Example 2 was carried out by changing the types of AlN powder and additives.
An AlN sintered body was manufactured by hot press sintering in the same manner as in 6. The density and thermal conductivity of each of the obtained sintered bodies were measured, and the results are shown in Table 3.

実施例34 実施例1で用いたAlN粉末にY(NO3・6H2OをY2O3
算で5重量%、およびCa(NO3・4H2OをCaO換算で2
重量%および平均粒径1.5μmのTi粉末を0.5重量%、お
よび平均粒径1.0μmのγ−Al2O3を0.3重量%を加えて
ボールミルを用いて粉砕混合を行い原料粉を調整した。
このとき、Y(NO3・6H2OおよびCa(NO3・4H2O
はn−ブタノールに溶解し、他の粉末と混合せしめた。
次いで実施例25と同様にして、圧粉体を成形し、パラフ
ィンを除去し、カーボン容器中、窒素ガス雰囲気下で18
00℃、1時間加熱して常圧焼結体を得た。得られた焼結
体の密度と熱伝導率を測定し、結果を表−3に示した。
Example 34 Y (NO 3 ) 3 .6H 2 O in the AlN powder used in Example 1 was 5% by weight in terms of Y 2 O 3 , and Ca (NO 3 ) 2 4H 2 O was 2 in terms of CaO.
0.5% by weight of Ti powder having an average particle size of 1.5 μm and 0.3% by weight of γ-Al 2 O 3 having an average particle size of 1.0 μm were added and pulverized and mixed using a ball mill to prepare a raw material powder.
In this case, Y (NO 3) 3 · 6H 2 O and Ca (NO 3) 2 · 4H 2 O
Was dissolved in n-butanol and mixed with other powders.
Then, in the same manner as in Example 25, a green compact was formed, paraffin was removed, and the mixture was placed in a carbon container under a nitrogen gas atmosphere.
It was heated at 00 ° C for 1 hour to obtain a normal pressure sintered body. The density and thermal conductivity of the obtained sintered body were measured, and the results are shown in Table-3.

〔発明の効果〕 以上述べた如く、本発明によれば、低酸素含有なAlN半
分を用いた場合の焼結性の低下を、本来の高熱伝導性を
何ら損うことなく、抑制しうるものである。
[Effects of the Invention] As described above, according to the present invention, it is possible to suppress the decrease in sinterability when using a low oxygen content AlN half, without impairing the original high thermal conductivity. Is.

更に本発明によれば、高強度でしかも高熱伝導性のAlN
焼結体および高強度で高熱伝導性でしかも遮光性のAlN
焼結体の製造も可能となる。このような焼結体は、例え
ば半導体用放熱基板などの応用に適し、その工業的価値
は極めて大である。
Further, according to the present invention, AlN having high strength and high thermal conductivity
Sintered body and AlN with high strength, high thermal conductivity and light shielding property
It is also possible to manufacture a sintered body. Such a sintered body is suitable for applications such as a heat dissipation substrate for semiconductors, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は各焼結温度に対する焼結体の密度と熱伝導率の
変化を示す図。
FIG. 1 is a diagram showing changes in density and thermal conductivity of a sintered body with respect to each sintering temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 柘植 章彦 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (56)参考文献 特開 昭58−55376(JP,A) 特開 昭61−39918(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Ueno 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute Co., Ltd. (56) References JP-A-58-55376 (JP, A) JP-A-61-39918 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素量が2重量%以下、平均粒径5μm以
下の窒化アルミニウムを主成分とし、これに酸化物換算
で (i)アルカリ土類元素および/又は希土類元素の化合
物を0.02〜15重量%。 (ii)Ti、Hf、Ni、Cr、Mn、Fe、Co、Ta、Nb、W、Vか
ら選ばれた少なくとも1種の遷移金属元素又はそれらの
化合物を0.02〜3重量%。 (iii)アルミニウム酸化物を0.02〜3重量%。 添加物とし、総量0.06〜15重量%添加して焼結すること
を特徴とする熱伝導率が90w/m・k以上の窒化アルミニ
ウム焼結体の製造方法。
1. An aluminum nitride having an oxygen content of 2% by weight or less and an average particle diameter of 5 μm or less as a main component, and 0.02 to 15 of a compound of (i) an alkaline earth element and / or a rare earth element in terms of oxide. weight%. (Ii) 0.02 to 3% by weight of at least one transition metal element selected from Ti, Hf, Ni, Cr, Mn, Fe, Co, Ta, Nb, W and V or a compound thereof. (Iii) 0.02 to 3% by weight of aluminum oxide. A method for producing an aluminum nitride sintered body having a thermal conductivity of 90 w / m · k or more, which comprises adding 0.06 to 15% by weight as an additive and sintering the mixture.
【請求項2】アルカリ土類元素がCa、Ba、Srのうち少な
くとも1種である特許請求の範囲第1項記載の窒化アル
ミニウム焼結体の製造方法。
2. The method for producing an aluminum nitride sintered body according to claim 1, wherein the alkaline earth element is at least one of Ca, Ba and Sr.
【請求項3】希土類元素がY、La、Ceの少なくとも1種
である特許請求の範囲第1項記載の窒化アルミニウム焼
結体の製造方法。
3. The method for producing an aluminum nitride sintered body according to claim 1, wherein the rare earth element is at least one of Y, La and Ce.
JP61160820A 1986-07-10 1986-07-10 Method for manufacturing aluminum nitride sintered body Expired - Lifetime JPH0788256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160820A JPH0788256B2 (en) 1986-07-10 1986-07-10 Method for manufacturing aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160820A JPH0788256B2 (en) 1986-07-10 1986-07-10 Method for manufacturing aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS6317262A JPS6317262A (en) 1988-01-25
JPH0788256B2 true JPH0788256B2 (en) 1995-09-27

Family

ID=15723122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160820A Expired - Lifetime JPH0788256B2 (en) 1986-07-10 1986-07-10 Method for manufacturing aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0788256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592895B2 (en) * 1988-03-30 1997-03-19 株式会社東芝 Baking container and method for producing the same
JP2828998B2 (en) * 1988-07-28 1998-11-25 株式会社東芝 Manufacturing method of aluminum nitride sintered body
KR101256878B1 (en) * 2006-11-23 2013-05-02 주식회사 코미코 Aluminum nitride sintered body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855376A (en) * 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS6139918A (en) * 1984-07-31 1986-02-26 Hitachi Ltd Slider for thin magnetic head

Also Published As

Publication number Publication date
JPS6317262A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
EP0207465B1 (en) Aluminum nitride sintered body and preparation thereof
KR890003857B1 (en) Sintering products and method for producing thereof
US5001089A (en) Aluminum nitride sintered body
KR960016070B1 (en) Sintered aluminium nitride and its production
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP3145519B2 (en) Aluminum nitride sintered body
JP2535139B2 (en) Heat dissipation board
JPH05279129A (en) Low-thermally conductive ceramic and its production
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2772581B2 (en) Black aluminum nitride sintered body
JPH0977559A (en) Aluminum nitride sintered compact and its production
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2949936B2 (en) Method for producing silicon nitride sintered body
JP2647347B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2704194B2 (en) Black aluminum nitride sintered body
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2647346B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0627031B2 (en) Aluminum nitride sintered body
JPS62256772A (en) Aluminum nitride sintered body
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term