JP2949936B2 - Method for producing silicon nitride sintered body - Google Patents

Method for producing silicon nitride sintered body

Info

Publication number
JP2949936B2
JP2949936B2 JP3193001A JP19300191A JP2949936B2 JP 2949936 B2 JP2949936 B2 JP 2949936B2 JP 3193001 A JP3193001 A JP 3193001A JP 19300191 A JP19300191 A JP 19300191A JP 2949936 B2 JP2949936 B2 JP 2949936B2
Authority
JP
Japan
Prior art keywords
sintering
silicon nitride
sintered body
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3193001A
Other languages
Japanese (ja)
Other versions
JPH0532460A (en
Inventor
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3193001A priority Critical patent/JP2949936B2/en
Publication of JPH0532460A publication Critical patent/JPH0532460A/en
Application granted granted Critical
Publication of JP2949936B2 publication Critical patent/JP2949936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化ケイ素焼結体の製造
方法に係る。
The present invention relates to a method for producing a silicon nitride sintered body.

【0002】[0002]

【従来の技術】窒化ケイ素は高強度、高靱性であり、構
造材料として最も注目されている材料である。しかし、
窒化ケイ素は難焼結性であるため、Y2 3 ,Al2
3 ,MgOなどの焼結助剤を添加し、1700℃〜18
00℃で焼結される。また、さらに高強度化、緻密化の
ためには加圧焼結法が採用される。
2. Description of the Related Art Silicon nitride has high strength and high toughness, and is the material that has received the most attention as a structural material. But,
Since silicon nitride is difficult to sinter, Y 2 O 3 , Al 2 O
3 , Add a sintering aid such as MgO,
Sintered at 00 ° C. Further, a pressure sintering method is adopted for further increasing the strength and densification.

【0003】[0003]

【発明が解決しようとする課題】上記の如く、窒化ケイ
素は難焼結性であるため、緻密化を図るために1700
℃〜1800℃という高温にする必要があり、温度保持
のため密閉式の炉を使い、高温に耐えるヒーター材質を
必要とするなどの不便があった。また、緻密化のために
焼成温度を上げると粒成長して焼結体強度が低下すると
いう問題もあった。
As described above, since silicon nitride is difficult to sinter, 1700
The temperature must be as high as 1 ° C. to 1800 ° C., and there are inconveniences such as using a closed furnace for maintaining the temperature and using a heater material that can withstand the high temperature. In addition, when the firing temperature is increased for densification, there is a problem that grain growth occurs and the strength of the sintered body decreases.

【0004】そこで、本発明は、簡易な炉を用いて低温
で焼成してなおかつ緻密で高温での強度の高い窒化ケイ
素焼結体を製造する方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for producing a silicon nitride sintered body which is fired at a low temperature using a simple furnace and which is dense and has high strength at a high temperature.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、平均粒径が0.5μm以下の窒化ケイ素
粉末に、焼結助剤としてY2 3 とMgAl2 4 を総
量で5%〜15重量%、Y2 3 とMgAl2 4 の重
量比(Y2 3 /MgAl2 4 )が0.3〜10の範
囲で混合し、成形後窒素雰囲気中で1500℃から15
50℃の範囲で焼結することを特徴とする窒化ケイ素焼
結体の製造方法を提供する。
According to the present invention, in order to achieve the above object, Y 2 O 3 and MgAl 2 O 4 are added as sintering aids to a silicon nitride powder having an average particle size of 0.5 μm or less. 5% to 15% by weight in total, Y 2 O 3 and the weight ratio of MgAl 2 O 4 (Y 2 O 3 / MgAl 2 O 4) were mixed in a range of 0.3 to 10, in a molding after a nitrogen atmosphere 1500 to 15
A method for producing a silicon nitride sintered body characterized by sintering at a temperature of 50 ° C.

【0006】出発原料の窒化ケイ素粉末は粒径0.5μ
m以下、好ましくは0.1〜0.4μmのものを使用す
る。窒化ケイ素粉末の粒径が小さいことによって、焼結
性が向上し、かつ焼結体組織が細かいので、従来より低
温度での焼結により高強度の焼結体を得ることが可能に
なる。焼結助剤としてはY2 3 とMgAl2 4 を使
用する。この組み合せが低温度域までの焼結性が最も良
く、緻密な焼結体が得られる。Y2 3 とMgAl2
4 の添加量は合計で5〜15重量%とする。これらの焼
結助剤の添加量が少ないと緻密化せず、従って強度も向
上しない。一方、焼結助剤の量が多くなると、緻密焼結
はするが粒界ガラス相が増加し、強度が低下するからで
ある。また、Y 2 3 とMgAl2 4 の重量比(Y2
3 /MgAl2 4 )を0.3〜10の範囲内とす
る。この範囲外では緻密に焼結しない。
The starting material silicon nitride powder has a particle size of 0.5 μm.
m, preferably 0.1 to 0.4 μm
You. Due to the small particle size of silicon nitride powder,
Performance and the fine structure of the sintered body
High strength sintered body can be obtained by sintering at temperature
Become. Y as sintering aidTwoOThreeAnd MgAlTwoOFouruse
To use. This combination has the best sinterability up to the low temperature range.
And a dense sintered body can be obtained. YTwoOThreeAnd MgAlTwoO
FourIs 5 to 15% by weight in total. These baked
If the amount of binder added is small, densification does not occur, and therefore strength is also improved.
Don't go up. On the other hand, when the amount of the sintering aid increases,
Although the grain boundary glass phase increases and the strength decreases,
is there. Also, Y TwoOThreeAnd MgAlTwoOFourWeight ratio (YTwo
OThree/ MgAlTwoOFour) Is in the range of 0.3 to 10.
You. Outside this range, it does not sinter densely.

【0007】また、純度はSi3 4 で金属不純物総量
100ppm 以下、焼結助剤で99.9%以上のものを使
用することが好ましい。不純物があまり多いと緻密に焼
結しない。本発明では、このように出発原料の粒径、焼
結助剤の種類と配合比を特定することによって、従来よ
り低温での焼結を可能にし、また低温での焼結が可能に
されることにより焼結体の結晶粒の成長を抑制して高強
度化を可能にしたものである。
It is preferable to use Si 3 N 4 having a total amount of metal impurities of 100 ppm or less and a sintering aid having a purity of 99.9% or more. If there are too many impurities, it will not be sintered densely. In the present invention, sintering at a lower temperature than before and sintering at a lower temperature are made possible by specifying the particle size of the starting material, the type and the mixing ratio of the sintering aid. Thus, the growth of the crystal grains of the sintered body is suppressed, and the strength can be increased.

【0008】具体的には、本発明の窒化ケイ素焼結体は
1500℃〜1550℃で焼結させる。焼結温度が15
00℃〜1550℃と低温であるため、炉の構造−材質
が従来の高温炉と大きく異なることができ、コストダウ
ン効果が大きい。
More specifically, the silicon nitride sintered body of the present invention
Sinter at 1500-1550C. Sintering temperature is 15
Since the temperature is as low as 00 ° C. to 1550 ° C., the structure and material of the furnace can be greatly different from those of the conventional high temperature furnace, and the cost reduction effect is great.

【0009】1400℃〜1650℃の温度範囲の焼結
でも800MPa 〜1500MPa の室温強度が得られ、こ
の値は従来1700℃〜1800℃との焼結温度を必要
としていた強度である。しかし、本発明の焼結温度範囲
は1500℃〜1550℃であり、この範囲で強度も最
高値(1200MPa 〜1300MPa 以上)を示す。この
強度値は従来の高温で焼結した最高強度レベルにほぼ匹
敵する高強度であり、本発明ではこれが従来より低温で
得られる。1500℃以下の温度でも緻密化するがα→
β転移が不十分であるため強度は低下する。また155
0℃以上の温度にすると焼結体組織の粒径が粗くなり強
度は低下する。しかしながら、焼結温度1400℃で8
00MPa 以上の強度値を発現した例はこれまで出ていな
い。この強度値は同じ1400℃域で焼結するアルミナ
等の酸化物(400MPa 程度)をはるかに上回る値であ
る。
Sintering in the temperature range of 1400 ° C. to 1650 ° C.
However, room temperature strength of 800 MPa to 1500 MPa was obtained.
Requires a sintering temperature between 1700 ° C and 1800 ° C
It was the strength that I had. However, the sintering temperature range of the present invention is 1500 ° C. to 1550 ° C., and in this range, the strength also shows the highest value (1200 MPa to 1300 MPa or more). This strength value is a high strength almost comparable to the highest strength level sintered at a conventional high temperature, and is obtained at a lower temperature in the present invention. It densifies even at temperatures below 1500 ° C, but α →
Strength is reduced due to insufficient β transition. 155
When the temperature is set to 0 ° C. or higher, the grain size of the sintered body structure becomes coarse, and the strength decreases. However, at a sintering temperature of 1400 ° C, 8
There has been no example in which an intensity value of 00 MPa or more has been developed. This strength value is much higher than that of an oxide such as alumina (about 400 MPa) sintered in the same 1400 ° C. range.

【0010】焼結雰囲気はN2 雰囲気である。焼結圧力
としては常圧でも緻密かつ高強度の焼結体が得られる。
高圧下での焼結では強度がさらに向上する。
The sintering atmosphere is an N 2 atmosphere. A dense and high-strength sintered body can be obtained even at normal sintering pressure.
Sintering under high pressure further improves the strength.

【0011】[0011]

【作用】出発原料と焼結助剤の種類、特性、配合比等を
特定したことにより、従来緻密化しなかった低温度での
焼結が可能となり、一層微細な粒子を有する焼結体が得
られた。微細な粒子で緻密な焼結体を得ることにより室
温で800MPa 〜1500MPa の高強度値を発現する。
[Function] By specifying the types, characteristics, and compounding ratios of the starting materials and the sintering aid, sintering at a low temperature, which has not been conventionally performed, becomes possible, and a sintered body having finer particles is obtained. Was done. By obtaining a dense sintered body with fine particles, a high strength value of 800 MPa to 1500 MPa is exhibited at room temperature.

【0012】[0012]

【実施例】シリコンジイミドの熱分解法、又は金属シリ
コンの直接窒化法により生成されたSi3 4 粉末(平
均粒径0.5μm以下、α化率92%〜97%)に焼結
助剤としてY2 3 粉末(平均粒径0.3μm、純度9
9.9%)、MgAl2 4 粉末(平均粒径0.3μ
m、純度99.9%)の添加量を表1に示す様な組成で
混合(窒化ケイ素製ボールミル)した各種粉末を200
kg/cm2 の圧力で加圧成形しその成形体を薄ゴムに詰め
真空封入後CIPにて3000kg/cm2 の圧力で加圧
後、この成形体を表1、表2に示す条件でN2 雰囲気中
の炉内で焼結させた。昇温速度は1℃/min 、最高温度
での保持時間は4時間とした。
EXAMPLE The thermal decomposition method of silicon diimide or metal silicide
Si produced by the direct nitriding method of concreteThreeNFourPowder (flat
Sintered to a uniform particle size of 0.5 μm or less, pregelatinized 92% to 97%
Y as auxiliaryTwoOThreePowder (average particle size 0.3 μm, purity 9
9.9%), MgAlTwoO FourPowder (average particle size 0.3μ
m, purity 99.9%) with the composition shown in Table 1.
Various powders mixed (silicon nitride ball mill) are mixed with 200
kg / cmTwoPressure molding with the pressure of
3000kg / cm by CIP after vacuum sealingTwoPressurized with pressure
Thereafter, the molded body was subjected to N 2 under the conditions shown in Tables 1 and 2.TwoIn the atmosphere
In a furnace. Heating rate is 1 ℃ / min, maximum temperature
Was 4 hours.

【0013】これらの焼結体の室温4点曲げ強度(JI
S R 1601)を各10本測定してその平均強度を
表1に示す。焼結体の相対密度はn−ブタノール置換法
で求めた嵩密度を理論密度で除して得た値である。比較
のために、出発原料、焼結助剤を変え、実施例と同様な
方法で成形したのち、この成形体を表3に示す条件でN
2 雰囲気の炉内焼結させ表3の結果を得た。
[0013] The room temperature four-point bending strength (JI
Table 1 shows the average intensities of ten SR 1601). The relative density of the sintered body is a value obtained by dividing the bulk density obtained by the n-butanol substitution method by the theoretical density. For comparison, the starting material and the sintering aid were changed, and molded in the same manner as in the example.
Sintering was performed in a furnace in two atmospheres, and the results in Table 3 were obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】本発明により下記の効果が奏せられる。 1)アルミナ等の酸化物と同じような1500℃という
非常に低温度の焼結で、酸化物の有する強度をはるかに
凌ぐ約1200MPa 以上の高強度値を発現する。しかも
ガス圧焼結のみならず常圧焼結で実現した。 2)1500〜1550℃レベルの焼結になると、従来
の高温度での焼結に比べて安価な焼成炉での焼結が可能
となる。従って、炉の耐久性、維持費など製造コスト低
減への波及効果が絶大である。
According to the present invention, the following effects can be obtained. 1) Sintering at a very low temperature of 1500 ° C. , similar to oxides such as alumina, exhibits a high strength value of about 1200 MPa or more , far exceeding the strength of oxides. Moreover, it was realized not only by gas pressure sintering but also by normal pressure sintering. 2) When sintering at a level of 1500 to 1550 ° C. , sintering in a firing furnace that is less expensive than conventional sintering at a high temperature becomes possible. Therefore, the ripple effect on manufacturing cost reduction such as furnace durability and maintenance cost is enormous.

【0018】2)1400℃レベルの焼結になると、従
来の高温度での焼結に比べて安価な焼成炉での焼結が可
能となる。従って、炉の耐久性、維持費など製造コスト
低減への波及効果が絶大である。
2) When sintering at the level of 1400 ° C., sintering in an inexpensive sintering furnace becomes possible as compared with conventional sintering at a high temperature. Therefore, the ripple effect on manufacturing cost reduction such as furnace durability and maintenance cost is enormous.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径が0.5μm以下の窒化ケイ素
粉末に、焼結助剤としてY2 3 とMgAl2 4 を総
量で5重量%〜15重量%、Y2 3 とMgAl2 4
の重量比(Y2 3 /MgAl2 4 )が0.3〜10
の範囲で混合し、成形後窒素雰囲気中で1500℃から
1550℃の範囲で焼結することを特徴とする窒化ケイ
素焼結体の製造方法。
1. A silicon nitride powder having an average particle size of 0.5 μm or less, Y 2 O 3 and MgAl 2 O 4 as sintering aids in a total amount of 5 to 15% by weight, Y 2 O 3 and MgAl 2 O 4
Weight ratio (Y 2 O 3 / MgAl 2 O 4 ) of 0.3 to 10
After molding, from 1500 ° C in a nitrogen atmosphere after molding
A method for producing a silicon nitride sintered body, comprising sintering at a temperature of 1550 ° C.
JP3193001A 1991-08-01 1991-08-01 Method for producing silicon nitride sintered body Expired - Fee Related JP2949936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193001A JP2949936B2 (en) 1991-08-01 1991-08-01 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193001A JP2949936B2 (en) 1991-08-01 1991-08-01 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH0532460A JPH0532460A (en) 1993-02-09
JP2949936B2 true JP2949936B2 (en) 1999-09-20

Family

ID=16300563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193001A Expired - Fee Related JP2949936B2 (en) 1991-08-01 1991-08-01 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2949936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG99292A1 (en) * 1999-11-03 2003-10-27 Univ Singapore A method for producing oxide compounds

Also Published As

Publication number Publication date
JPH0532460A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
JP2949936B2 (en) Method for producing silicon nitride sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JPH1179848A (en) Silicon carbide sintered compact
JP3036207B2 (en) Method for producing silicon nitride sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP3116701B2 (en) Method for producing silicon nitride sintered body
JPH075378B2 (en) Black aluminum nitride sintered body and manufacturing method thereof
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH09227233A (en) Production of silicon carbide sintered compact
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH06305840A (en) Sintered silicon nitride and its production
JPH01219062A (en) Production of silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP2772581B2 (en) Black aluminum nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees